1887

Abstract

is a significant threat to global health with an estimated incidence of over 80 million cases each year and high levels of antimicrobial resistance. The gonococcal β-lactamase plasmid, p, carries the TEM β-lactamase, which requires only one or two amino acid changes to become an extended-spectrum β-lactamase (ESBL); this would render last resort treatments for gonorrhoea ineffective. Although p is not mobile, it can be transferred by the conjugative plasmid, pConj, found in . Seven variants of p have been described previously, but little is known about their frequency or distribution in the gonococcal population. We characterised sequences of p variants and devised a typing scheme, Ng_pST that allows their identification from whole genome short-read sequences. We implemented Ng_pST to assess the distribution of p variants in 15 532 gonococcal isolates. This demonstrated that only three p variants commonly circulate in gonococci, which together account for >99 % of sequences. The p variants carry different TEM alleles and are prevalent in distinct gonococcal lineages. Analysis of 2758 p-containing isolates revealed the co-occurrence of p with certain pConj types, indicating co-operativity between p and pConj variants in the spread of plasmid-mediated AMR in . Understanding the variation and distribution of p is essential for monitoring and predicting the spread of plasmid-mediated β-lactam resistance in .

Funding
This study was supported by the:
  • Wellcome Trust (Award 221924/Z/20/Z)
    • Principle Award Recipient: ChristophM Tang
  • Wellcome Trust (Award 214374/Z/18/Z)
    • Principle Award Recipient: ChristophM Tang
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001057
2023-07-12
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001057.html?itemId=/content/journal/mgen/10.1099/mgen.0.001057&mimeType=html&fmt=ahah

References

  1. World Health Organization Multi-drug resistant gonorrhoea; 2021 https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhoea
  2. Aitolo GL, Adeyemi OS, Afolabi BL, Owolabi AO. Neisseria gonorrhoeae antimicrobial resistance: past to present to future. Curr Microbiol 2021; 78:867–878 [View Article] [PubMed]
    [Google Scholar]
  3. Hazra A, Collison MW, Davis AM. CDC sexually transmitted infections treatment guidelines, 2021. JAMA 2022; 327:870–871 [View Article] [PubMed]
    [Google Scholar]
  4. Fifer H, Saunders J, Soni S, Sadiq ST, FitzGerald M. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int J STD AIDS 2020; 31:4–15 [View Article] [PubMed]
    [Google Scholar]
  5. Lindberg R, Fredlund H, Nicholas R, Unemo M. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob Agents Chemother 2007; 51:2117–2122 [View Article] [PubMed]
    [Google Scholar]
  6. Cehovin A, Jolley KA, Maiden MCJ, Harrison OB, Tang CM. Association of Neisseria gonorrhoeae plasmids with distinct lineages and the economic status of their country of origin. J Infect Dis 2020; 222:1826–1836 [View Article] [PubMed]
    [Google Scholar]
  7. Roberts MC. Plasmids of Neisseria gonorrhoeae and other Neisseria species. Clin Microbiol Rev 1989; 2 Suppl:S18–23 [View Article] [PubMed]
    [Google Scholar]
  8. Heffron F, Rubens C, Falkow S. Transposition of a plasmid deoxyribonucleic acid sequence that mediates ampicillin resistance: identity of laboratory-constructed plasmids and clinical isolates. J Bacteriol 1977; 129:530–533 [View Article] [PubMed]
    [Google Scholar]
  9. Salverda MLM, De Visser J, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 2010; 34:1015–1036 [View Article] [PubMed]
    [Google Scholar]
  10. Al Suwayyid BA, Coombs GW, Speers DJ, Pearson J, Wise MJ et al. Genomic epidemiology and population structure of Neisseria gonorrhoeae from remote highly endemic Western Australian populations. BMC Genomics 2018; 19:165 [View Article] [PubMed]
    [Google Scholar]
  11. Rodriguez-Bonano NM, Torres-Bauza LJ. Molecular analysis of oriT and MobA protein in the 7.4 kb mobilizable beta-lactamase plasmid pSJ7.4 from Neisseria gonorrhoeae. Plasmid 2004; 52:89–101 [View Article] [PubMed]
    [Google Scholar]
  12. Baron ES, Saz AK, Kopecko DJ, Wohlhieter JA. Transfer of plasmid-borne beta-lactamase in Neisseria gonorrhoeae. Antimicrob Agents Chemother 1977; 12:270–280 [View Article] [PubMed]
    [Google Scholar]
  13. Pagotto F, Dillon J-A. Multiple origins and replication proteins influence biological properties of beta-lactamase-producing plasmids from Neisseria gonorrhoeae. J Bacteriol 2001; 183:5472–5481 [View Article] [PubMed]
    [Google Scholar]
  14. Pagotto F, Aman AT, Ng LK, Yeung KH, Brett M et al. Sequence analysis of the family of penicillinase-producing plasmids of Neisseria gonorrhoeae. Plasmid 2000; 43:24–34 [View Article] [PubMed]
    [Google Scholar]
  15. Müller EE, Fayemiwo SA, Lewis DA. Characterization of a novel β-lactamase-producing plasmid in Neisseria gonorrhoeae: sequence analysis and molecular typing of host gonococci. J Antimicrob Chemother 2011; 66:1514–1517 [View Article] [PubMed]
    [Google Scholar]
  16. Trembizki E, Buckley C, Lawrence A, Lahra M, Whiley D et al. Characterization of a novel Neisseria gonorrhoeae penicillinase-producing plasmid isolated in Australia in 2012. Antimicrob Agents Chemother 2014; 58:4984–4985 [View Article] [PubMed]
    [Google Scholar]
  17. Muhammad I, Golparian D, Dillon J-AR, Johansson A, Ohnishi M et al. Characterisation of blaTEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae - the prevalent and conserved blaTEM-135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infect Dis 2014; 14:454 [View Article] [PubMed]
    [Google Scholar]
  18. Brett M. A novel gonococcal beta-lactamase plasmid. J Antimicrob Chemother 1989; 23:653–654 [View Article] [PubMed]
    [Google Scholar]
  19. Gouby A, Bourg G, Ramuz M. Previously undescribed 6.6-kilobase R plasmid in penicillinase-producing Neisseria gonorrhoeae. Antimicrob Agents Chemother 1986; 29:1095–1097 [View Article] [PubMed]
    [Google Scholar]
  20. Dillon JR, Li H, Yeung K, Aman TA. A PCR assay for discriminating Neisseria gonorrhoeae beta-lactamase-producing plasmids. Mol Cell Probes 1999; 13:89–92 [View Article] [PubMed]
    [Google Scholar]
  21. Palmer HM, Leeming JP, Turner A. A multiplex polymerase chain reaction to differentiate beta-lactamase plasmids of Neisseria gonorrhoeae. J Antimicrob Chemother 2000; 45:777–782 [View Article] [PubMed]
    [Google Scholar]
  22. Sánchez-Busó L, Golparian D, Corander J, Grad YH, Ohnishi M et al. The impact of antimicrobials on gonococcal evolution. Nat Microbiol 2019; 4:1941–1950 [View Article] [PubMed]
    [Google Scholar]
  23. World Health organization World Health organization best practices for the naming of new human infectious diseases; 2015 https://www.who.int/publications/i/item/WHO-HSE-FOS-15.1
  24. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  25. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article] [PubMed]
    [Google Scholar]
  26. Pagotto FJ, Salimnia H, Totten PA, Dillon JR. Stable shuttle vectors for Neisseria gonorrhoeae, Haemophilus spp. and other bacteria based on a single origin of replication. Gene 2000; 244:13–19 [View Article] [PubMed]
    [Google Scholar]
  27. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2022; 50:D20–D26 [View Article] [PubMed]
    [Google Scholar]
  28. Cox KEL, Schildbach JF. Sequence of the R1 plasmid and comparison to F and R100. Plasmid 2017; 91:53–60 [View Article] [PubMed]
    [Google Scholar]
  29. Fernández-López R, Garcillán-Barcia MP, Revilla C, Lázaro M, Vielva L et al. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev 2006; 30:942–966
    [Google Scholar]
  30. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 50:W276–W279 [View Article] [PubMed]
    [Google Scholar]
  31. Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb Genom 2020; 6:10
    [Google Scholar]
  32. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:e000206 [View Article] [PubMed]
    [Google Scholar]
  33. Gabler F, Nam S-Z, Till S, Mirdita M, Steinegger M et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics 2020; 72:e108 [View Article] [PubMed]
    [Google Scholar]
  34. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018; 430:2237–2243 [View Article] [PubMed]
    [Google Scholar]
  35. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 1999; 112:531–552 [View Article] [PubMed]
    [Google Scholar]
  36. Saha CK, Sanches Pires R, Brolin H, Delannoy M, Atkinson GC. FlaGs and webFlaGs: discovering novel biology through the analysis of gene neighbourhood conservation. Bioinformatics 2021; 37:1312–1314 [View Article] [PubMed]
    [Google Scholar]
  37. Unemo M, Golparian D, Sánchez-Busó L, Grad Y, Jacobsson S et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2016; 71:3096–3108
    [Google Scholar]
  38. Harrison OB, Cehovin A, Skett J, Jolley KA, Massari P et al. Neisseria gonorrhoeae population genomics: use of the gonococcal core genome to improve surveillance of antimicrobial resistance. J Infect Dis 2020; 222:1816–1825 [View Article] [PubMed]
    [Google Scholar]
  39. Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018; 28:1395–1404
    [Google Scholar]
  40. Wickham H, Averick M, Bryan J, Chang W, McGowan L et al. Welcome to the Tidyverse. J Open Source Softw 2019; 4:1686 [View Article]
    [Google Scholar]
  41. Sergeant E. Epitools Epidemiological Calculators Ausvet; 2018
    [Google Scholar]
  42. Wickham H. Elegant Graphics for Data Analysis. 2nd ed New York: Springer-Verlag; 2016
    [Google Scholar]
  43. Müller EE, Fayemiwo SA, Lewis DA. Characterization of a novel β-lactamase-producing plasmid in Neisseria gonorrhoeae: sequence analysis and molecular typing of host gonococci. J Antimicrob Chemother 2011; 66:1514–1517 [View Article] [PubMed]
    [Google Scholar]
  44. Roberts M, Elwell LP, Falkow S. Molecular characterization of two beta-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae. J Bacteriol 1977; 131:557–563 [View Article] [PubMed]
    [Google Scholar]
  45. Chen ST, Clowes RC. Nucleotide sequence comparisons of plasmids pHD131, pJB1, pFA3, and pFA7 and beta-lactamase expression in Escherichia coli, Haemophilus influenzae, and Neisseria gonorrhoeae. J Bacteriol 1987; 169:3124–3130
    [Google Scholar]
  46. Fayet O, Froment Y, Piffaretti JC. Beta-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae have retained an intact right part of a Tn3-like transposon. J Bacteriol 1982; 149:136–144 [View Article] [PubMed]
    [Google Scholar]
  47. Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome assembly at bacterial chromosomes and iteron plasmids. Front Mol Biosci 2016; 3:39 [View Article] [PubMed]
    [Google Scholar]
  48. Francia MV, Varsaki A, Garcillán-Barcia MP, Latorre A, Drainas C et al. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 2004; 28:79–100 [View Article] [PubMed]
    [Google Scholar]
  49. Bäckman A, Orvelid P, Vazquez JA, Sköld O, Olcén P. Complete sequence of a β-lactamase-encoding plasmid in Neisseria meningitidis. Antimicrob Agents Chemother 2000; 44:210–212 [View Article]
    [Google Scholar]
  50. Gangaiah D, Webb KM, Humphreys TL, Fortney KR, Toh E et al. Haemophilus ducreyi cutaneous ulcer strains are nearly identical to class I genital ulcer strains. PLoS Negl Trop Dis 2015; 9:e0003918 [View Article] [PubMed]
    [Google Scholar]
  51. de Korne-Elenbaas J, Bruisten SM, van Dam AP, Maiden MCJ, Harrison OB. The Neisseria gonorrhoeae accessory genome and its association with the core genome and antimicrobial resistance. Microbiol Spectr 2022; 10:e0265421 [View Article] [PubMed]
    [Google Scholar]
  52. Robbins AM. Why scientists should not name diseases based on location American Society for Microbiology; 2021 https://asm.org/Articles/2021/May/Why-Scientists-Should-Not-Name-Diseases-After-Plac
  53. Scharbaai-Vázquez R, Candelas T, Torres-Bauzá LJ. Mobilization of the gonococcal 5.2 kb beta-lactamase plasmid pSJ5.2 into Escherichia coli by cointegration with several gram-conjugative plasmids. Plasmid 2007; 57:156–164 [View Article] [PubMed]
    [Google Scholar]
  54. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics 2010; 95:315–327 [View Article] [PubMed]
    [Google Scholar]
  55. Salverda MLM, De Visser J, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 2010; 34:1015–1036 [View Article] [PubMed]
    [Google Scholar]
  56. Kather I, Jakob RP, Dobbek H, Schmid FX. Increased folding stability of TEM-1 beta-lactamase by in vitro selection. J Mol Biol 2008; 383:238–251 [View Article] [PubMed]
    [Google Scholar]
  57. Yan J, Zhang J, van der Veen S. High prevalence of TEM-135 expression from the Asian plasmid in penicillinase-producing Neisseria gonorrhoeae from Hangzhou, China. Int J Antimicrob Agents 2019; 54:361–366 [View Article] [PubMed]
    [Google Scholar]
  58. Cohen J. Rename monkeypox strains to remove geographic stigma, researchers say Science; 2022 https://www.science.org/content/article/rename-monkeypox-remove-geographic-stigma-researchers-say
  59. Brunton J, Meier M, Erhman N, Clare D, Almawy R. Origin of small beta-lactamase-specifying plasmids in Haemophilus species and Neisseria gonorrhoeae. J Bacteriol 1986; 168:374–379 [View Article] [PubMed]
    [Google Scholar]
  60. Guiney DG, Ito JI. Transfer of the gonococcal penicillinase plasmid: mobilization in Escherichia coli by IncP plasmids and isolation as a DNA-protein relaxation complex. J Bacteriol 1982; 150:298–302 [View Article] [PubMed]
    [Google Scholar]
  61. Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 2012; 20:262–267 [View Article] [PubMed]
    [Google Scholar]
  62. San Millan A, MacLean RC. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol Spectr 2017; 5: [View Article] [PubMed]
    [Google Scholar]
  63. San Millan A, Peña-Miller R, Toll-Riera M, Halbert ZV, McLean AR et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat Commun 2014; 5:5208 [View Article] [PubMed]
    [Google Scholar]
  64. Peña-Miller R, Rodríguez-González R, MacLean RC, San Millan A. Evaluating the effect of horizontal transmission on the stability of plasmids under different selection regimes. Mob Genet Elements 2015; 5:1–5 [View Article] [PubMed]
    [Google Scholar]
  65. Brunton J, Clare D, Meier MA. Molecular epidemiology of antibiotic resistance plasmids of Haemophilus species and Neisseria gonorrhoeae. Rev Infect Dis 1986; 8:713–724 [View Article]
    [Google Scholar]
  66. Ramsay JP, Firth N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr Opin Microbiol 2017; 38:1–9 [View Article] [PubMed]
    [Google Scholar]
  67. Alonso-Del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García M et al. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat Commun 2021; 12:2653 [View Article] [PubMed]
    [Google Scholar]
  68. Scharbaai-Vázquez R, González-Caraballo AL, Torres-Bauzá LJ. Four different integrative recombination events involved in the mobilization of the gonococcal 5.2 kb beta-lactamase plasmid pSJ5.2 in Escherichia coli. Plasmid 2008; 60:200–211 [View Article] [PubMed]
    [Google Scholar]
  69. Huang W, Palzkill T. A natural polymorphism in beta-lactamase is a global suppressor. Proc Natl Acad Sci 1997; 94:8801–8806 [View Article] [PubMed]
    [Google Scholar]
  70. Micaëlo M, Goubard A, La Ruche G, Denamur E, Tenaillon O et al. Molecular epidemiology of penicillinase-producing Neisseria gonorrhoeae isolates in France. Clin Microbiol Infect 2017; 23:968–973 [View Article] [PubMed]
    [Google Scholar]
  71. Phillips I. Beta-lactamase-producing, penicillin-resistant gonococcus. Lancet 1976; 2:656–657 [View Article] [PubMed]
    [Google Scholar]
  72. Ashford W, Golash RG, Hemming VG. Penicillinase-producing Neisseria gonorrhoeae. The Lancet 1976; 308:657–658
    [Google Scholar]
  73. Van Embden JDA, Dessens-Kroon M, Van Klingeren B. A new beta-lactamase plasmid in Neisseria gonorrhoeae. J Antimicrob Chemother 1985; 15:247–250 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.001057
Loading
/content/journal/mgen/10.1099/mgen.0.001057
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error