1887

Abstract

Carbapenem-resistant (CRKP) has emerged as a major clinical and public health threat. The rapid dissemination of this pathogen is driven by several successful clones worldwide. We aimed to investigate the CRKP clonal lineages, their antibiotic resistance determinants and their potential transmissions in a tertiary care hospital located in Athens, Greece. Between 2003 and 2018, 392 CRKP isolates from bloodstream infections were recovered from hospitalized patients. Whole genome sequencing (WGS) was performed on the Illumina platform to characterize 209 of these isolates. In total, 74 % (=155) of 209 isolates belonged to three major clonal lineages: ST258 (=108), ST147 (=29) and ST11 (=18). Acquired carbapenemase genes were the mechanisms of resistance in 205 isolates ( , =123; , =56; , =20; , =6). Strong associations (=0.0004) were observed between carbapenemase genes and clonal lineages. We first isolated -carrying ST147 strains during the early sampling period in 2003, followed by the emergence of -carrying ST258 in 2006 and -carrying ST11 in 2013. Analysis of genetic distances between the isolates revealed six potential transmission events. When contextualizing the current collection with published data, ST147 reflected the global diversity, ST258 clustered with isolates representing the first introduction into Europe and ST11 formed a distinct geographically restricted lineage indicative of local spread. This study demonstrates the changing profile of bloodstream CRKP in a tertiary care hospital over a 15 year period and underlines the need for continued genomic surveys to develop strategies to contain further dissemination. This article contains data hosted by Microreact.

Funding
This study was supported by the:
  • Bundesministerium für Bildung und Forschung (Award 01KI2018)
    • Principle Award Recipient: SandraReuter
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001082
2023-08-29
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/8/mgen001082.html?itemId=/content/journal/mgen/10.1099/mgen.0.001082&mimeType=html&fmt=ahah

References

  1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327 [View Article] [PubMed]
    [Google Scholar]
  2. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012; 25:682–707 [View Article] [PubMed]
    [Google Scholar]
  3. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13:785–796 [View Article] [PubMed]
    [Google Scholar]
  4. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19:56–66 [View Article] [PubMed]
    [Google Scholar]
  5. Rossolini GM, Bochenska M, Fumagalli L, Dowzicky M. Trends of major antimicrobial resistance phenotypes in enterobacterales and gram-negative non-fermenters from ATLAS and EARS-net surveillance systems: Italian vs. European and global data, 2008-2018. Diagn Microbiol Infect Dis 2021; 101:115512 [View Article] [PubMed]
    [Google Scholar]
  6. Kazmierczak KM, Karlowsky JA, de Jonge BLM, Stone GG, Sahm DF. Epidemiology of carbapenem resistance determinants identified in meropenem-nonsusceptible enterobacterales collected as part of a global surveillance program, 2012 to 2017. Antimicrob Agents Chemother 2012 [View Article]
    [Google Scholar]
  7. Wang M, Earley M, Chen L, Hanson BM, Yu Y et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infect Dis 2022; 22:401–412 [View Article] [PubMed]
    [Google Scholar]
  8. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 17:153–163 [View Article] [PubMed]
    [Google Scholar]
  9. David S, Reuter S, Harris SR, Glasner C, Feltwell T et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 2019; 4:1919–1929 [View Article] [PubMed]
    [Google Scholar]
  10. Giakkoupi P, Xanthaki A, Kanelopoulou M, Vlahaki A, Miriagou V et al. VIM-1 Metallo-beta-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals. J Clin Microbiol 2003; 41:3893–3896 [View Article] [PubMed]
    [Google Scholar]
  11. Karampatakis T, Antachopoulos C, Iosifidis E, Tsakris A, Roilides E. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in Greece. Future Microbiol 2016; 11:809–823 [View Article] [PubMed]
    [Google Scholar]
  12. Zarras C, Pappa S, Zarras K, Karampatakis T, Vagdatli E et al. Changes in molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in the intensive care units of a Greek hospital, 2018-2021. Acta Microbiol Immunol Hung 2022; 69:104–108 [View Article] [PubMed]
    [Google Scholar]
  13. European Centre for Disease Prevention and Control. In Antimicrobial Resistance Surveillance in Europe 2022 pp 1–164
    [Google Scholar]
  14. Psichogiou M, Tassios PT, Avlamis A, Stefanou I, Kosmidis C et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J Antimicrob Chemother 2008; 61:59–63 [View Article] [PubMed]
    [Google Scholar]
  15. Giakoupi P, Maltezou H, Polemis M, Pappa O, Saroglou G et al. KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveill 2009; 14:19218 [View Article] [PubMed]
    [Google Scholar]
  16. Zagorianou A, Sianou E, Iosifidis E, Dimou V, Protonotariou E et al. Microbiological and molecular characteristics of carbapenemase-producing Klebsiella pneumoniae endemic in a tertiary Greek hospital during 2004-2010. Euro Surveill 2012; 17:20088 [PubMed]
    [Google Scholar]
  17. Voulgari E, Zarkotou O, Ranellou K, Karageorgopoulos DE, Vrioni G et al. Outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in Greece involving an ST11 clone. J Antimicrob Chemother 2013; 68:84–88 [View Article] [PubMed]
    [Google Scholar]
  18. Voulgari E, Gartzonika C, Vrioni G, Politi L, Priavali E et al. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J Antimicrob Chemother 2014; 69:2091–2097 [View Article] [PubMed]
    [Google Scholar]
  19. Centers for Disease Control and Prevention Antibiotic Resistance Threats in the United States, 2019 Atlanta GA: U.S: Department of Health and Human Service, CDC;
    [Google Scholar]
  20. Smith Moland E, Hanson ND, Herrera VL, Black JA, Lockhart TJ et al. Plasmid-mediated, carbapenem-hydrolysing beta-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother 2003; 51:711–714 [View Article] [PubMed]
    [Google Scholar]
  21. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 2004; 48:15–22 [View Article] [PubMed]
    [Google Scholar]
  22. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:1–12 [View Article] [PubMed]
    [Google Scholar]
  23. Ponsting H, Ning Z. SMALT - A new mapper for DNA sequencing reads. F1000Posters 2012; 3:327
    [Google Scholar]
  24. Kumar V, Sun P, Vamathevan J, Li Y, Ingraham K et al. Comparative genomics of Klebsiella pneumoniae strains with different antibiotic resistance profiles. Antimicrob Agents Chemother 2011; 55:4267–4276 [View Article] [PubMed]
    [Google Scholar]
  25. Xanthopoulou K, Carattoli A, Wille J, Biehl LM, Rohde H et al. Antibiotic resistance and mobile genetic elements in extensively drug-resistant Klebsiella pneumoniae sequence type 147 recovered from Germany. Antibiotics 2020; 9:675 [View Article] [PubMed]
    [Google Scholar]
  26. DeLeo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci 2014; 111:4988–4993 [View Article] [PubMed]
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  28. Van der Auwera G, O’Connor B. Safari an OMCompany Using Docker, GATK, and WDL in Terra. In Genomics in the Cloud vol 300 2020
    [Google Scholar]
  29. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  30. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  31. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:1–16 [View Article] [PubMed]
    [Google Scholar]
  32. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:e000102 [View Article] [PubMed]
    [Google Scholar]
  33. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  34. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article] [PubMed]
    [Google Scholar]
  35. Sheppard AE, Stoesser N, German-Mesner I, Vegesana K, Sarah Walker A et al. TETyper: a bioinformatic pipeline for classifying variation and genetic contexts of transposable elements from short-read whole-genome sequencing data. Microb Genom 2018; 4:e000232 [View Article] [PubMed]
    [Google Scholar]
  36. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article] [PubMed]
    [Google Scholar]
  37. RCoreTeam A language and environment for statistical computing. Foundation for Statistical Computing, Vienna; 2021
  38. Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ et al. AMR: an R package for working with antimicrobial resistance data. J Stat Softw 2022; 104:1–31 [View Article]
    [Google Scholar]
  39. Wickham H, Averick M, Bryan J, Chang W, McGowan L et al. Welcome to the tidyverse. J Open Source Softw 2019; 4:16–86 [View Article]
    [Google Scholar]
  40. GitHub - yogevherz/plotme Complex plots made easier. n.d https://github.com/yogevherz/plotme accessed 6 September 2022
  41. GitHub - davidsjoberg/ggsankey Make sankey, alluvial and sankey bump plots in ggplot. n.d https://github.com/davidsjoberg/ggsankey accessed 13 September 2022
  42. Pedersen TL. The Composer of Plots [R package patchwork version 1.1.2]. n.d
  43. Gilchrist CLM, Chooi Y-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  44. Argimón S, Yeats CA, Goater RJ, Abudahab K, Taylor B et al. A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella typhi at pathogenwatch. Nat Commun 2021; 12:2879 [View Article] [PubMed]
    [Google Scholar]
  45. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  46. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  47. Sánchez-León I, García-Martínez T, Diene SM, Pérez-Nadales E, Martínez-Martínez L et al. Heteroresistance to colistin in clinical isolates of Klebsiella pneumoniae producing OXA-48. Antibiotics 2023; 12:1111 [View Article]
    [Google Scholar]
  48. Acman M, Wang R, van Dorp L, Shaw LP, Wang Q et al. Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene blaNDM. Nat Commun 2022; 13:1–13 [View Article] [PubMed]
    [Google Scholar]
  49. Cuzon G, Naas T, Demachy MC, Nordmann P. Plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in Klebsiella pneumoniae isolate from Greece. Antimicrob Agents Chemother 2008; 52:796–797 [View Article] [PubMed]
    [Google Scholar]
  50. Maltezou HC, Giakkoupi P, Maragos A, Bolikas M, Raftopoulos V et al. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect 2009; 58:213–219 [View Article] [PubMed]
    [Google Scholar]
  51. Tegmark Wisell K, Haeggman S, Gezelius L, Thompson O, Gustafsson I et al. Identification of Klebsiella pneumoniae carbapenemase in Sweden. Euro Surveill 2007; 12:3333 [View Article] [PubMed]
    [Google Scholar]
  52. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One 2015; 10:e0133727 [View Article] [PubMed]
    [Google Scholar]
  53. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother 2011; 55:5370–5373 [View Article] [PubMed]
    [Google Scholar]
  54. David S, Cohen V, Reuter S, Sheppard AE, Giani T et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2020; 117:25043–25054 [View Article] [PubMed]
    [Google Scholar]
  55. Papafotiou C, Roussos S, Sypsa V, Bampali S, Spyridopoulou K et al. Predictive score for patients with carbapenemase-producing enterobacterales colonization upon admission in a tertiary care hospital in an endemic area. J Antimicrob Chemother 2022; 77:3331–3339 [View Article] [PubMed]
    [Google Scholar]
  56. Loli A, Tzouvelekis LS, Tzelepi E, Carattoli A, Vatopoulos AC et al. Sources of diversity of carbapenem resistance levels in Klebsiella pneumoniae carrying blaVIM-1. J Antimicrob Chemother 2006; 58:669–672 [View Article] [PubMed]
    [Google Scholar]
  57. Carattoli A, Miriagou V, Bertini A, Loli A, Colinon C et al. Replicon typing of plasmids encoding resistance to newer beta-lactams. Emerg Infect Dis 2006; 12:1145–1148 [View Article] [PubMed]
    [Google Scholar]
  58. Girmenia C, Serrao A, Canichella M. Epidemiology of carbapenem resistant Klebsiella pneumoniae infections in Mediterranean countries. Mediterr J Hematol Infect Dis 2016; 8:e2016032 [View Article] [PubMed]
    [Google Scholar]
  59. Di Pilato V, Errico G, Monaco M, Giani T, Del Grosso M et al. The changing epidemiology of carbapenemase-producing Klebsiella pneumoniae in Italy: toward polyclonal evolution with emergence of high-risk lineages. J Antimicrob Chemother 2021; 76:355–361 [View Article] [PubMed]
    [Google Scholar]
  60. Peirano G, Chen L, Kreiswirth BN, Pitouta JDD. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones St307 and St147. Antimicrob Agents Chemother 2020 [View Article]
    [Google Scholar]
  61. Rodrigues C, Desai S, Passet V, Gajjar D, Brisse S. Genomic evolution of the globally disseminated multidrug-resistant Klebsiella pneumoniae clonal group 147. Microb Genom 2022; 8:000737 [View Article] [PubMed]
    [Google Scholar]
  62. Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: a review of the emergence of resistant enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2022; 46:1–37 [View Article] [PubMed]
    [Google Scholar]
  63. Tansarli GS, Papaparaskevas J, Balaska M, Samarkos M, Pantazatou A et al. Colistin resistance in carbapenemase-producing Klebsiella pneumoniae bloodstream isolates: evolution over 15 years and temporal association with colistin use by time series analysis. Int J Antimicrob Agents 2018; 52:397–403 [View Article] [PubMed]
    [Google Scholar]
  64. Galani I, Karaiskos I, Souli M, Papoutsaki V, Galani L et al. Outbreak of KPC-2-producing Klebsiella pneumoniae endowed with ceftazidime-avibactam resistance mediated through a VEB-1-mutant (VEB-25), Greece, september to october 2019. Euro Surveill 2020; 25:2000028 [View Article] [PubMed]
    [Google Scholar]
  65. Voulgari E, Kotsakis SD, Giannopoulou P, Perivolioti E, Tzouvelekis LS et al. Detection in two hospitals of transferable ceftazidime-avibactam resistance in Klebsiella pneumoniae due to a novel VEB β-lactamase variant with a Lys234Arg substitution, Greece, 2019. Euro Surveill 2020; 25:1900766 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001082
Loading
/content/journal/mgen/10.1099/mgen.0.001082
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error