1887

Abstract

subsp. serotype Typhimurium definitive type 104 (DT104) can infect both humans and animals and is often multidrug-resistant (MDR). Previous studies have indicated that, unlike most . Typhimurium, the overwhelming majority of DT104 strains produce pertussis-like toxin ArtAB via prophage-encoded genes . However, DT104 that lack have been described on occasion. Here, we identify an MDR DT104 complex lineage circulating among humans and cattle in the USA, which lacks (i.e. the ‘U.S. -negative major clade’; =42 genomes). Unlike most other bovine- and human-associated DT104 complex strains from the USA (=230 total genomes), which harbour on prophage Gifsy-1 (=177), members of the U.S. -negative major clade lack Gifsy-1, as well as anti-inflammatory effector . The U.S. -negative major clade encompasses human- and cattle-associated strains isolated from ≥11 USA states over a 20-year period. The clade was predicted to have lost , Gifsy-1 and circa 1985–1987 (95 % highest posterior density interval 1979.0–1992.1). When compared to DT104 genomes from other regions of the world (=752 total genomes), several additional, sporadic , Gifsy-1 and/or loss events among clades encompassing five or fewer genomes were observed. Using phenotypic assays that simulate conditions encountered during human and/or bovine digestion, members of the U.S. -negative major clade did not differ from closely related Gifsy-1//-harbouring U.S. DT104 complex strains (ANOVA raw >0.05); thus, future research is needed to elucidate the roles that , and Gifsy-1 play in DT104 virulence in humans and animals.

Funding
This study was supported by the:
  • Knut och Alice Wallenbergs Stiftelse (Award KAW 2020.0239)
    • Principle Award Recipient: LauraM. Carroll
  • National Science Foundation (Award Graduate Research Opportunities Worldwide (GROW))
    • Principle Award Recipient: LauraM. Carroll
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001050
2023-07-04
2024-11-09
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/7/mgen001050.html?itemId=/content/journal/mgen/10.1099/mgen.0.001050&mimeType=html&fmt=ahah

References

  1. Guldimann C, Carroll L, Piacenza N, Cheng A R, Wiedmann M. A multidrug-resistant salmonella Enterica Typhimurium Dt104 complex lineage circulating among humans and cattle in the USA lost the ability to produce pertussis-like toxin Artab Figshare 2023 https://doi.org/10.6084/m9.figshare.22194385.v1
    [Google Scholar]
  2. Bobay L-M, Touchon M, Rocha EPC. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci 2014; 111:12127–12132 [View Article] [PubMed]
    [Google Scholar]
  3. Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013; 4:354–365 [View Article] [PubMed]
    [Google Scholar]
  4. Pleška M, Lang M, Refardt D, Levin BR, Guet CC. Phage-host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nat Ecol Evol 2018; 2:359–366 [View Article] [PubMed]
    [Google Scholar]
  5. Ramisetty BCM, Sudhakari PA. Bacterial “Grounded” prophages: hotspots for genetic renovation and innovation. Front Genet 2019; 10:65 [View Article] [PubMed]
    [Google Scholar]
  6. Owen SV, Canals R, Wenner N, Hammarlöf DL, Kröger C et al. A window into lysogeny: revealing temperate phage biology with transcriptomics. Microb Genom 2020; 6:e000330 [View Article] [PubMed]
    [Google Scholar]
  7. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 2016; 7:13333 [View Article] [PubMed]
    [Google Scholar]
  8. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun 2010; 1:147 [View Article] [PubMed]
    [Google Scholar]
  9. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN et al. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 2014; 38:56–89 [View Article] [PubMed]
    [Google Scholar]
  10. Czajkowski R. May the phage be with you? Prophage-like elements in the genomes of soft rot Pectobacteriaceae: Pectobacterium spp. and Dickeya spp. Front Microbiol 2019; 10:138 [View Article]
    [Google Scholar]
  11. Hiley L, Fang N-X, Micalizzi GR, Bates J. Distribution of Gifsy-3 and of variants of ST64B and Gifsy-1 prophages amongst Salmonella enterica serovar typhimurium isolates: evidence that combinations of prophages promote clonality. PLoS One 2014; 9:e86203 [View Article] [PubMed]
    [Google Scholar]
  12. World Health Organization; 2018 https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal) accessed 5 May 2021
  13. Wang X, Biswas S, Paudyal N, Pan H, Li X et al. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through National Antimicrobial Resistance Monitoring System Between 1996 and 2016. Front Microbiol 2019; 10:985 [View Article] [PubMed]
    [Google Scholar]
  14. Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill F-X, Baggesen DL et al. Global genomic epidemiology of Salmonella enterica Serovar Typhimurium DT104. Appl Environ Microbiol 2016; 82:2516–2526 [View Article] [PubMed]
    [Google Scholar]
  15. Threlfall EJ. Epidemic Salmonella typhimurium DT 104--a truly international multiresistant clone. J Antimicrob Chemother 2000; 46:7–10 [View Article] [PubMed]
    [Google Scholar]
  16. Helms M, Ethelberg S, Mølbak K. International Salmonella Typhimurium DT104 infections, 1992-2001. Emerg Infect Dis 2005; 11:859–867 [View Article] [PubMed]
    [Google Scholar]
  17. Allen CA, Fedorka-Cray PJ, Vazquez-Torres A, Suyemoto M, Altier C et al. In vitro and In vivo assessment of Salmonella enterica serovar Typhimurium virulence. Infect Immun 2001; 69:4673–4677 [View Article] [PubMed]
    [Google Scholar]
  18. Saitoh M, Tanaka K, Nishimori K, Makino S-I, Kanno T et al. The artAB genes encode a putative ADP-ribosyltransferase toxin homologue associated with Salmonella enterica serovar Typhimurium DT104. Microbiology 2005; 151:3089–3096 [View Article] [PubMed]
    [Google Scholar]
  19. Tamamura Y, Tanaka K, Uchida I. Characterization of pertussis-like toxin from Salmonella spp. that catalyzes ADP-ribosylation of G proteins. Sci Rep 2017; 7:2653 [View Article] [PubMed]
    [Google Scholar]
  20. Cheng RA, Wiedmann M. The ADP-ribosylating toxins of Salmonella. Toxins 2019; 11:416 [View Article]
    [Google Scholar]
  21. Weiss AA, Hewlett EL. Virulence factors of Bordetella pertussis. Annu Rev Microbiol 1986; 40:661–686 [View Article] [PubMed]
    [Google Scholar]
  22. Hewlett EL, Sauer KT, Myers GA, Cowell JL, Guerrant RL. Induction of a novel morphological response in Chinese hamster ovary cells by pertussis toxin. Infect Immun 1983; 40:1198–1203 [View Article] [PubMed]
    [Google Scholar]
  23. Carbonetti NH. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol 2010; 5:455–469 [View Article] [PubMed]
    [Google Scholar]
  24. Uchida I, Ishihara R, Tanaka K, Hata E, Makino S-I et al. Salmonella enterica serotype Typhimurium DT104 ArtA-dependent modification of pertussis toxin-sensitive G proteins in the presence of [32P]NAD. Microbiology 2009; 155:3710–3718 [View Article] [PubMed]
    [Google Scholar]
  25. Gaballa A, Cheng RA, Harrand AS, Cohn AR, Wiedmann M. The majority of typhoid toxin-positive Salmonella serovars encode ArtB, an alternate binding subunit. mSphere 2021; 6:e01255-20 [View Article] [PubMed]
    [Google Scholar]
  26. Ojiakor A, Gibbs RN, Chen Z, Gao X, Fowler CC. The evolutionary diversification of the Salmonella artAB toxin locus. Front Microbiol 2022; 13:1016438 [View Article] [PubMed]
    [Google Scholar]
  27. Moreno Switt AI, den Bakker HC, Cummings CA, Rodriguez-Rivera LD, Govoni G et al. Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS One 2012; 7:e41247 [View Article] [PubMed]
    [Google Scholar]
  28. Pang S, Octavia S, Feng L, Liu B, Reeves PR et al. Genomic diversity and adaptation of Salmonella enterica serovar Typhimurium from analysis of six genomes of different phage types. BMC Genomics 2013; 14:718 [View Article] [PubMed]
    [Google Scholar]
  29. Worley J, Meng J, Allard MW, Brown EW, Timme RE. Salmonella enterica phylogeny based on whole-genome sequencing reveals two new clades and novel patterns of horizontally acquired genetic elements. mBio 2018; 9:e02303-18 [View Article] [PubMed]
    [Google Scholar]
  30. Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL et al. Characterization of the prophage repertoire of African Salmonella Typhimurium ST313 reveals high levels of spontaneous induction of novel phage BTP1. Front Microbiol 2017; 8:235 [View Article] [PubMed]
    [Google Scholar]
  31. Coombes BK, Wickham ME, Brown NF, Lemire S, Bossi L et al. Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar typhimurium with autonomous expression from its associated phage. J Mol Biol 2005; 348:817–830 [View Article] [PubMed]
    [Google Scholar]
  32. Takemura M, Haneda T, Idei H, Miki T, Okada N. A Salmonella type III effector, PipA, works in A different manner than the PipA family effectors GogA and GtgA. PLoS One 2021; 16:e0248975 [View Article] [PubMed]
    [Google Scholar]
  33. Carroll LM, Huisman JS, Wiedmann M. Twentieth-century emergence of antimicrobial resistant human- and bovine-associated Salmonella enterica serotype Typhimurium lineages in New York State. Sci Rep 2020; 10:14428 [View Article] [PubMed]
    [Google Scholar]
  34. Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Achtman M. The Enterobase user’s guide, with case studies on Salmonella transmissions, Yersinia Pestis Phylogeny, and Escherichia core Genomic diversity. Genome Res 2020; 30:138–152 [View Article]
    [Google Scholar]
  35. Alikhan N-F, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet 2018; 14:e1007261 [View Article] [PubMed]
    [Google Scholar]
  36. Leinonen R, Sugawara H, Shumway M. International nucleotide sequence database C. the sequence read archive. Nucleic Acids Res 2011; 39:D19–21 [View Article]
    [Google Scholar]
  37. Kodama Y, Shumway M, Leinonen R. International nucleotide sequence database C. the sequence read Archive: explosive growth of sequencing data. Nucleic Acids Res 2012; 40:D54–56 [View Article]
    [Google Scholar]
  38. Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ et al. The Salmonella In Silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One 2016; 11:e0147101 [View Article] [PubMed]
    [Google Scholar]
  39. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res 2018; 3:93 [View Article] [PubMed]
    [Google Scholar]
  40. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  41. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  42. Andrews S. FastQC: a quality control tool for high throughput sequence data. n.d https://www.bioinformatics.babraham.ac.uk/projects/fastqc
  43. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  44. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  45. Arndt D, Marcu A, Liang Y, Wishart DS. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief Bioinform 2019; 20:1560–1567 [View Article] [PubMed]
    [Google Scholar]
  46. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article] [PubMed]
    [Google Scholar]
  47. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  48. Gilchrist CLM, Chooi Y-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  49. Seemann T. ABRicate: Mass screening of contigs for antimicrobial resistance or virulence genes. n.d https://github.com/tseemann/abricate
  50. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483-19 [View Article] [PubMed]
    [Google Scholar]
  51. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  52. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–8 [View Article] [PubMed]
    [Google Scholar]
  53. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  54. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article] [PubMed]
    [Google Scholar]
  55. Li H. Aligning sequence reads, clone sequences and assembly Contigs with BWA-MEM. arXiv 2013; 1303:3997
    [Google Scholar]
  56. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  57. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  59. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  60. Quinlan AR. BEDTools: the swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics 2014; 47:11 [View Article] [PubMed]
    [Google Scholar]
  61. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011; 27:2987–2993 [View Article] [PubMed]
    [Google Scholar]
  62. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv 2012; 1207:3907
    [Google Scholar]
  63. Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S et al. Comparing variant call files for performance benchmarking of next-generation sequencing variant calling pipelines. Bioinformatics 2015023754 [View Article]
    [Google Scholar]
  64. Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants. Bioinformatics 2015; 31:2202–2204 [View Article] [PubMed]
    [Google Scholar]
  65. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012; 6:80–92 [View Article] [PubMed]
    [Google Scholar]
  66. Seemann T. samclip: Filter SAM file for soft and hard clipped alignments. n.d https://github.com/tseemann/samclip
  67. Li H. Seqtk: a fast and lightweight tool for processing sequences in the FASTA or FASTQ format. n.d https://github.com/lh3/seqtk
  68. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article] [PubMed]
    [Google Scholar]
  69. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  70. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  71. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  72. Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci 1981; 78:454–458 [View Article] [PubMed]
    [Google Scholar]
  73. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  74. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  75. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2016; 2:vew007 [View Article] [PubMed]
    [Google Scholar]
  76. To T-H, Jung M, Lycett S, Gascuel O. Fast dating using least-squares criteria and algorithms. Syst Biol 2016; 65:82–97 [View Article] [PubMed]
    [Google Scholar]
  77. Rambaut A. FigTree: a graphical viewer of phylogenetic trees. n.d http://tree.bio.ed.ac.uk/software/figtree
  78. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2014; 10:e1003537 [View Article] [PubMed]
    [Google Scholar]
  79. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2019; 15:e1006650 [View Article] [PubMed]
    [Google Scholar]
  80. Bouckaert R. Correcting for constant sites in BEAST2; 2014 https://groups.google.com/forum/#!topic/beast-users/QfBHMOqImFE accessed 1 March 2023
  81. Bouckaert RR, Drummond AJ. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol 2017; 17:42 [View Article] [PubMed]
    [Google Scholar]
  82. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol 2006; 4:e88 [View Article] [PubMed]
    [Google Scholar]
  83. Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 2005; 22:1185–1192 [View Article] [PubMed]
    [Google Scholar]
  84. Team RC. R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing;
    [Google Scholar]
  85. Wickham H. ggplot2. In Ggplot2: Elegant Graphics for Data Analysis Cham: Springer-Verlag New York; 2016 [View Article]
    [Google Scholar]
  86. Yu G, Smith DK, Zhu H, Guan Y, Lam T-Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
  87. Yu G, Lam TT-Y, Zhu H, Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol Biol Evol 2018; 35:3041–3043 [View Article] [PubMed]
    [Google Scholar]
  88. Hackathon R. phylobase: Base Package for Phylogenetic Structures and Comparative Data. n.d https://CRAN.R-project.org/package=phylobase
  89. Yu G. treeio: Base Classes and Functions for Phylogenetic Tree Input and Output. n.d https://guangchuangyu.github.io/software/treeio
  90. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 2012; 3:217–223 [View Article]
    [Google Scholar]
  91. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004; 20:289–290 [View Article] [PubMed]
    [Google Scholar]
  92. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  93. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  94. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  95. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  96. Collins RE, Higgs PG. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol Biol Evol 2012; 29:3413–3425 [View Article] [PubMed]
    [Google Scholar]
  97. Baumdicker F, Hess WR, Pfaffelhuber P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol Evol 2012; 4:443–456 [View Article] [PubMed]
    [Google Scholar]
  98. Zamani-Dahaj SA, Okasha M, Kosakowski J, Higgs PG. Estimating the frequency of horizontal gene transfer using phylogenetic models of gene gain and loss. Mol Biol Evol 2016; 33:1843–1857 [View Article] [PubMed]
    [Google Scholar]
  99. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  100. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  101. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc series B 1995; 57:289–300 [View Article]
    [Google Scholar]
  102. Collins C, Didelot X, McHardy AC. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput Biol 2018; 14:e1005958 [View Article] [PubMed]
    [Google Scholar]
  103. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 2013; 341:1514–1517 [View Article] [PubMed]
    [Google Scholar]
  104. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article] [PubMed]
    [Google Scholar]
  105. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006; 172:2665–2681 [View Article] [PubMed]
    [Google Scholar]
  106. Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  107. Vangay P, Fugett EB, Sun Q, Wiedmann M. Food microbe tracker: a web-based tool for storage and comparison of food-associated microbes. J Food Prot 2013; 76:283–294 [View Article] [PubMed]
    [Google Scholar]
  108. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  109. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P et al. vegan: Community Ecology Package. n.d https://CRAN.R-project.org/package=vegan
  110. Kühbacher A, Cossart P, Pizarro-Cerdá J. Internalization assays for Listeria monocytogenes. Methods Mol Biol 2014; 1157:167–178 [View Article] [PubMed]
    [Google Scholar]
  111. Horlbog JA, Kent D, Stephan R, Guldimann C. Surviving host - and food relevant stresses: phenotype of L. monocytogenes strains isolated from food and clinical sources. Sci Rep 2018; 8:12931 [View Article] [PubMed]
    [Google Scholar]
  112. Fausa O. Duodenal bile acids after a test meal. Scand J Gastroenterol 1974; 9:567–570 [View Article] [PubMed]
    [Google Scholar]
  113. Guariglia-Oropeza V, Orsi RH, Guldimann C, Wiedmann M, Boor KJ. The Listeria monocytogenes bile stimulon under acidic conditions is characterized by strain-specific patterns and the upregulation of motility, cell wall modification functions, and the PrfA Regulon. Front Microbiol 2018; 9:120 [View Article] [PubMed]
    [Google Scholar]
  114. Barrett T, Clark K, Gevorgyan R, Gorelenkov V, Gribov E et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res 2012; 40:D57–63 [View Article] [PubMed]
    [Google Scholar]
  115. Carroll LM, Pierneef R, Mathole M, Matle I. Genomic characterization of endemic and ecdemic non-typhoidal Salmonella enterica lineages circulating among animals and animal products in South Africa. Front Microbiol 2021; 12:748611 [View Article] [PubMed]
    [Google Scholar]
  116. Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 2014; 12:599–611 [View Article] [PubMed]
    [Google Scholar]
  117. Guiney DG, Fierer J. The role of the spv genes in Salmonella Pathogenesis. Front Microbiol 2011; 2:129 [View Article] [PubMed]
    [Google Scholar]
  118. Spanò S, Ugalde JE, Galán JE. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment. Cell Host Microbe 2008; 3:30–38 [View Article] [PubMed]
    [Google Scholar]
  119. Pollard DJ, Young JC, Covarelli V, Herrera-Leon S, Connor T et al. The type III secretion system effector SeoC of Salmonella enterica subsp. salamae and S. enterica subsp. arizonae ADP-Ribosylates Src and Inhibits Opsonophagocytosis. Infect Immun 2016; 84:3618–3628 [View Article]
    [Google Scholar]
  120. Fowler CC, Stack G, Jiao X, Lara-Tejero M, Galán JE. Alternate subunit assembly diversifies the function of a bacterial toxin. Nat Commun 2019; 10:3684 [View Article] [PubMed]
    [Google Scholar]
  121. Figueroa-Bossi N, Coissac E, Netter P, Bossi L. Unsuspected prophage-like elements in Salmonella typhimurium. Mol Microbiol 1997; 25:161–173 [View Article] [PubMed]
    [Google Scholar]
  122. Figueroa-Bossi N, Bossi L. Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 1999; 33:167–176 [View Article] [PubMed]
    [Google Scholar]
  123. Tang K, Wang W, Sun Y, Zhou Y, Wang P et al. Prophage Tracer: precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res 2021; 49:e128 [View Article] [PubMed]
    [Google Scholar]
  124. Flint A, Butcher J, Stintzi A, Kudva IT, Zhang Q. Stress responses, adaptation, and virulence of bacterial pathogens during host gastrointestinal colonization. Microbiol Spectr 2016; 4: [View Article] [PubMed]
    [Google Scholar]
  125. Burgess CM, Gianotti A, Gruzdev N, Holah J, Knøchel S et al. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37–53 [View Article] [PubMed]
    [Google Scholar]
  126. Horn N, Bhunia AK. Food-associated stress primes foodborne pathogens for the gastrointestinal phase of infection. Front Microbiol 2018; 9:1962 [View Article] [PubMed]
    [Google Scholar]
  127. Hofmann RR. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 1989; 78:443–457 [View Article] [PubMed]
    [Google Scholar]
  128. McCann JC, Wickersham TA, Loor JJ. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform Biol Insights 2014; 8:109–125 [View Article] [PubMed]
    [Google Scholar]
  129. Kalmokoff ML, Cyr TD, Hefford MA, Whitford MF, Teather RM. Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrisolvens AR10: characterization of the gene and peptide. Can J Microbiol 2003; 49:763–773 [View Article] [PubMed]
    [Google Scholar]
  130. Oyama LB, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Privé F et al. The rumen microbiome: an underexplored resource for novel antimicrobial discovery. NPJ Biofilms Microbiomes 2017; 3:33 [View Article] [PubMed]
    [Google Scholar]
  131. Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe 2013; 14:26–37 [View Article] [PubMed]
    [Google Scholar]
  132. Singh A, Barnard TG. Adaptations in the physiological heterogeneity and viability of Shigella dysenteriae, Shigella flexneri and Salmonella typhimurium, after exposure to simulated gastric acid fluid. Microb Pathog 2017; 113:378–384 [View Article] [PubMed]
    [Google Scholar]
  133. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 1990; 7:756–761 [View Article] [PubMed]
    [Google Scholar]
  134. Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM et al. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. Pharm Res 1993; 10:187–196 [View Article] [PubMed]
    [Google Scholar]
  135. Rathman M, Sjaastad MD, Falkow S. Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun 1996; 64:2765–2773 [View Article] [PubMed]
    [Google Scholar]
  136. Smith JL. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot 2003; 66:1292–1303 [View Article] [PubMed]
    [Google Scholar]
  137. Foster JW, Hall HK. Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 1990; 172:771–778 [View Article] [PubMed]
    [Google Scholar]
  138. Koutsoumanis KP, Sofos JN. Comparative acid stress response of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium after habituation at different pH conditions. Lett Appl Microbiol 2004; 38:321–326 [View Article] [PubMed]
    [Google Scholar]
  139. Torres MA, Terraf MCL, Minahk CJ, Delgado MA. Stability of the Salmonella Typhimurium rcsC11 mutant under different stress conditions. Microbiology 2020; 166:157–168 [View Article]
    [Google Scholar]
  140. Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 2008; 65:2461–2483 [View Article] [PubMed]
    [Google Scholar]
  141. Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005; 29:625–651 [View Article] [PubMed]
    [Google Scholar]
  142. Merritt ME, Donaldson JR. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 2009; 58:1533–1541 [View Article] [PubMed]
    [Google Scholar]
  143. Prieto AI, Ramos-Morales F, Casadesús J. Bile-induced DNA damage in Salmonella enterica. Genetics 2004; 168:1787–1794 [View Article] [PubMed]
    [Google Scholar]
  144. Prieto AI, Ramos-Morales F, Casadesús J. Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics 2006; 174:575–584 [View Article] [PubMed]
    [Google Scholar]
  145. Hernández SB, Cota I, Ducret A, Aussel L, Casadesús J. Adaptation and preadaptation of Salmonella enterica to Bile. PLoS Genet 2012; 8:e1002459 [View Article] [PubMed]
    [Google Scholar]
  146. Walawalkar YD, Vaidya Y, Nayak V, Monack D. Response of Salmonella Typhi to bile-generated oxidative stress: implication of quorum sensing and persister cell populations. Pathog Dis 2016; 74:ftw090 [View Article] [PubMed]
    [Google Scholar]
  147. Di Lorenzo P. usmap: US Maps Including Alaska and Hawaii. n.d https://CRAN.R-project.org/package=usmap
/content/journal/mgen/10.1099/mgen.0.001050
Loading
/content/journal/mgen/10.1099/mgen.0.001050
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error