1887

Abstract

The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.

Funding
This study was supported by the:
  • CNPq (National Council for Scientific and Technological Development) (Award 309396/2021-2)
    • Principle Award Recipient: KarinKirchgatter
  • Wellcome ARTIC network (Award 206298)
    • Principle Award Recipient: NicholasJ. Loman
  • Wellcome ARTIC network (Award 206298)
    • Principle Award Recipient: JoshuaQuick
  • Medical Research Council-São Paulo Research Foundation (FAPESP) CADDE partnership award (Award MRC MR/S0195/1 and FAPESP 18/14389-0)
    • Principle Award Recipient: NunoR. Faria
  • Bill and Melinda Gates Foundation (Award INV-034540)
    • Principle Award Recipient: IngraM. Claro
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2018/16232-1)
    • Principle Award Recipient: Liliande Oliveira Guimarães
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2017/50345-5)
    • Principle Award Recipient: JeremyDarius Mirza
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001184
2024-01-19
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/1/mgen001184.html?itemId=/content/journal/mgen/10.1099/mgen.0.001184&mimeType=html&fmt=ahah

References

  1. Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res 2010; 85:328–345 [View Article] [PubMed]
    [Google Scholar]
  2. Donalisio MR, Freitas ARR, Zuben A. Arboviruses emerging in Brazil: challenges for clinic and implications for public health. Rev Saude Publica 2017; 51:30 [View Article] [PubMed]
    [Google Scholar]
  3. Ahmed S, Dávila JD, Allen A, Haklay MM, Tacoli C et al. Does urbanization make emergence of zoonosis more likely? Evidence, myths and gaps. Environ Urban 2019; 31:443–460 [View Article] [PubMed]
    [Google Scholar]
  4. Rahman MT, Sobur MA, Islam MS, Ievy S, Hossain MJ et al. Zoonotic diseases: etiology, impact, and control. Microorganisms 2020; 8:1405 [View Article] [PubMed]
    [Google Scholar]
  5. Grubaugh ND, Faria NR, Andersen KG, Pybus OG. Genomic insights into Zika virus emergence and spread. Cell 2018; 172:1160–1162 [View Article] [PubMed]
    [Google Scholar]
  6. Faria NR, Rdsds A, Kraemer MUG, Souza R, Cunha MS et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 2016352
    [Google Scholar]
  7. Faria NR, Quick J, Claro IM, Thézé J, de Jesus JG et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 2017; 546:406–410 [View Article] [PubMed]
    [Google Scholar]
  8. Zanluca C, Melo VCA de, Mosimann ALP, Santos GIVD, Santos CNDD et al. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 2015; 110:569–572 [View Article] [PubMed]
    [Google Scholar]
  9. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD et al. Multiplex PCR method for MinION and illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 2017; 12:1261–1276 [View Article] [PubMed]
    [Google Scholar]
  10. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M et al. Zika virus associated with microcephaly. N Engl J Med 2016; 374:951–958 [View Article] [PubMed]
    [Google Scholar]
  11. Musso D, Ko AI, Baud D. Zika virus infection - after the pandemic. N Engl J Med 2019; 381:1444–1457 [View Article] [PubMed]
    [Google Scholar]
  12. Grubaugh ND, Ladner JT, Kraemer MUG, Dudas G, Tan AL et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 2017; 546:401–405 [View Article] [PubMed]
    [Google Scholar]
  13. McCarthy M. First US case of Zika virus infection is identified in Texas. BMJ 2016; 352:i212 [View Article] [PubMed]
    [Google Scholar]
  14. Giron S, Franke F, Decoppet A, Cadiou B, Travaglini T et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Eurosurveillance 2019; 24:1900655 [View Article]
    [Google Scholar]
  15. Alencar J, Mello CF de, Barbosa LS, Gil-Santana HR, Maia D de A et al. Diversity of yellow fever mosquito vectors in the Atlantic Forest of Rio de Janeiro, Brazil. Rev Soc Bras Med Trop 2016; 49:351–356 [View Article] [PubMed]
    [Google Scholar]
  16. Abreu FVS de, Ribeiro IP, Ferreira-de-Brito A, Santos AACD, Miranda RM de et al. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016-2018. Emerg Microbes Infect 2019; 8:218–231 [View Article] [PubMed]
    [Google Scholar]
  17. Nastri AC, Duarte-Neto AN, Casadio LVB, Souza WM de, Claro IM et al. Understanding Sabiá virus infections (Brazilian mammarenavirus). Travel Med Infect Dis 2022; 48:102351 [View Article] [PubMed]
    [Google Scholar]
  18. Grubaugh ND, Sharma S, Krajacich BJ, Fakoli LS, Bolay FK et al. Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape. PLoS Negl Trop Dis 2015; 9:e0003628 [View Article] [PubMed]
    [Google Scholar]
  19. Claro IM, Ramundo MS, Coletti TM, da Silva CAM, Valenca IN et al. Rapid viral metagenomics using SMART-9N amplification and nanopore sequencing. Wellcome Open Res 2021; 6:241 [View Article] [PubMed]
    [Google Scholar]
  20. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  21. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci 2003; 270:313–321 [View Article] [PubMed]
    [Google Scholar]
  22. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 2007; 7:544–548 [View Article]
    [Google Scholar]
  23. Crabtree MB, Kading RC, Mutebi JP, Lutwama JJ, Miller BR. Identification of host blood from engorged mosquitoes collected in western Uganda using cytochrome oxidase I gene sequences. J Wildl Dis 2013; 49:611–626 [View Article] [PubMed]
    [Google Scholar]
  24. Ajamma YU, Mararo E, Omondi D, Onchuru T, Muigai AWT et al. Rapid and high throughput molecular identification of diverse mosquito species by high resolution melting analysis. F1000Res 2016; 5:1949 [View Article] [PubMed]
    [Google Scholar]
  25. Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM et al. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. Elife 2021; 10:e68353 [View Article] [PubMed]
    [Google Scholar]
  26. Ratnasingham S, Hebert PDN. bold: the barcode of life data system. Mol Ecol Notes 2007; 7:355–364 [View Article] [PubMed]
    [Google Scholar]
  27. Townzen JS, Brower AVZ, Judd DD. Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. Med Vet Entomol 2008; 22:386–393 [View Article] [PubMed]
    [Google Scholar]
  28. Sudia WD, Chamberlain RW. Battery-operated light trap, an improved model. Mosq News 1962126–129
    [Google Scholar]
  29. Lane J. Neotropical Culioidae São Paulo, Brazil: University of São Paulo; 1953 p 1112
    [Google Scholar]
  30. Forattini OP. Culicini; Culex, Aedes e Psorophora São Paulo, Brazil: de Higiene e Saúde Pública, Department de Parasitologia; 1965
    [Google Scholar]
  31. Forattini OP. Culicidologia Médica: Identificação, Biologia, Epidemiologia São Paulo: EDUSP; 2002 p 860
    [Google Scholar]
  32. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016; 530:228–232 [View Article] [PubMed]
    [Google Scholar]
  33. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  34. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  36. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  37. Guimarães L de O, Simões RF, Chagas CRF, Menezes RMT de, Silva FS et al. Assessing diversity, Plasmodium infection and blood meal sources in mosquitoes (Diptera: Culicidae) from a Brazilian zoological park with avian malaria transmission. Insects 2021; 12:215 [View Article] [PubMed]
    [Google Scholar]
  38. I de, Hutchings RSG, Hutchings RW, Sallum MAM. Revision of the atratus group of culex (Melanoconion) (Diptera: Culicidae). Parasit Vectors 2020; 13:1–52 [View Article] [PubMed]
    [Google Scholar]
  39. Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 1995; 92:10099–10103 [View Article] [PubMed]
    [Google Scholar]
  40. Wang Y, Choi JY, Roh JY, Woo SD, Jin BR et al. Molecular and phylogenetic characterization of Spodoptera litura granulovirus. J Microbiol 2008; 46:704–708 [View Article] [PubMed]
    [Google Scholar]
  41. Nga PT, Parquet M del C, Lauber C, Parida M, Nabeshima T et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog 2011; 7:e1002215 [View Article] [PubMed]
    [Google Scholar]
  42. Zhou J, Jin Y, Chen Y, Li J, Zhang Q et al. Complete genomic and ultrastructural analysis of a Nam Dinh virus isolated from Culex pipiens quinquefasciatus in China. Sci Rep 2017; 7:271 [View Article] [PubMed]
    [Google Scholar]
  43. Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T et al. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 2007; 359:405–414 [View Article] [PubMed]
    [Google Scholar]
  44. Machado DC, Mondini A, dos Santos Santana V, Yonamine PTK, Chiaravalloti Neto F et al. First identification of Culex flavivirus (Flaviviridae) in Brazil. Intervirology 2012; 55:475–483 [View Article] [PubMed]
    [Google Scholar]
  45. Plyusnin A, Elliott RM. Bunyaviridae: Molecular and Cellular Biology Caister Academic Press; 2011 p 213
    [Google Scholar]
  46. Travassos da Rosa JF, de Souza WM, Pinheiro F de P, Figueiredo ML, Cardoso JF et al. Oropouche virus: clinical, epidemiological, and molecular aspects of a neglected orthobunyavirus. Am J Trop Med Hyg 2017; 96:1019–1030 [View Article] [PubMed]
    [Google Scholar]
  47. Andrade PS, Valença IN, Heinisch MRS, Rocha EC, Fernandes LN et al. First report of in (Diptera: Culicidae) in Latin America. Viruses 2022; 14:
    [Google Scholar]
  48. Cunha MS, Faria NR, Caleiro GS, Candido DS, Hill SC et al. Genomic evidence of yellow fever virus in Aedes scapularis, southeastern Brazil, 2016. Acta Trop 2020; 205:105390 [View Article] [PubMed]
    [Google Scholar]
  49. Harbach RE. Classification within the cosmopolitan genus Culex (Diptera: Culicidae): the foundation for molecular systematics and phylogenetic research. Acta Trop 2011; 120:1–14 [View Article] [PubMed]
    [Google Scholar]
  50. Laurito M, Oliveira T de, Almirón WR, Sallum MAM. COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Mem Inst Oswaldo Cruz 2013; 108:110–122 [View Article] [PubMed]
    [Google Scholar]
  51. Billingsley PF, Hecker H. Blood digestion in the mosquito, Anopheles stephensi Liston (Diptera: Culicidae): activity and distribution of trypsin, aminopeptidase, and alpha-glucosidase in the midgut. J Med Entomol 1991; 28:865–871 [View Article] [PubMed]
    [Google Scholar]
  52. Santos CS, Pie MR, da Rocha TC, Navarro-Silva MA. Molecular identification of blood meals in mosquitoes (Diptera, Culicidae) in urban and forested habitats in southern Brazil. PLoS One 2019; 14:e0212517 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001184
Loading
/content/journal/mgen/10.1099/mgen.0.001184
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error