1887

Abstract

Many environmentally relevant micro-organisms cannot be cultured, and even with the latest metagenomic approaches, achieving complete genomes for specific target organisms of interest remains a challenge. Cable bacteria provide a prominent example of a microbial ecosystem engineer that is currently unculturable. They occur in low abundance in natural sediments, but due to their capability for long-distance electron transport, they exert a disproportionately large impact on the biogeochemistry of their environment. Current available genomes of marine cable bacteria are highly fragmented and incomplete, hampering the elucidation of their unique electrogenic physiology. Here, we present a metagenomic pipeline that combines Nanopore long-read and Illumina short-read shotgun sequencing. Starting from a clonal enrichment of a cable bacterium, we recovered a circular metagenome-assembled genome (5.09 Mbp in size), which represents a novel cable bacterium species with the proposed name Electrothrix scaldis. The closed genome contains 1109 novel identified genes, including key metabolic enzymes not previously described in incomplete genomes of cable bacteria. We examined in detail the factors leading to genome closure. Foremost, native, non-amplified long reads are crucial to resolve the many repetitive regions within the genome of cable bacteria, and by analysing the whole metagenomic assembly, we found that low strain diversity is key for achieving genome closure. The insights and approaches presented here could help achieve genome closure for other keystone micro-organisms present in complex environmental samples at low abundance.

Funding
This study was supported by the:
  • Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Award 016.VICI.170.072)
    • Principle Award Recipient: FilipJ.R. Meysman
  • Fonds Wetenschappelijk Onderzoek (Award G038819N)
    • Principle Award Recipient: FilipJ.R. Meysman
  • Fonds Wetenschappelijk Onderzoek (Award 11D7822N)
    • Principle Award Recipient: AnwarAshok Hiralal
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001197
2024-02-20
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/2/mgen001197.html?itemId=/content/journal/mgen/10.1099/mgen.0.001197&mimeType=html&fmt=ahah

References

  1. Olson ND, Treangen TJ, Hill CM, Cepeda-Espinoza V, Ghurye J et al. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinformatics 2019; 20:1140–1150 [View Article]
    [Google Scholar]
  2. Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res 2010; 20:1165–1173 [View Article]
    [Google Scholar]
  3. Koonin EV, Aravind L, Kondrashov AS. The impact of comparative genomics on our understanding of evolution. Cell 2000; 101:573–576 [View Article] [PubMed]
    [Google Scholar]
  4. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12:733–735 [View Article] [PubMed]
    [Google Scholar]
  5. Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S et al. Finished bacterial genomes from shotgun sequence data. Genome Res 2012; 22:2270–2277 [View Article] [PubMed]
    [Google Scholar]
  6. Bongartz P. Resolving repeat families with long reads. BMC Bioinformatics 2019; 20:232 [View Article] [PubMed]
    [Google Scholar]
  7. Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics. Dev Growth Differ 2019; 61:316–326 [View Article]
    [Google Scholar]
  8. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 2015; 25:1750–1756 [View Article] [PubMed]
    [Google Scholar]
  9. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  10. Bouchez V, Baines SL, Guillot S, Brisse S. Complete genome sequences of Bordetella pertussis clinical isolate FR5810 and reference strain Tohama from combined oxford Nanopore and illumina sequencing. Microbiol Resour Announc 2018; 7:19 [View Article] [PubMed]
    [Google Scholar]
  11. Karl MM, Poehlein A, Bengelsdorf FR, Daniel R, Dürre P. Complete genome sequence of the autotrophic acetogen Clostridium formicaceticum DSM 92T using Nanopore and illumina sequencing data. Genome Announc 2017; 5:e00423-17 [View Article] [PubMed]
    [Google Scholar]
  12. Pechtl A, Rückert C, Maus I, Koeck DE, Trushina N et al. Complete genome sequence of the novel cellulolytic, anaerobic, thermophilic bacterium Herbivorax saccincola type strain GGR1, isolated from a lab scale biogas reactor as established by illumina and Nanopore MinION sequencing. Genome Announc 2018; 6:e01493-17 [View Article] [PubMed]
    [Google Scholar]
  13. Ravintheran SK, Sivaprakasam S, Loke S, Lee SY, Manickam R et al. Complete genome sequence of Sphingomonas paucimobilis AIMST S2, a xenobiotic-degrading bacterium. Sci Data 2019; 6:280 [View Article] [PubMed]
    [Google Scholar]
  14. Ruan Z, Wu J, Chen H, Draz MS, Xu J et al. Hybrid genome assembly and annotation of a pandrug-resistant Klebsiella pneumoniae strain using Nanopore and illumina sequencing. Infect Drug Resist 2020; 13:199–206 [View Article] [PubMed]
    [Google Scholar]
  15. Amann RI, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995; 59:143–169 [View Article] [PubMed]
    [Google Scholar]
  16. Epstein SS. The phenomenon of microbial uncultivability. Curr Opin Microbiol 2013; 16:636–642 [View Article] [PubMed]
    [Google Scholar]
  17. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 2004; 68:669–685 [View Article] [PubMed]
    [Google Scholar]
  18. Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 2014; 15:577–584 [View Article] [PubMed]
    [Google Scholar]
  19. Macaulay IC, Voet T. Single cell genomics: advances and future perspectives. PLoS Genet 2014; 10:e1004126 [View Article] [PubMed]
    [Google Scholar]
  20. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017; 35:833–844 [View Article] [PubMed]
    [Google Scholar]
  21. Moss EL, Maghini DG, Bhatt AS. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat Biotechnol 2020; 38:701–707 [View Article] [PubMed]
    [Google Scholar]
  22. Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun 2021; 12:2009 [View Article] [PubMed]
    [Google Scholar]
  23. Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun 2019; 10:4120 [View Article] [PubMed]
    [Google Scholar]
  24. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F et al. Filamentous bacteria transport electrons over centimetre distances. Nature 2012; 491:218–221 [View Article] [PubMed]
    [Google Scholar]
  25. Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences 2017; 14:683–701 [View Article]
    [Google Scholar]
  26. Malkin SY, Rao AMF, Seitaj D, Vasquez-Cardenas D, Zetsche EM et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J 2014; 8:1843–1854 [View Article] [PubMed]
    [Google Scholar]
  27. Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT et al. Cable bacteria in freshwater sediments. Appl Environ Microbiol 2015; 81:6003–6011 [View Article] [PubMed]
    [Google Scholar]
  28. Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim Cosmochim Acta 2012; 92:1–13 [View Article]
    [Google Scholar]
  29. Seitaj D, Schauer R, Sulu-Gambari F, Hidalgo-Martinez S, Malkin SY et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci U S A 2015; 112:13278–13283 [View Article] [PubMed]
    [Google Scholar]
  30. Geelhoed JS, Thorup CA, Bjerg JJ, Schreiber L, Nielsen LP et al. Indications for a genetic basis for big bacteria and description of the giant cable bacterium Candidatus Electrothrix gigas sp. nov. Microbiol Spectr 2023; 11:e0053823 [View Article] [PubMed]
    [Google Scholar]
  31. Trojan D, Schreiber L, Bjerg JT, Bøggild A, Yang T et al. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Syst Appl Microbiol 2016; 39:297–306 [View Article] [PubMed]
    [Google Scholar]
  32. Rao AMF, Malkin SY, Hidalgo-Martinez S, Meysman FJR. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochim Cosmochim Acta 2016; 172:265–286 [View Article]
    [Google Scholar]
  33. Sulu-Gambari F, Seitaj D, Meysman FJR, Schauer R, Polerecky L et al. Cable bacteria control iron-phosphorus dynamics in sediments of a Coastal hypoxic basin. Environ Sci Technol 2016; 50:1227–1233 [View Article] [PubMed]
    [Google Scholar]
  34. van de Velde S, Lesven L, Burdorf LDW, Hidalgo-Martinez S, Geelhoed JS et al. The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: a field study. Geochim Cosmochim Acta 2016; 194:211–232 [View Article]
    [Google Scholar]
  35. Klier J, Dellwig O, Leipe T, Jürgens K, Herlemann DPR. Benthic bacterial community composition in the oligohaline-marine transition of surface sediments in the Baltic sea based on rRNA analysis. Front Microbiol 2018; 9:236 [View Article] [PubMed]
    [Google Scholar]
  36. Liu F, Wang Z, Wu B, Bjerg JT, Hu W et al. Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments. ISME J 2021; 15:1551–1563 [View Article] [PubMed]
    [Google Scholar]
  37. Otte JM, Harter J, Laufer K, Blackwell N, Straub D et al. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ Microbiol 2018; 20:2483–2499 [View Article] [PubMed]
    [Google Scholar]
  38. Marzocchi U, Bonaglia S, van de Velde S, Hall POJ, Schramm A et al. Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin. Environ Microbiol 2018; 20:3031–3041 [View Article] [PubMed]
    [Google Scholar]
  39. Lipsewers YA, Vasquez-Cardenas D, Seitaj D, Schauer R, Hidalgo-Martinez S et al. Impact of seasonal hypoxia on activity and community structure of chemolithoautotrophic bacteria in a Coastal sediment. Appl Environ Microbiol 2017; 83:10 [View Article]
    [Google Scholar]
  40. Vasquez-Cardenas D, van de Vossenberg J, Polerecky L, Malkin SY, Schauer R et al. Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments. ISME J 2015; 9:1966–1978 [View Article] [PubMed]
    [Google Scholar]
  41. Sereika M, Petriglieri F, Jensen TBN, Sannikov A, Hoppe M et al. Closed genomes uncover a saltwater species of Candidatus Electronema and shed new light on the boundary between marine and freshwater cable bacteria. ISME J 2023; 17:561–569 [View Article] [PubMed]
    [Google Scholar]
  42. Thorup C, Petro C, Bøggild A, Ebsen TS, Brokjær S et al. How to grow your cable bacteria: establishment of a stable single-strain culture in sediment and proposal of Candidatus Electronema aureum GS. Syst Appl Microbiol 2021; 44:126236 [View Article] [PubMed]
    [Google Scholar]
  43. Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 2002; 68:3094–3101 [View Article] [PubMed]
    [Google Scholar]
  44. Pernthaler J, Glöckner F-O, Schönhuber W, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targeted Oligonucleotide probes. Methods Microbiol 2001; 30:207–226
    [Google Scholar]
  45. Loy A, Lehner A, Lee N, Adamczyk J, Meier H et al. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 2002; 68:5064–5081 [View Article] [PubMed]
    [Google Scholar]
  46. Lücker S, Steger D, Kjeldsen KU, MacGregor BJ, Wagner M et al. Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. J Microbiol Methods 2007; 69:523–528 [View Article] [PubMed]
    [Google Scholar]
  47. Geelhoed JS, van de Velde SJ, Meysman FJR. Quantification of cable bacteria in marine sediments via qPCR. Front Microbiol 2020; 11:1506 [View Article] [PubMed]
    [Google Scholar]
  48. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 2011; 5:1571–1579 [View Article]
    [Google Scholar]
  49. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13:581–583 [View Article]
    [Google Scholar]
  50. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  51. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:e61217 [View Article] [PubMed]
    [Google Scholar]
  52. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  53. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  54. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  55. Lanfear R, Schalamun M, Kainer D, Wang W, Schwessinger B. MinIONQC: fast and simple quality control for MinION sequencing data. Bioinformatics 2019; 35:523–525 [View Article] [PubMed]
    [Google Scholar]
  56. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  57. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article]
    [Google Scholar]
  59. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods 2020; 17:1103–1110 [View Article] [PubMed]
    [Google Scholar]
  60. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  61. Milne I, Bayer M, Cardle L, Shaw P, Stephen G et al. Tablet--next generation sequence assembly visualization. Bioinformatics 2010; 26:401–402 [View Article] [PubMed]
    [Google Scholar]
  62. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  63. Kang DD, Li F, Kirton E, Thomas A, Egan R et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019; 7:e7359 [View Article] [PubMed]
    [Google Scholar]
  64. Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016; 32:605–607 [View Article] [PubMed]
    [Google Scholar]
  65. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018; 3:836–843 [View Article] [PubMed]
    [Google Scholar]
  66. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  67. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75:7537–7541 [View Article] [PubMed]
    [Google Scholar]
  68. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013 http://arxiv.org/abs/1303.3997
  69. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019; 176:649–662 [View Article] [PubMed]
    [Google Scholar]
  70. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020; 36:1925–1927 [View Article]
    [Google Scholar]
  71. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  72. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  73. Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 2017; 33:3340–3347 [View Article] [PubMed]
    [Google Scholar]
  74. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article] [PubMed]
    [Google Scholar]
  75. Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci U S A 2019; 116:19116–19125 [View Article] [PubMed]
    [Google Scholar]
  76. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  77. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  78. Neukirchen S, Sousa FL. DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data. Microb Genom 2021; 7:000603 [View Article] [PubMed]
    [Google Scholar]
  79. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL et al. InterPro in 2022. Nucleic Acids Res 2023; 51:D418–D427 [View Article] [PubMed]
    [Google Scholar]
  80. Neukirchen S, Pereira IAC, Sousa FL. Stepwise pathway for early evolutionary assembly of dissimilatory sulfite and sulfate reduction. ISME J 2023; 17:1680–1692 [View Article] [PubMed]
    [Google Scholar]
  81. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  82. Duarte AG, Catarino T, White GF, Lousa D, Neukirchen S et al. An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation. Nat Commun 2018; 9:5448 [View Article] [PubMed]
    [Google Scholar]
  83. Pirovano W, Feenstra KA, Heringa J. PRALINETM: a strategy for improved multiple alignment of transmembrane proteins. Bioinformatics 2008; 24:492–497 [View Article] [PubMed]
    [Google Scholar]
  84. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  85. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 2008; 72:557–578 [View Article] [PubMed]
    [Google Scholar]
  86. Lapidus AL, Korobeynikov AI. Metagenomic data assembly - the way of decoding unknown microorganisms. Front Microbiol 2021; 12:613791 [View Article] [PubMed]
    [Google Scholar]
  87. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S et al. Critical assessment of metagenome interpretation-a benchmark of metagenomics software. Nat Methods 2017; 14:1063–1071 [View Article] [PubMed]
    [Google Scholar]
  88. Sevim V, Lee J, Egan R, Clum A, Hundley H et al. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Sci Data 2019; 6:285 [View Article] [PubMed]
    [Google Scholar]
  89. Li C, Reimers CE, Chace PJ. Protocol for using autoclaved intertidal sediment as a medium to enrich marine cable bacteria. STAR Protoc 2022; 3:101604 [View Article] [PubMed]
    [Google Scholar]
  90. Cornelissen R, Bøggild A, Thiruvallur Eachambadi R, Koning RI, Kremer A et al. The cell envelope structure of cable bacteria. Front Microbiol 2018; 9:3044 [View Article] [PubMed]
    [Google Scholar]
  91. Boschker HTS, Cook PLM, Polerecky L, Eachambadi RT, Lozano H et al. Efficient long-range conduction in cable bacteria through nickel protein wires. Nat Commun 2021; 12:3996 [View Article] [PubMed]
    [Google Scholar]
  92. Lasken RS, Stockwell TB. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol 2007; 7:19 [View Article] [PubMed]
    [Google Scholar]
  93. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  94. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  95. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article] [PubMed]
    [Google Scholar]
  96. Martinez-Hernandez F, Fornas O, Lluesma Gomez M, Bolduc B, de la Cruz Peña MJ et al. Single-virus genomics reveals hidden cosmopolitan and abundant viruses. Nat Commun 2017; 8:15892 [View Article] [PubMed]
    [Google Scholar]
  97. Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA et al. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res 2015; 25:534–543 [View Article] [PubMed]
    [Google Scholar]
  98. Meysman FJR, Risgaard-Petersen N, Malkin SY, Nielsen LP. The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochimica et Cosmochimica Acta 2015; 152:122–142 [View Article]
    [Google Scholar]
  99. Geerlings NMJ, Karman C, Trashin S, As KS, Kienhuis MVM et al. Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci USA 2020; 117:5478–5485 [View Article]
    [Google Scholar]
  100. Scilipoti S, Koren K, Risgaard-Petersen N, Schramm A, Nielsen LP. Oxygen consumption of individual cable bacteria. Sci Adv 2021; 7:eabe1870 [View Article] [PubMed]
    [Google Scholar]
  101. Hofacker I, Schulten K. Oxygen and proton pathways in cytochrome c oxidase. Proteins 1998; 30:100–107 [View Article]
    [Google Scholar]
  102. Iwata S, Ostermeier C, Ludwig B, Michel H. Structure at 2.8 a resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995; 376:660–669 [View Article] [PubMed]
    [Google Scholar]
  103. Konstantinov AA, Siletsky S, Mitchell D, Kaulen A, Gennis RB. The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci U S A 1997; 94:9085–9090 [View Article] [PubMed]
    [Google Scholar]
  104. Marzocchi U, Thorup C, Dam A-S, Schramm A, Risgaard-Petersen N. Dissimilatory nitrate reduction by a freshwater cable bacterium. ISME J 2022; 16:50–57 [View Article] [PubMed]
    [Google Scholar]
  105. Marzocchi U, Trojan D, Larsen S, Meyer RL, Revsbech NP et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J 2014; 8:1682–1690 [View Article] [PubMed]
    [Google Scholar]
  106. Barbosa ACC, Venceslau SS, Pereira IAC. DsrMKJOP is the terminal reductase complex in anaerobic sulfate respiration. Microbiology 2023 [View Article]
    [Google Scholar]
  107. Venceslau SS, Stockdreher Y, Dahl C, Pereira IAC. The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. Biochim Biophys Acta 2014; 1837:1148–1164 [View Article] [PubMed]
    [Google Scholar]
  108. Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV et al. Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex--a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 2006; 45:249–262 [View Article] [PubMed]
    [Google Scholar]
  109. Colman DR, Labesse G, Swapna GVT, Stefanakis J, Montelione GT et al. Structural evolution of the ancient enzyme, dissimilatory sulfite reductase. Proteins 2022; 90:1331–1345 [View Article]
    [Google Scholar]
  110. Ferreira D, Barbosa ACC, Oliveira GP, Catarino T, Venceslau SS et al. The DsrD functional marker protein is an allosteric activator of the DsrAB dissimilatory sulfite reductase. Proc Natl Acad Sci USA 2022; 119:e2118880119 [View Article]
    [Google Scholar]
  111. Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J 2018; 12:1715–1728 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001197
Loading
/content/journal/mgen/10.1099/mgen.0.001197
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error