1887

Abstract

This study presents the assembly and comparative genomic analysis of luminous strains isolated from the light organs of 12 fish species using Oxford Nanopore Technologies (ONT) sequencing. The majority of assemblies achieved chromosome-level continuity, consisting of one large (>3 Mbp) and one small (~1.5 Mbp) contig, with near complete BUSCO scores along with varying plasmid sequences. Leveraging this dataset, this study significantly expanded the available genomes for and its subspecies , enabling a comparative genomic analysis between the two lineages. An analysis of the large and small chromosomes unveiled distinct patterns of core and accessory genes, with a larger fraction of the core genes residing on the large chromosome, supporting the hypothesis of secondary chromosome evolution from megaplasmids in Vibrionaceae. In addition, we discovered a proposed new species, sp. nov., isolated from an acropomatid host, with an average nucleotide identify (ANI) of 93 % compared to the and strains. A comparison of the and lineages revealed minimal differences in gene content, yet highlighted the former’s larger genome size and potential for horizontal gene transfer. An investigation of the operon, responsible for light production, indicated congruence between the presence of and host family, challenging its role in differentiating from . Further insights were derived from the identification of metabolic differences, such as the presence of the NADH:quinone oxidoreductase respiratory complex I in as well as variations in the type II secretion system (T2S) genes between the lineages, potentially impacting protein secretion and symbiosis. In summary, this study advances our understanding of genome evolution, highlighting subtle differences between closely related lineages, specifically and . These findings highlight the benefit of long read sequencing for bacterial genome assembly and pangenome analysis and provide a foundation for exploring early bacterial speciation processes of these facultative light organ symbionts.

Funding
This study was supported by the:
  • Foundation for the National Institutes of Health (Award DP5OD026405)
    • Principle Award Recipient: AlisonL Gould
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001161
2023-12-19
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/12/mgen001161.html?itemId=/content/journal/mgen/10.1099/mgen.0.001161&mimeType=html&fmt=ahah

References

  1. Kaeding AJ, Ast JC, Pearce MM, Urbanczyk H, Kimura S et al. Phylogenetic diversity and cosymbiosis in the bioluminescent symbioses of “Photobacterium mandapamensis”. Appl Environ Microbiol 2007; 73:3173–3182 [View Article] [PubMed]
    [Google Scholar]
  2. Ast JC, Dunlap PV. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 2005; 7:1641–1654 [View Article] [PubMed]
    [Google Scholar]
  3. Ast JC, Dunlap PV. Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi. Arch Microbiol 2004; 181:352–361 [View Article] [PubMed]
    [Google Scholar]
  4. Dunlap PV, Ast JC. Genomic and phylogenetic characterization of luminous bacteria symbiotic with the deep-sea fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae). Appl Environ Microbiol 2005; 71:930–939 [View Article] [PubMed]
    [Google Scholar]
  5. Wada M, Kamiya A, Uchiyama N, Yoshizawa S, Kita-Tsukamoto K et al. LuxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis. FEMS Microbiol Lett 2006; 260:186–192 [View Article] [PubMed]
    [Google Scholar]
  6. Urbanczyk H, Ast JC, Dunlap PV. Phylogeny, genomics, and symbiosis of photobacterium. FEMS Microbiol Rev 2011; 35:324–342 [View Article] [PubMed]
    [Google Scholar]
  7. Ast JC, Urbanczyk H, Dunlap PV. Natural merodiploidy of the lux-rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan. J Bacteriol 2007; 189:6148–6158 [View Article] [PubMed]
    [Google Scholar]
  8. Urbanczyk H, Urbanczyk Y, Hayashi T, Ogura Y. Diversification of two lineages of symbiotic photobacterium. PLoS One 2013; 8:e82917 [View Article] [PubMed]
    [Google Scholar]
  9. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  10. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  11. Gould AL, Fritts-Penniman A, Gaisiner A. Museum genomics illuminate the high specificity of a bioluminescent symbiosis for a genus of reef fish. Front Ecol Evol 2021; 9:630207 [View Article] [PubMed]
    [Google Scholar]
  12. Urbanczyk H, Ogura Y, Hendry TA, Gould AL, Kiwaki N et al. Genome sequence of Photobacterium mandapamensis strain svers.1.1, the bioluminescent symbiont of the cardinal fish Siphamia versicolor. J Bacteriol 2011; 193:3144–3145 [View Article] [PubMed]
    [Google Scholar]
  13. Al Ali B, Garel M, Cuny P, Miquel J-C, Toubal T et al. Luminous bacteria in the deep-sea waters near the ANTARES underwater neutrino telescope (Mediterranean Sea). Chemistry and Ecology 2010; 26:57–72 [View Article]
    [Google Scholar]
  14. Soh JYK, Russell CW, Fenlon SN, Chen SL. Complete genome sequence of Photobacterium leiognathi strain JS01. Genome Announc 2018; 6:e01396-17 [View Article] [PubMed]
    [Google Scholar]
  15. Okada K, Iida T, Kita-Tsukamoto K, Honda T. Vibrios commonly possess two chromosomes. J Bacteriol 2005; 187:752–757 [View Article] [PubMed]
    [Google Scholar]
  16. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  17. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:1–10 [View Article] [PubMed]
    [Google Scholar]
  18. Huang Y-T, Liu P-Y, Shih P-W. Homopolish: a method for the removal of systematic errors in nanopore sequencing by homologous polishing. Genome Biol 2021; 22:1–17 [View Article] [PubMed]
    [Google Scholar]
  19. Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol 2022; 23:258 [View Article] [PubMed]
    [Google Scholar]
  20. Kolmogorov M, Raney B, Paten B, Pham S. Ragout-a reference-assisted assembly tool for bacterial genomes. Bioinformatics 2014; 30:i302–i309 [View Article] [PubMed]
    [Google Scholar]
  21. Gould AL, Donohoo SA, Román ED, Neff EE. Strain-level diversity of symbiont communities between individuals and populations of a bioluminescent fish. ISME J 2023; 17:1–8 [View Article] [PubMed]
    [Google Scholar]
  22. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  23. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  24. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. In In Gene Prediction New York, NY: Humana; 2019 pp 227–245 [View Article]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  26. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  27. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:1–8 [View Article] [PubMed]
    [Google Scholar]
  28. Shimoyama Y. ANIclustermap: a tool for drawing ANI clustermap between all-vs-all microbial genomes; 2022 https://github.com/moshi4/ANIclustermap
  29. Antipov D, Raiko M, Lapidus A, Pevzner PA. Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res 2019; 29:961–968 [View Article] [PubMed]
    [Google Scholar]
  30. Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP et al. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother 2021; 76:101–109 [View Article] [PubMed]
    [Google Scholar]
  31. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  32. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  33. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  35. Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 2022; 7:1702–1708 [View Article] [PubMed]
    [Google Scholar]
  36. Dunlap PV, Jiemjit A, Ast JC, Pearce MM, Marques RR et al. Genomic polymorphism in symbiotic populations of Photobacterium leiognathi. Environ Microbiol 2004; 6:145–158 [View Article] [PubMed]
    [Google Scholar]
  37. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N et al. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 2005; 307:1459–1461 [View Article] [PubMed]
    [Google Scholar]
  38. Goldstein S, Beka L, Graf J, Klassen JL. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. BMC Genomics 2019; 20:1–17 [View Article] [PubMed]
    [Google Scholar]
  39. Lee JY, Kong M, Oh J, Lim J, Chung SH et al. Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Sci Rep 2021; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  40. Murigneux V, Roberts LW, Forde BM, Phan M-D, Nhu NTK et al. MicroPIPE: validating an end-to-end workflow for high-quality complete bacterial genome construction. BMC Genomics 2021; 22:474 [View Article] [PubMed]
    [Google Scholar]
  41. Zhang P, Jiang D, Wang Y, Yao X, Luo Y et al. Comparison of De Novo assembly strategies for bacterial genomes. Int J Mol Sci 2021; 22:7668 [View Article] [PubMed]
    [Google Scholar]
  42. Sonnenberg CB, Kahlke T, Haugen P. Vibrionaceae core, shell and cloud genes are non-randomly distributed on Chr 1: An hypothesis that links the genomic location of genes with their intracellular placement. BMC Genomics 2020; 21:695 [View Article] [PubMed]
    [Google Scholar]
  43. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000; 406:477–483 [View Article] [PubMed]
    [Google Scholar]
  44. Cooper VS, Vohr SH, Wrocklage SC, Hatcher PJ. Why genes evolve faster on secondary chromosomes in bacteria. PLoS Comput Biol 2010; 6:e1000732 [View Article] [PubMed]
    [Google Scholar]
  45. Dunlap PV, Urbanczyk H. Luminous bacteria. In The Prokaryotes vol 2013 pp 495–521 [View Article]
    [Google Scholar]
  46. Brodl E, Csamay A, Horn C, Niederhauser J, Weber H et al. The impact of LuxF on light intensity in bacterial bioluminescence. J. Photochem. Photobiol. B, Biol 2020; 207:111881 [View Article]
    [Google Scholar]
  47. Gould AL, Harii S, Dunlap PV. Host preference, site fidelity, and homing behavior of the symbiotically luminous cardinalfish, Siphamia tubifer (Perciformes: Apogonidae). Mar Biol 2014; 161:2897–2907 [View Article]
    [Google Scholar]
  48. Horne T, Orr VT, Hall JP. How do interactions between mobile genetic elements affect horizontal gene transfer?. Curr Opin Microbiol 2023; 73:102282 [View Article] [PubMed]
    [Google Scholar]
  49. Thompson CC, Vicente ACP, Souza RC, Vasconcelos ATR, Vesth T et al. Genomic taxonomy of Vibrios. BMC Evol Biol 2009; 9:258 [View Article] [PubMed]
    [Google Scholar]
  50. Konstantinidis KT, Braff J, Karl DM, DeLong EF. Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 2009; 75:5345–5355 [View Article] [PubMed]
    [Google Scholar]
  51. Campanaro S, Vezzi A, Vitulo N, Lauro FM, D’Angelo M et al. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 2005; 6:122 [View Article] [PubMed]
    [Google Scholar]
  52. Friedrich T, Weiss H. Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 1997; 187:529–540 [View Article] [PubMed]
    [Google Scholar]
  53. Barquera B. The sodium pumping NADH:quinone oxidoreductase (Na+). J Bioenerg Biomembr 2014; 46:289–298 [View Article] [PubMed]
    [Google Scholar]
  54. Tokuda H, Unemoto T. A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. Biochem Biophys Res Commun 1981; 102:265–271 [View Article] [PubMed]
    [Google Scholar]
  55. Madsen CS, TerAvest MA. NADH dehydrogenases Nuo and Nqr1 contribute to extracellular electron transfer by Shewanella oneidensis MR-1 in bioelectrochemical systems. Sci Rep 2019; 9:14959 [View Article] [PubMed]
    [Google Scholar]
  56. Cianciotto NP, White RC. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun 2017; 85:e00014-17 [View Article] [PubMed]
    [Google Scholar]
  57. Evans FF, Egan S, Kjelleberg S. Ecology of type II secretion in marine gammaproteobacteria. Environ Microbiol 2008; 10:1101–1107 [View Article] [PubMed]
    [Google Scholar]
  58. Stabb EV, Reich KA, Ruby EG. Vibrio fischeri genes hvnA and hvnB encode secreted NAD(+)-glycohydrolases. J Bacteriol 2001; 183:309–317 [View Article] [PubMed]
    [Google Scholar]
  59. Dunlap PV, Ast JC, Kimura S, Fukui A, Yoshino T et al. Phylogenetic analysis of host–symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 2007; 23:507–532 [View Article]
    [Google Scholar]
  60. Hao Z, Lv D, Ge Y, Shi J, Weijers D et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci 2020; 6:e251 [View Article] [PubMed]
    [Google Scholar]
  61. Grant JR, Enns E, Marinier E, Saha-Mandal A, Chen C-Y et al. A Web Server for Assembling, Annotating and Visualizing Bacterial Genomes. Poster, BioNet 2022 Conference 2022
    [Google Scholar]
  62. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001161
Loading
/content/journal/mgen/10.1099/mgen.0.001161
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error