1887

Abstract

In response to the threat of increasing antimicrobial resistance, we must increase the amount of available high-quality genomic data gathered on antibiotic-resistant bacteria. To this end, we developed an integrated pipeline for high-throughput long-read sequencing, assembly, annotation and analysis of bacterial isolates and used it to generate a large genomic data set of carbapenemase-producing Enterobacterales (CPE) isolates collected in Spain. The set of 461 isolates were sequenced with a combination of both Illumina and Oxford Nanopore Technologies (ONT) DNA sequencing technologies in order to provide genomic context for chromosomal loci and, most importantly, structural resolution of plasmids, important determinants for transmission of antimicrobial resistance. We developed an informatics pipeline called Assembly and Annotation of Carbapenem-Resistant Enterobacteriaceae (AACRE) for the full assembly and annotation of the bacterial genomes and their complement of plasmids. To explore the resulting genomic data set, we developed a new database called inCREDBle that not only stores the genomic data, but provides unique ways to filter and compare data, enabling comparative genomic analyses at the level of chromosomes, plasmids and individual genes. We identified a new sequence type, ST5000, and discovered a genomic locus unique to ST15 that may be linked to its increased spread in the population. In addition to our major objective of generating a large regional data set, we took the opportunity to compare the effects of sample quality and sequencing methods, including R9 versus R10 nanopore chemistry, on genome assembly and annotation quality. We conclude that converting short-read and hybrid microbial sequencing and assembly workflows to the latest nanopore chemistry will further reduce processing time and cost, truly enabling the routine monitoring of resistance transmission patterns at the resolution of complete chromosomes and plasmids.

Funding
This study was supported by the:
  • Roche España
    • Principle Award Recipient: MiguelÁlvarez-Tejado
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001132
2023-11-27
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/11/mgen001132.html?itemId=/content/journal/mgen/10.1099/mgen.0.001132&mimeType=html&fmt=ahah

References

  1. WHO Global action plan on antimicrobial resistance. n.d https://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/ accessed 21 October 2020
  2. WHO Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. n.d https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ accessed 21 October 2020
  3. Lutgring JD, Limbago BM. The problem of carbapenemase-producing-carbapenem-resistant-Enterobacteriaceae detection. J Clin Microbiol 2016; 54:529–534 [View Article] [PubMed]
    [Google Scholar]
  4. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19:56–66 [View Article] [PubMed]
    [Google Scholar]
  5. David S, Reuter S, Harris SR, Glasner C, Feltwell T et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 2019; 4:1919–1929 [View Article] [PubMed]
    [Google Scholar]
  6. Suay-García B, Pérez-Gracia MT. Present and future of Carbapenem-Resistant Enterobacteriaceae (CRE) infections. Antibiotics 2019; 8:122 [View Article] [PubMed]
    [Google Scholar]
  7. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41:252–275 [View Article] [PubMed]
    [Google Scholar]
  8. Molina-Mora JA, Campos-Sánchez R, Rodríguez C, Shi L, García F. High quality 3C de novo assembly and annotation of a multidrug resistant ST-111 Pseudomonas aeruginosa genome: Benchmark of hybrid and non-hybrid assemblers. Sci Rep 2020; 10:1392 [View Article] [PubMed]
    [Google Scholar]
  9. Brunder W, Karch H. Genome plasticity in Enterobacteriaceae. Int J Med Microbiol 2000; 290:153–165 [View Article] [PubMed]
    [Google Scholar]
  10. Benulič K, Pirš M, Couto N, Chlebowicz M, Rossen JWA et al. Whole genome sequencing characterization of Slovenian carbapenem-resistant Klebsiella pneumoniae, including OXA-48 and NDM-1 producing outbreak isolates. PLoS One 2020; 15:e0231503 [View Article] [PubMed]
    [Google Scholar]
  11. George S, Pankhurst L, Hubbard A, Votintseva A, Stoesser N et al. Resolving plasmid structures in Enterobacteriaceae using the MinION nanopore sequencer: assessment of MinION and MinION/Illumina hybrid data assembly approaches. Microb Genom 2017; 3:e000118 [View Article] [PubMed]
    [Google Scholar]
  12. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  13. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article]
    [Google Scholar]
  14. Köster J, Rahmann S. Snakemake-a scalable bioinformatics workflow engine. Bioinformatics 2018; 34:3600 [View Article] [PubMed]
    [Google Scholar]
  15. Babraham Bioinformatics - Trim Galore!. n.d http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ accessed 24 April 2019
  16. nanoporetech/qcat: qcat is a Python command-line tool for demultiplexing Oxford Nanopore reads from FASTQ files. n.d https://github.com/nanoporetech/qcat accessed 21 October 2020
  17. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  18. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci 2017; 3:e104 [View Article]
    [Google Scholar]
  19. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  20. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  21. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  22. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  23. Medaka — Medaka 1.1.3 documentation. n.d https://nanoporetech.github.io/medaka/ accessed 27 October 2020
  24. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  25. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article] [PubMed]
    [Google Scholar]
  26. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  27. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  28. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483-19 [View Article] [PubMed]
    [Google Scholar]
  29. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  30. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article] [PubMed]
    [Google Scholar]
  31. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 2016; 26:1721–1729 [View Article] [PubMed]
    [Google Scholar]
  32. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2022; 50:D20–D26 [View Article] [PubMed]
    [Google Scholar]
  33. tseemann/mlst: Scan contig files against PubMLST typing schemes. n.d https://github.com/tseemann/mlst accessed 27 October 2020
  34. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  35. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:e000206 [View Article] [PubMed]
    [Google Scholar]
  36. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article] [PubMed]
    [Google Scholar]
  37. PubMLST - Public databases for molecular typing and microbial genome diversity. n.d https://pubmlst.org/ accessed 20 April 2021
  38. Klebsiella Sequence Typing Home Page. n.d https://bigsdb.pasteur.fr/klebsiella/ accessed 8 June 2021
  39. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 2011; 70:119–123 [View Article] [PubMed]
    [Google Scholar]
  40. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  41. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article] [PubMed]
    [Google Scholar]
  42. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  43. Gosselin S, Fullmer MS, Feng Y, Gogarten JP, Ho S. Improving phylogenies based on average nucleotide identity, incorporating saturation correction and nonparametric bootstrap support. Syst Biol 2021; 71:396–409 [View Article] [PubMed]
    [Google Scholar]
  44. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  45. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088-17 [View Article] [PubMed]
    [Google Scholar]
  46. Koren S, Harhay GP, Smith TPL, Bono JL, Harhay DM et al. Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 2013; 14:R101 [View Article] [PubMed]
    [Google Scholar]
  47. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2018; 73:1121–1137 [View Article] [PubMed]
    [Google Scholar]
  48. Hopkins KL, Ellaby N, Ellington MJ, Doumith M, Mustafa N et al. Diversity of carbapenemase-producing Enterobacterales in England as revealed by whole-genome sequencing of isolates referred to a national reference laboratory over a 30-month period. J Med Microbiol 2022; 71: [View Article] [PubMed]
    [Google Scholar]
  49. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article] [PubMed]
    [Google Scholar]
  50. Peter S, Bosio M, Gross C, Bezdan D, Gutierrez J et al. Tracking of antibiotic resistance transfer and rapid plasmid evolution in a hospital setting by Nanopore sequencing. mSphere 2020; 5:e00525-20 [View Article] [PubMed]
    [Google Scholar]
  51. Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat Methods 2022; 19:823–826 [View Article] [PubMed]
    [Google Scholar]
  52. Wick RR. ONT-only accuracy with R10.4.1. In Zenodo Epub ahead of print; 2023 [View Article]
    [Google Scholar]
  53. Isolates Browser - Pathogen Detection - NCBI. n.d https://www.ncbi.nlm.nih.gov/pathogens/isolates# accessed 20 April 2021
  54. PATRIC. n.d https://patricbrc.org/ accessed 20 April 2021
  55. Microreact - Open data visualization and sharing for genomic epidemiology. n.d https://microreact.org/project/EuSCAPE_Kp accessed 20 April 2021
  56. Sutton GG, Brinkac LM, Clarke TH, Fouts DE. Enterobacter hormaechei subsp. hoffmannii subsp. nov., Enterobacter hormaechei subsp. xiangfangensis comb. nov., Enterobacter roggenkampii sp. nov., and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. F1000Res 2018; 7:521 [View Article] [PubMed]
    [Google Scholar]
  57. Peirano G, Matsumura Y, Adams MD, Bradford P, Motyl M et al. Genomic epidemiology of global carbapenemase-producing Enterobacter spp., 2008-2014. Emerg Infect Dis 2018; 24:1010–1019 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001132
Loading
/content/journal/mgen/10.1099/mgen.0.001132
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error