1887

Abstract

Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa , , / and ; (ii) the less common taxa and ; (iii) an enigmatic lineage only distantly related to ; and (iv) an early branching lineage in the order that is distributed across the cold biosphere, for which we propose the name Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.

Funding
This study was supported by the:
  • INTERACT (Award MiBiPol)
    • Principle Award Recipient: ElieVerleyen
  • Fonds De La Recherche Scientifique - FNRS (Award CR.CH.10-11-1.5139.11)
    • Principle Award Recipient: AnnickWilmotte
  • Fonds De La Recherche Scientifique - FNRS (Award 2.4570.09)
    • Principle Award Recipient: AnnickWilmotte
  • Belgian Federal Science Policy Office (Award PORTAL – B2/212/P1/PORTAL)
    • Principle Award Recipient: YannickLara
  • Belgian Federal Science Policy Office (Award CCAMBIO – SD/BA/03A)
    • Principle Award Recipient: AnnickWilmotte
  • Belgian Federal Science Policy Office (Award AMBIO – SD/BA/01A)
    • Principle Award Recipient: AnnickWilmotte
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001056
2023-07-07
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001056.html?itemId=/content/journal/mgen/10.1099/mgen.0.001056&mimeType=html&fmt=ahah

References

  1. Pessi I. Polar cyanobacteria MAGs. figshare. Figshare 2023 https://doi.org/10.6084/m9.figshare.22003967.v1
    [Google Scholar]
  2. Riding R. Calcareous algae and Stromatolites. In Riding R. eds Modern Stromatolites: A Review Berlin, Heidelberg: Springer; 1991 pp 541–561 [View Article]
    [Google Scholar]
  3. Stal LJ. Cyanobacterial mats and stromatolites. In Whitton BA. eds Ecology of Cyanobacteria II Dordrecht: Springer Netherlands; pp 65–125 [View Article]
    [Google Scholar]
  4. Bolhuis H, Cretoiu MS, Stal LJ. Molecular ecology of microbial mats. FEMS Microbiol Ecol 2014; 90:335–350 [View Article] [PubMed]
    [Google Scholar]
  5. Singh SM, Elster J. Cyanobacteria in Antarctic lake environments: a mini-review. In Seckbach J. eds Algae and Cyanobacteria in Extreme Environments Dordrecht: Springer Netherlands; pp 303–320 [View Article]
    [Google Scholar]
  6. Vincent WF, Quesada A. Cyanobacteria in high latitude lakes, rivers and seas. In Whitton BA. eds Ecology of Cyanobacteria II Dordrecht: Springer Netherlands; pp 371–385 [View Article]
    [Google Scholar]
  7. Quesada A, Vincent WF. Cyanobacteria in the cryosphere: snow, ice and extreme cold. In Whitton BA. eds Ecology of Cyanobacteria II Dordrecht: Springer Netherlands; pp 387–399 [View Article]
    [Google Scholar]
  8. Van Goethem MW, Cowan DA. Role of Cyanobacteria in the ecology of polar environments. In Castro-Sowinski S. eds The Ecological Role of Micro-Organisms in the Antarctic Environment Cham: Springer International Publishing; pp 3–23 [View Article]
    [Google Scholar]
  9. Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. The future of genomics in polar and alpine cyanobacteria. FEMS Microbiol Ecol 2018; 94:fiy032 [View Article] [PubMed]
    [Google Scholar]
  10. Vincent WF, Downes MT, Castenholz RW, Howard-Williams C. Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 1993; 28:213–221 [View Article]
    [Google Scholar]
  11. Elster J, Komarek O. Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antartic science 2003; 15:189–201 [View Article]
    [Google Scholar]
  12. Elster J, Lukesová A, Svoboda J, Kopecky J, Kanda H. Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Record 1999; 35:231–254 [View Article]
    [Google Scholar]
  13. Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R et al. Polyphasic study of Antarctic cyanobacterial strains. J Phycol 2006; 42:1257–1270 [View Article]
    [Google Scholar]
  14. Palinska KA, Schneider T, Surosz W. Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard. Polar Biol 2017; 40:1607–1616 [View Article]
    [Google Scholar]
  15. Strunecky O, Raabova L, Bernardova A, Ivanova AP, Semanova A et al. Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella. FEMS Microbiol Ecol 2020; 96:fiz189 [View Article] [PubMed]
    [Google Scholar]
  16. Taton A, Hoffmann L, Wilmotte A. Cyanobacteria in microbial mats of Antarctic lakes (East Antarctica) a microscopical approach. Algol Stud 2008; 126:173–208 [View Article]
    [Google Scholar]
  17. Namsaraev Z, Mano M-J, Fernandez R, Wilmotte A. Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Ann Glaciol 2010; 51:171–177 [View Article]
    [Google Scholar]
  18. Pushkareva E, Pessi IS, Wilmotte A, Elster J. Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol Ecol 2015; 91:fiv143 [View Article] [PubMed]
    [Google Scholar]
  19. Pushkareva E, Pessi IS, Namsaraev Z, Mano M-J, Elster J et al. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Syst Appl Microbiol 2018; 41:363–373 [View Article] [PubMed]
    [Google Scholar]
  20. Pessi IS, Maalouf PDC, Laughinghouse HD, Baurain D, Wilmotte A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. J Phycol 2016; 52:356–368 [View Article] [PubMed]
    [Google Scholar]
  21. Pessi IS, Lara Y, Durieu B, Maalouf P de C, Verleyen E et al. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol Ecol 2018; 94: [View Article] [PubMed]
    [Google Scholar]
  22. Pessi IS, Pushkareva E, Lara Y, Borderie F, Wilmotte A et al. Marked succession of cyanobacterial communities following glacier retreat in the high Arctic. Microb Ecol 2019; 77:136–147 [View Article] [PubMed]
    [Google Scholar]
  23. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 2003; 69:5157–5169 [View Article] [PubMed]
    [Google Scholar]
  24. Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J et al. Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 2006; 57:272–289 [View Article] [PubMed]
    [Google Scholar]
  25. Fernandez-Carazo R, Hodgson DA, Convey P, Wilmotte A. Low cyanobacterial diversity in biotopes of the Transantarctic mountains and Shackleton range (80-82°S), Antarctica. FEMS Microbiol Ecol 2011; 77:503–517 [View Article] [PubMed]
    [Google Scholar]
  26. Wilmotte A, Golubić S. Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Algol Stud 1991; 64:1–24
    [Google Scholar]
  27. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 2013; 110:1053–1058 [View Article]
    [Google Scholar]
  28. Mareš J. Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia 2018; 811:19–34 [View Article]
    [Google Scholar]
  29. Chrismas NAM, Barker G, Anesio AM, Sánchez-Baracaldo P. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics 2016; 17:533 [View Article] [PubMed]
    [Google Scholar]
  30. Péquin B, Tremblay J, Maynard C, Wasserscheid J, Greer CW. Draft whole-genome sequences of the polar Cyanobacterium Leptolyngbya sp. strain Cla-17 and its associated flavobacterium. Microbiol Resour Announc 2022; 11:e0005922 [View Article] [PubMed]
    [Google Scholar]
  31. Lara Y, Durieu B, Cornet L, Verlaine O, Rippka R et al. Draft genome sequence of the Axenic strain Phormidesmispriestleyi ULC007, a Cyanobacterium isolated from Lake Bruehwiler (Larsemann Hills, Antarctica). Genome Announc 2017; 5:e01546-16 [View Article] [PubMed]
    [Google Scholar]
  32. Chrismas NAM, Williamson CJ, Yallop ML, Anesio AM, Sánchez-Baracaldo P. Photoecology of the Antarctic cyanobacterium Leptolyngbya sp. BC1307 brought to light through community analysis, comparative genomics and in vitro photophysiology. Mol Ecol 2018; 27:5279–5293 [View Article] [PubMed]
    [Google Scholar]
  33. Tang J, Du L-M, Liang Y-M, Daroch M. Complete genome sequence and comparative Analysis of Synechococcus sp. CS-601 (SynAce01), a cold-adapted Cyanobacterium from an oligotrophic Antarctic habitat. Int J Mol Sci 2019; 20:152 [View Article] [PubMed]
    [Google Scholar]
  34. Effendi DB, Sakamoto T, Ohtani S, Awai K, Kanesaki Y. Possible involvement of extracellular polymeric substrates of Antarctic cyanobacterium Nostoc sp. strain SO-36 in adaptation to harsh environments. J Plant Res 2022; 135:771–784 [View Article] [PubMed]
    [Google Scholar]
  35. Cornet L, Bertrand AR, Hanikenne M, Javaux EJ, Wilmotte A et al. Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures. Microbial Genomics 2018; 4:212 [View Article]
    [Google Scholar]
  36. Delmont TO. Discovery of nondiazotrophic Trichodesmium species abundant and widespread in the open ocean. Proc Natl Acad Sci 2021; 118:e2112355118 [View Article] [PubMed]
    [Google Scholar]
  37. Pessi IS, Viitamäki S, Virkkala A-M, Eronen-Rasimus E, Delmont TO et al. In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. Environ Microbiome 2022; 17:30 [View Article] [PubMed]
    [Google Scholar]
  38. Pessi IS, Rutanen A, Hultman J. Candidatus Nitrosopolaris, a genus of putative ammonia-oxidizing archaea with a polar/alpine distribution. FEMS Microbes 2022; 3: [View Article]
    [Google Scholar]
  39. Grettenberger CL. Novel Gloeobacterales spp. from diverse environments across the globe. mSphere 2021; 6:e0006121 [View Article] [PubMed]
    [Google Scholar]
  40. Grettenberger CL, Sumner DY, Wall K, Brown CT, Eisen JA et al. A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME J 2020; 14:2142–2152 [View Article] [PubMed]
    [Google Scholar]
  41. Lumian JE, Jungblut AD, Dillion ML, Hawes I, Doran PT et al. Metabolic capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi that sustains oxygenic photosynthesis in the presence of hydrogen sulfide. Genes 2021; 12:426 [View Article] [PubMed]
    [Google Scholar]
  42. Terauds A, Lee JR, Heikkinen R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Diversity Distrib 2016; 22:836–840 [View Article]
    [Google Scholar]
  43. Verleyen E, Sabbe K, Hodgson D, Grubisic S, Taton A et al. Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquat Microb Ecol 2010; 59:11–24 [View Article]
    [Google Scholar]
  44. Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A et al. Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biol 2004; 49:296–319 [View Article]
    [Google Scholar]
  45. Hodgson D, Vyverman W, Verleyen E, Sabbe K, Leavitt P et al. Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat Microb Ecol 2004; 37:247–263 [View Article]
    [Google Scholar]
  46. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  47. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 2011; 17:10 [View Article]
    [Google Scholar]
  48. Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour 2015; 15:1403–1414 [View Article] [PubMed]
    [Google Scholar]
  49. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported Software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75:7537–7541 [View Article]
    [Google Scholar]
  50. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article]
    [Google Scholar]
  51. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article] [PubMed]
    [Google Scholar]
  52. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  53. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021; 6:3–6 [View Article] [PubMed]
    [Google Scholar]
  54. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  55. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article] [PubMed]
    [Google Scholar]
  56. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  57. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  58. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  59. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  60. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  61. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020; 36:1925–1927 [View Article]
    [Google Scholar]
  62. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  63. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
  64. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  65. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  66. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of Cyanoprokaryotes (Cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014; 86:295–335
    [Google Scholar]
  67. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  68. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA et al. Pfam: the protein families database in 2021. Nucleic Acids Res 2021; 49:D412–D419 [View Article]
    [Google Scholar]
  69. Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 2021; 49:D274–D281 [View Article] [PubMed]
    [Google Scholar]
  70. Pearson WR. An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinforma 2013; 42:3 [View Article]
    [Google Scholar]
  71. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 2017; 11:2864–2868 [View Article] [PubMed]
    [Google Scholar]
  72. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article] [PubMed]
    [Google Scholar]
  73. Irber L, Pierce-Ward NT, Brown CT. Sourmash branchwater enables lightweight petabyte-scale sequence search. Bioinformatics [View Article]
    [Google Scholar]
  74. Lumian J, Sumner D, Grettenberger C, Jungblut AD, Irber L et al. Biogeographic distribution of five Antarctic Cyanobacteria using large-scale k-mer searching with sourmash branchwater. BioRxiv [View Article]
    [Google Scholar]
  75. Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 2016; 6:33721 [View Article] [PubMed]
    [Google Scholar]
  76. Zaikova E, Goerlitz DS, Tighe SW, Wagner NY, Bai Y et al. Antarctic relic microbial mat community revealed by metagenomics and metatranscriptomics. Front Ecol Evol 2019; 7:1 [View Article]
    [Google Scholar]
  77. Slattery M, Lesser MP. Allelopathy-mediated competition in microbial mats from Antarctic lakes. FEMS Microbiol Ecol 2017; 93: [View Article] [PubMed]
    [Google Scholar]
  78. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 2012; 78:549–559 [View Article] [PubMed]
    [Google Scholar]
  79. Chen L-X, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res 2020; 30:315–333 [View Article] [PubMed]
    [Google Scholar]
  80. Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ et al. An expanded genomic representation of the phylum cyanobacteria. Genome Biol Evol 2014; 6:1031–1045 [View Article] [PubMed]
    [Google Scholar]
  81. Komárek J, Genuário DB, Fiore MF, Elster J. Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biol 2015; 38:475–492 [View Article]
    [Google Scholar]
  82. Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 2015; 6:1070 [View Article] [PubMed]
    [Google Scholar]
  83. Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 2010; 4:191–202 [View Article] [PubMed]
    [Google Scholar]
  84. Velichko N, Smirnova S, Averina S, Pinevich A. A survey of Antarctic cyanobacteria. Hydrobiologia 2021; 848:2627–2652 [View Article]
    [Google Scholar]
  85. Davydov D. Cyanobacterial diversity of Svalbard Archipelago. Polar Biol 2021; 44:1967–1978 [View Article]
    [Google Scholar]
  86. Olson JB, Steppe TF, Litaker RW, Paerl HW. N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 1998; 36:231–238 [View Article] [PubMed]
    [Google Scholar]
  87. Su H-N, Wang Q-M, Li C-Y, Li K, Luo W et al. Structural insights into the cold adaptation of the photosynthetic pigment-protein C-phycocyanin from an Arctic cyanobacterium. Biochim Biophys Acta BBA Bioenerg 2017; 1858:325–335 [View Article]
    [Google Scholar]
  88. Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T et al. An expanded ribosomal phylogeny of Cyanobacteria supports a deep placement of plastids. Front Microbiol 2019; 10:1612 [View Article]
    [Google Scholar]
  89. Ishida T, Yokota A, Sugiyama J. Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rRNA sequence divergence. J Gen Appl Microbiol 1997; 43:237–241 [View Article] [PubMed]
    [Google Scholar]
  90. Honda D, Yokota A, Sugiyama J. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 1999; 48:723–739 [View Article] [PubMed]
    [Google Scholar]
  91. Ishida T, Watanabe MM, Sugiyama J, Yokota A. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 2001; 201:79–82 [View Article] [PubMed]
    [Google Scholar]
  92. Chen M-Y, Teng W-K, Zhao L, Hu C-X, Zhou Y-K et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J 2021; 15:211–227 [View Article] [PubMed]
    [Google Scholar]
  93. de Winder B, Stal LJ, Mur LR. Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly- -(1,4) glucar (cellulose). J Gen Microbiol 1990; 136:1645–1653 [View Article]
    [Google Scholar]
  94. Bohunická M, Mareš J, Hrouzek P, Urajová P, Lukeš M et al. A combined morphological, ultrastructural, molecular, and biochemical study of the peculiar family Gomontiellaceae (Oscillatoriales) reveals a new cylindrospermopsin-producing clade of cyanobacteria. J Phycol 2015; 51:1040–1054 [View Article] [PubMed]
    [Google Scholar]
  95. Broady PA, Kibblewhite AL. Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and Southern Victoria Land, Antarctica. Antartic science 1991; 3:35–45 [View Article]
    [Google Scholar]
  96. Komárek J. Phenotypic and ecological diversity of freshwater coccoid cyanobacteria from maritime Antarctica and Islands of NW Weddell Sea. II. Czech Polar Rep 2014; 4:17–39 [View Article]
    [Google Scholar]
  97. Demoulin CF, Lara YJ, Cornet L, François C, Baurain D et al. Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 2019; 140:206–223 [View Article] [PubMed]
    [Google Scholar]
  98. Seo P-S, Yokota A. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 2003; 49:191–203 [View Article] [PubMed]
    [Google Scholar]
  99. Gupta RS, Mathews DW. Signature proteins for the major clades of Cyanobacteria. BMC Evol Biol 2010; 10:24 [View Article] [PubMed]
    [Google Scholar]
  100. Raven JA, Sánchez-Baracaldo P. Gloeobacter and the implications of a freshwater origin of Cyanobacteria. Phycologia 2021; 60:402–418 [View Article]
    [Google Scholar]
  101. Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 2022; 7:1702–1708 [View Article] [PubMed]
    [Google Scholar]
  102. Rippka R, Waterbury J, Cohen-Bazire G. A cyanobacterium which lacks thylakoids. Arch Microbiol 1974; 100:419–436 [View Article]
    [Google Scholar]
  103. Guglielmi G, Cohen-Bazire G, Bryant DA. The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 1981; 129:181–189 [View Article]
    [Google Scholar]
  104. Bryant DA, Cohen-Bazire G, Glazer AN. Characterization of the biliproteins of Gloeobacter violaceus. Arch Microbiol 1981; 129:190–198 [View Article]
    [Google Scholar]
  105. Rahmatpour N, Hauser DA, Nelson JM, Chen PY, Villarreal A JC et al. A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. Curr Biol 2021; 31:2857–2867 [View Article] [PubMed]
    [Google Scholar]
  106. Nakamura Y. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Research 2003; 10:137–145 [View Article]
    [Google Scholar]
  107. Saw JH, Cardona T, Montejano G. Complete genome sequencing of a novel Gloeobacter species from a waterfall cave in Mexico. Genome Biol Evol 2021; 13:evab264 [View Article] [PubMed]
    [Google Scholar]
  108. Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS et al. Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a lava cave in Kīlauea Caldera, Hawai’i. PLoS One 2013; 8:e76376 [View Article] [PubMed]
    [Google Scholar]
  109. Matheus Carnevali PB, Herbold CW, Hand KP, Priscu JC, Murray AE. Distinct microbial assemblage structure and archaeal diversity in sediments of Arctic Thermokarst Lakes differing in methane sources. Front Microbiol 2018; 9:1192 [View Article]
    [Google Scholar]
  110. Graham RW, Belmecheri S, Choy K, Culleton BJ, Davies LJ et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc Natl Acad Sci 2016; 113:9310–9314 [View Article] [PubMed]
    [Google Scholar]
  111. Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R et al. Major histocompatibility complex class IIb polymorphism influences gut microbiota composition and diversity. Mol Ecol 2014; 23:4831–4845 [View Article] [PubMed]
    [Google Scholar]
  112. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett 2014; 17:979–987 [View Article] [PubMed]
    [Google Scholar]
  113. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun 2014; 5:4500 [View Article] [PubMed]
    [Google Scholar]
  114. Delwiche CF. Microbial biodiversity: a newly isolated cyanobacterium sheds light on the evolution of photosynthesis. Curr Biol 2021; 31:R843–R845 [View Article] [PubMed]
    [Google Scholar]
  115. Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecký O et al. The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS One 2013; 8:e66323 [View Article] [PubMed]
    [Google Scholar]
  116. Golubic S, Campbell SE. Analogous microbial forms in recent subaerial habitats and in Precambrian cherts: Gloethece coerulea eitler and Eosynechococcus moorei Hofmann. Precambrian Res 1979; 8:201–217 [View Article]
    [Google Scholar]
  117. Williams L, Loewen-Schneider K, Maier S, Büdel B, Baldrian P. Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient. FEMS Microbiol Ecol 2016; 92:fiw157 [View Article]
    [Google Scholar]
  118. Lionard M, Péquin B, Lovejoy C, Vincent WF. Benthic cyanobacterial mats in the igh Arctic: multi-layer structure and fluorescence responses to osmotic stress. Front Microbio 2012; 3:140 [View Article]
    [Google Scholar]
  119. Nakai R, Abe T, Baba T, Imura S, Kagoshima H et al. Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biol 2012; 35:425–433 [View Article]
    [Google Scholar]
  120. Pereira SB, Mota R, Vieira CP, Vieira J, Tamagnini P. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep 2015; 5:14835 [View Article]
    [Google Scholar]
  121. Gao Q, Garcia-Pichel F. Microbial ultraviolet sunscreens. Nat Rev Microbiol 2011; 9:791–802 [View Article] [PubMed]
    [Google Scholar]
  122. Sinetova MA, Los DA. Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers. Mol Biosyst 2016; 12:3254–3258 [View Article] [PubMed]
    [Google Scholar]
  123. Gao X, Zhu Z, Xu H, Liu L, An J et al. Cold adaptation in drylands: transcriptomic insights into cold-stressed Nostoc flagelliforme and characterization of a hypothetical gene with cold and nitrogen stress tolerance. Environ Microbiol 2021; 23:713–727 [View Article] [PubMed]
    [Google Scholar]
  124. Kim CY, Ma J, Lee I. HiFi metagenomic sequencing enables assembly of accurate and complete genomes from human gut microbiota. Nat Commun 2022; 13:6367 [View Article] [PubMed]
    [Google Scholar]
  125. Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat Methods 2022; 19:823–826 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001056
Loading
/content/journal/mgen/10.1099/mgen.0.001056
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error