1887

Abstract

The bacterium causes the sexually transmitted infection gonorrhoea. Although diverse clinical manifestations are associated with gonorrhoea, ranging from asymptomatic through to localized and disseminated infection, very little is known about the bacterial determinants implicated in causing such different clinical symptoms. In particular, virulence factors, although defined and investigated in particular strains, often lack comprehensive analysis of their genetic diversity and how this relates to particular disease states. This review examines the clinical manifestations of gonorrhoea and discusses them in relation to disease severity and association with expression of particular virulence factors including PorB, lipooligosaccharide (LOS) and Opa, both in terms of their mechanisms of action and inter- and intra-strain variation. Particular attention is paid to phase variation as a key mechanism of genetic variation in the gonococcus and the impact of this during infection. We describe how whole-genome-sequence-based approaches that focus on virulence factors can be employed for vaccine development and discuss whether whole-genome-sequence data can be used to predict the severity of gonococcal infection.

Funding
This study was supported by the:
  • University of Oxford
    • Principle Award Recipient: KacperKurzyp
  • Wellcome Trust (Award 214374/Z/18/Z)
    • Principle Award Recipient: OdileB. Harrison
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001040
2023-06-07
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/6/mgen001040.html?itemId=/content/journal/mgen/10.1099/mgen.0.001040&mimeType=html&fmt=ahah

References

  1. Unemo M, Seifert HS, Hook EW, Hawkes S, Ndowa F et al. Gonorrhoea. Nat Rev Dis Primers 2019; 5:79 [View Article] [PubMed]
    [Google Scholar]
  2. Quillin SJ, Seifert HS. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 2018; 16:226–240 [View Article] [PubMed]
    [Google Scholar]
  3. Belkacem A, Caumes E, Ouanich J, Jarlier V, Dellion S et al. Changing patterns of disseminated gonococcal infection in France: cross-sectional data 2009–2011. Sex Transm Infect 2013; 89:613–615 [View Article] [PubMed]
    [Google Scholar]
  4. Liu Y, Perez J, Hammer LA, Gallagher HC, De Jesus M et al. Intravaginal administration of interleukin 12 during genital gonococcal infection in mice induces immunity to heterologous strains of Neisseria gonorrhoeae. mSphere 2018; 3:e00421-17 [View Article] [PubMed]
    [Google Scholar]
  5. Kraus SJ. Incidence and therapy of gonococcal pharyngitis. Sex Transm Dis 1979; 6:143–147 [View Article] [PubMed]
    [Google Scholar]
  6. Bernstein KT, Marcus JL, Nieri G, Philip SS, Klausner JD. Rectal gonorrhea and chlamydia reinfection is associated with increased risk of HIV seroconversion. J Acquir Immune Defic Syndr 2010; 53:537–543 [View Article] [PubMed]
    [Google Scholar]
  7. Brunham RC, Plummer F, Slaney L, Rand F, DeWitt W. Correlation of auxotype and protein I type with expression of disease due to Neisseria gonorrhoeae. J Infect Dis 1985; 152:339–343 [View Article] [PubMed]
    [Google Scholar]
  8. Xu SX, Gray-Owen SD. Gonococcal pelvic inflammatory disease: placing mechanistic insights into the context of clinical and epidemiological observations. J Infect Dis 2021; 224:S56–S63 [View Article] [PubMed]
    [Google Scholar]
  9. Bleich AT, Sheffield JS, Wendel GD, Sigman A, Cunningham FG. Disseminated gonococcal infection in women. Obstet Gynecol 2012; 119:597–602 [View Article] [PubMed]
    [Google Scholar]
  10. Li R, Hatcher JD. Gonococcal Arthritis Treasure Island, FL: StatPearls; 2021 [PubMed]
    [Google Scholar]
  11. van de Wijgert JHHM, Morrison CS, Brown J, Kwok C, Van Der Pol B et al. Disentangling contributions of reproductive tract infections to HIV acquisition in African women. Sex Transm Dis 2009; 36:357–364 [View Article] [PubMed]
    [Google Scholar]
  12. Bettoni S, Shaughnessy J, Maziarz K, Ermert D, Gulati S et al. C4BP-IgM protein as a therapeutic approach to treat Neisseria gonorrhoeae infections. JCI Insight 2019; 4:e131886 [View Article] [PubMed]
    [Google Scholar]
  13. Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR et al. Anti-virulence therapeutic approaches for Neisseria gonorrhoeae. Antibiotics 2021; 10:103 [View Article] [PubMed]
    [Google Scholar]
  14. Jen FE-C, Ketterer MR, Semchenko EA, Day CJ, Seib KL et al. The Lst sialyltransferase of Neisseria gonorrhoeae can transfer keto-deoxyoctanoate as the terminal sugar of lipooligosaccharide: a glyco-achilles heel that provides a new strategy for vaccines to prevent gonorrhea. mBio 2021; 12:e03666-20 [View Article] [PubMed]
    [Google Scholar]
  15. Semchenko EA, Everest-Dass AV, Jen FE-C, Mubaiwa TD, Day CJ et al. Glycointeractome of Neisseria gonorrhoeae: identification of host glycans targeted by the gonococcus to facilitate adherence to cervical and urethral epithelial cells. mBio 2019; 10:e01339-19 [View Article] [PubMed]
    [Google Scholar]
  16. Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines against antimicrobial resistance. Front Immunol 2020; 11:1048 [View Article]
    [Google Scholar]
  17. Zhu T, McClure R, Harrison OB, Genco C, Massari P. Integrated bioinformatic analyses and immune characterization of new Neisseria gonorrhoeae vaccine antigens expressed during natural mucosal infection. Vaccines 2019; 7:153 [View Article] [PubMed]
    [Google Scholar]
  18. Russell MW, Jerse AE, Gray-Owen SD. Progress toward a gonococcal vaccine: the way forward. Front Immunol 2019; 10:2417 [View Article] [PubMed]
    [Google Scholar]
  19. Greiner LL, Edwards JL, Shao J, Rabinak C, Entz D et al. Biofilm formation by Neisseria gonorrhoeae. Infect Immun 2005; 73:1964–1970 [View Article] [PubMed]
    [Google Scholar]
  20. Hobbs MM, Sparling PF, Cohen MS, Shafer WM, Deal CD et al. Experimental gonococcal infection in male volunteers: cumulative experience with Neisseria gonorrhoeae strains FA1090 and MS11mkC. Front Microbiol 2011; 2:123 [View Article] [PubMed]
    [Google Scholar]
  21. Chan JM, Dillard JP. Attention seeker: production, modification, and release of inflammatory peptidoglycan fragments in Neisseria species. J Bacteriol 2017; 199:e00354-17 [View Article] [PubMed]
    [Google Scholar]
  22. Handsfield HH, Lipman TO, Harnisch JP, Tronca E, Holmes KK. Asymptomatic gonorrhea in men – diagnosis, natural course, prevalence and significance. N Engl J Med 2010; 16:130–137
    [Google Scholar]
  23. Youssef DA, Peiris AN, Kelley JL, Grant WB. The possible roles of vitamin D and curcumin in treating gonorrhea. Med Hypotheses 2013; 81:131–135 [View Article] [PubMed]
    [Google Scholar]
  24. Liu Y, Liu W, Russell MW. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol 2014; 7:165–176 [View Article] [PubMed]
    [Google Scholar]
  25. Masson L, Passmore J-AS, Liebenberg LJ, Werner L, Baxter C et al. Genital inflammation and the risk of HIV acquisition in women. Clin Infect Dis 2015; 61:260–269 [View Article] [PubMed]
    [Google Scholar]
  26. Vonck RA, Darville T, O’Connell CM, Jerse AE. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect Immun 2011; 79:1566–1577 [View Article] [PubMed]
    [Google Scholar]
  27. Lyss SB, Kamb ML, Peterman TA, Moran JS, Newman DR et al. Chlamydia trachomatis among patients infected with and treated for Neisseria gonorrhoeae in sexually transmitted disease clinics in the United States. Ann Intern Med 2003; 139:178–185 [View Article] [PubMed]
    [Google Scholar]
  28. Draper DL, James JF, Brooks GF, Sweet RL. Comparison of virulence markers of peritoneal and fallopian tube isolates with endocervical Neisseria gonorrhoeae isolates from women with acute salpingitis. Infect Immun 1980; 27:882–888 [View Article] [PubMed]
    [Google Scholar]
  29. Darville T. Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways. J Infect Dis 2021; 224:S39–S46 [View Article] [PubMed]
    [Google Scholar]
  30. De Muylder X, Laga M, Thnnstedt C, Van Dyck E, Aelbers GNM et al. The role of Neisseria gonorrhoeae and Chlamydia trachomatis in pelvic inflammatory disease and its sequelae in Zimbabwe. J Infect Dis 1990; 162:501–5058 [View Article]
    [Google Scholar]
  31. Cloud-Hansen KA, Hackett KT, Garcia DL, Dillard JP. Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers. J Bacteriol 2008; 190:5989–5994 [View Article] [PubMed]
    [Google Scholar]
  32. Islam EA, Anipindi VC, Francis I, Shaik-Dasthagirisaheb Y, Xu S et al. Specific binding to differentially expressed human carcinoembryonic antigen-related cell adhesion molecules determines the outcome of Neisseria gonorrhoeae infections along the female reproductive tract. Infect Immun 2018; 86:e00092-18 [View Article] [PubMed]
    [Google Scholar]
  33. Ogbebor O, Mortimer TD, Fryling K, Zhang JJ, Bhanot N et al. Disseminated gonococcal infection complicated by prosthetic joint infection: case report and genomic and phylogenetic analysis. Open Forum Infect Dis 2021; 8:ofaa632 [View Article] [PubMed]
    [Google Scholar]
  34. Schoolnik GK, Buchanan TM, Holmes KK. Gonococci causing disseminated gonococcal infection are resistant to the bactericidal action of normal human sera. J Clin Invest 1976; 58:1163–1173 [View Article] [PubMed]
    [Google Scholar]
  35. Raphael B, Cartee J, Joseph S, Sharpe S, Roland B. P139 A phylogenomic survey of disseminated gonococcal infection isolates in the United States (2019–2020). Sex Transm Infec 2021; 97(Suppl 1):A95 [View Article]
    [Google Scholar]
  36. Ram S, Cullinane M, Blom AM, Gulati S, McQuillen DP et al. C4bp binding to porin mediates stable serum resistance of Neisseria gonorrhoeae. Int Immunopharmacol 2001; 1:423–432 [View Article] [PubMed]
    [Google Scholar]
  37. Ram S, Cullinane M, Blom AM, Gulati S, McQuillen DP et al. Binding of C4b-binding protein to porin: a molecular mechanism of serum resistance of Neisseria gonorrhoeae. J Exp Med 2001; 193:281–295 [View Article] [PubMed]
    [Google Scholar]
  38. Agarwal S, Ram S, Ngampasutadol J, Gulati S, Zipfel PF et al. Factor H facilitates adherence of Neisseria gonorrhoeae to complement receptor 3 on eukaryotic cells. J Immunol 2010; 185:4344–4353 [View Article] [PubMed]
    [Google Scholar]
  39. Wiesner PJ, Tronca E, Bonin P, Pedersen AHB, Holmes KK. Clinical spectrum of pharyngeal gonococcal infection. N Engl J Med 1973; 288:181–185 [View Article]
    [Google Scholar]
  40. Fransen L, Nsanze H, Klauss V, Van der Stuyft P, D’Costa L et al. Ophthalmia neonatorum in Nairobi Kenya: the roles of Neisseria gonorrhoeae and Chlamydia trachomatis. J Infect Dis 1986; 153:862–869 [View Article]
    [Google Scholar]
  41. Wan WL, Farkas GC, May WN, Robin JB. The clinical characteristics and course of adult gonococcal conjunctivitis. Am J Ophthalmol 1986; 102:575–583 [View Article] [PubMed]
    [Google Scholar]
  42. Kim JJ, Mandrell RE, Griffiss JM. Neisseria lactamica and Neisseria meningitidis share lipooligosaccharide epitopes but lack common capsular and class 1, 2, and 3 protein epitopes. Infect Immun 1989; 57:602–608 [View Article] [PubMed]
    [Google Scholar]
  43. Deasy AM, Guccione E, Dale AP, Andrews N, Evans CM et al. Nasal inoculation of the commensal Neisseria lactamica inhibits carriage of Neisseria meningitidis by young adults: a controlled human infection study. Clin Infect Dis 2015; 60:1512–1520 [View Article] [PubMed]
    [Google Scholar]
  44. Caugant DA, Høiby EA, Magnus P, Scheel O, Hoel T et al. Asymptomatic carriage of Neisseria meningitidis in a randomly sampled population. J Clin Microbiol 1994; 32:323–330 [View Article] [PubMed]
    [Google Scholar]
  45. Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2020; 18:84–96 [View Article] [PubMed]
    [Google Scholar]
  46. Cehovin A, Jolley KA, Maiden MCJ, Harrison OB, Tang CM. Association of Neisseria gonorrhoeae plasmids with distinct lineages and the economic status of their country of origin. J Infect Dis 2020; 222:1826–1836 [View Article]
    [Google Scholar]
  47. Duffin PM, Seifert HS. DNA uptake sequence-mediated enhancement of transformation in Neisseria gonorrhoeae is strain dependent. J Bacteriol 2010; 192:4436–4444 [View Article]
    [Google Scholar]
  48. Bennett JS, Bentley SD, Vernikos GS, Quail MA, Cherevach I et al. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics 2010; 11:652 [View Article]
    [Google Scholar]
  49. Fernando I, Palmer HM, Young H. Characteristics of patients infected with common Neisseria gonorrhoeae NG-MAST sequence type strains presenting at the Edinburgh genitourinary medicine clinic. Sex Transm Infect 2009; 85:443–446 [View Article]
    [Google Scholar]
  50. Harrison OB, Cehovin A, Skett J, Jolley KA, Massari P et al. Neisseria gonorrhoeae population genomics: use of the gonococcal core genome to improve surveillance of antimicrobial resistance. J Infect Dis 2020; 222:1816–1825 [View Article] [PubMed]
    [Google Scholar]
  51. Harrison OB, Maiden MC. Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Fac Rev 2021; 10:65 [View Article] [PubMed]
    [Google Scholar]
  52. Rotman E, Seifert HS. The genetics of Neisseria species. Annu Rev Genet 2014; 48:405–431 [View Article] [PubMed]
    [Google Scholar]
  53. Tuomanen EI, van der Ende A, Hopman CTP, Dankert J. Multiple mechanisms of phase variation of PorA in Neisseria meningitidis. Infect Immun 2000; 68:6685–6690 [View Article]
    [Google Scholar]
  54. Shafer WM, Datta A, Kumar Kolli VS, Mahbubur Rahman M, Balthazar JT et al. Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. J Endotoxin Res 2002; 8:47–58 [View Article]
    [Google Scholar]
  55. Diallo K, MacLennan J, Harrison OB, Msefula C, Sow SO et al. Genomic characterization of novel Neisseria species. Sci Rep 2019; 9:13742 [View Article] [PubMed]
    [Google Scholar]
  56. Snyder LAS, Saunders NJ. The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as “virulence genes.”. BMC Genomics 2006; 7:128 [View Article] [PubMed]
    [Google Scholar]
  57. Snyder LAS, Jarvis SA, Saunders NJ. Complete and variant forms of the “gonococcal genetic island” in Neisseria meningitidis. Microbiology 2005; 151:4005–4013 [View Article] [PubMed]
    [Google Scholar]
  58. Marri PR, Paniscus M, Weyand NJ, Rendón MA, Calton CM et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 2010; 5:e11835 [View Article] [PubMed]
    [Google Scholar]
  59. Baarda BI, Zielke RA, Holm AK, Sikora AE. Comprehensive bioinformatic assessments of the variability of Neisseria gonorrhoeae vaccine candidates. mSphere 2021; 6:e00977-20 [View Article] [PubMed]
    [Google Scholar]
  60. Schneider MC, Exley RM, Chan H, Feavers I, Kang Y-H et al. Functional significance of factor H binding to Neisseria meningitidis. J Immunol 2006; 176:7566–7575 [View Article] [PubMed]
    [Google Scholar]
  61. Tzeng Y-L, Bazan JA, Turner AN, Wang X, Retchless AC et al. Emergence of a new Neisseria meningitidis clonal complex 11 lineage 11.2 clade as an effective urogenital pathogen. Proc Natl Acad Sci 2017; 114:4237–4242 [View Article] [PubMed]
    [Google Scholar]
  62. Retchless AC, Kretz CB, Chang H-Y, Bazan JA, Abrams AJ et al. Expansion of a urethritis-associated Neisseria meningitidis clade in the United States with concurrent acquisition of N. gonorrhoeae alleles. BMC Genomics 2018; 19:176 [View Article] [PubMed]
    [Google Scholar]
  63. Tzeng YL, Giuntini S, Berman Z, Sannigrahi S, Granoff DM et al. Neisseria meningitidis urethritis outbreak isolates express a novel factor H binding protein variant that is a potential target of group B-directed meningococcal (MenB) vaccines. Infect Immun 2020; 88:e00462-20 [View Article] [PubMed]
    [Google Scholar]
  64. Bazan JA, Tzeng Y-L, Stephens DS, Carter AM, Brown MA et al. Repeat episodes of symptomatic urethritis due to a uropathogenic meningococcal clade. Sex Transm Dis 2020; 47:e1–e4 [View Article] [PubMed]
    [Google Scholar]
  65. Strauss J, Burnham NA, Camesano TA. Atomic force microscopy study of the role of LPS O-antigen on adhesion of E. coli. J Mol Recognit 2009; 22:347–355 [View Article] [PubMed]
    [Google Scholar]
  66. Kahler CM, Stephens DS. Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide. Crit Rev Microbiol 1998; 24:281–334 [View Article] [PubMed]
    [Google Scholar]
  67. Piekarowicz A, Stein DC. Biochemical properties of Neisseria gonorrhoeae LgtE. J Bacteriol 2002; 184:6410–6416 [View Article] [PubMed]
    [Google Scholar]
  68. Erwin AL, Haynes PA, Rice PA, Gotschlich EC. Conservation of the lipooligosaccharide synthesis locus lgt among strains of Neisseria gonorrhoeae: requirement for lgtE in synthesis of the 2C7 epitope and of the beta chain of strain 15253. J Exp Med 1996; 184:1233–1241 [View Article] [PubMed]
    [Google Scholar]
  69. Burch CL, Danaher RJ, Stein DC. Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J Bacteriol 1997; 179:982–986 [View Article] [PubMed]
    [Google Scholar]
  70. Apicella MA, Bennett KM, Hermerath CA, Roberts DE. Monoclonal antibody analysis of lipopolysaccharide from Neisseria gonorrhoeae and Neisseria meningitidis. Infect Immun 1981; 34:751–756 [View Article] [PubMed]
    [Google Scholar]
  71. Gidney MAJ, Plested JS, Lacelle S, Coull PA, Wright JC et al. Development, characterization, and functional activity of a panel of specific monoclonal antibodies to inner core lipopolysaccharide epitopes in Neisseria meningitidis. Infect Immun 2004; 72:559–569 [View Article] [PubMed]
    [Google Scholar]
  72. Tsai CM. Molecular mimicry of host structures by lipooligosaccharides of Neisseria meningitidis: characterization of sialylated and nonsialylated lacto-N-neotetraose (Galß1-4GlcNAcß1-3Galβ1-4Glc) structures in lipooligosaccharides using monoclonal antibodies and specific lectins. Adv Exp Med Biol 2001; 491:525–542 [View Article]
    [Google Scholar]
  73. Zhu P, Klutch MJ, Tsai C-M. Genetic analysis of conservation and variation of lipooligosaccharide expression in two L8-immunotype strains of Neisseria meningitidis. FEMS Microbiol Lett 2001; 203:173–177 [View Article] [PubMed]
    [Google Scholar]
  74. Harvey HA, Porat N, Campbell CA, Jennings M, Gibson BW et al. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol Microbiol 2000; 36:1059–1070 [View Article] [PubMed]
    [Google Scholar]
  75. Harvey HA, Swords WE, Apicella MA. The mimicry of human glycolipids and glycosphingolipids by the lipooligosaccharides of pathogenic Neisseria and Haemophilus. J Autoimmun 2001; 16:257–262 [View Article] [PubMed]
    [Google Scholar]
  76. Edwards JL, Apicella MA. The role of lipooligosaccharide in Neisseria gonorrhoeae pathogenesis of cervical epithelia: lipid A serves as a C3 acceptor molecule. Cell Microbiol 2002; 4:585–598 [View Article] [PubMed]
    [Google Scholar]
  77. Lewis LA, Shafer WM, Dutta Ray T, Ram S, Rice PA. Phosphoethanolamine residues on the lipid a moiety of Neisseria gonorrhoeae lipooligosaccharide modulate binding of complement inhibitors and resistance to complement killing. Infect Immun 2013; 81:33–42 [View Article] [PubMed]
    [Google Scholar]
  78. Kim JJ, Zhou D, Mandrell RE, Griffiss JM. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect Immun 1992; 60:4439–4442 [View Article] [PubMed]
    [Google Scholar]
  79. Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 2004; 17:965–981 [View Article] [PubMed]
    [Google Scholar]
  80. Ngampasutadol J, Ram S, Gulati S, Agarwal S, Li C et al. Human factor H interacts selectively with Neisseria gonorrhoeae and results in species-specific complement evasion. J Immunol 2008; 180:3426–3435 [View Article] [PubMed]
    [Google Scholar]
  81. Gulati S, Cox A, Lewis LA, Michael FS, Li J et al. Enhanced factor H binding to sialylated gonococci is restricted to the sialylated lacto-N-neotetraose lipooligosaccharide species: implications for serum resistance and evidence for a bifunctional lipooligosaccharide sialyltransferase in gonococci. Infect Immun 2005; 73:7390–7397 [View Article] [PubMed]
    [Google Scholar]
  82. Shaughnessy J, Ram S, Bhattacharjee A, Pedrosa J, Tran C et al. Molecular characterization of the interaction between sialylated Neisseria gonorrhoeae and factor H. J Biol Chem 2011; 286:22235–22242 [View Article] [PubMed]
    [Google Scholar]
  83. Song W, Ma L, Chen R, Stein DC. Role of lipooligosaccharide in Opa-independent invasion of Neisseria gonorrhoeae into human epithelial cells. J Exp Med 2000; 191:949–960 [View Article] [PubMed]
    [Google Scholar]
  84. Ram S, Gulati S, Lewis LA, Chakraborti S, Zheng B et al. A novel sialylation site on Neisseria gonorrhoeae lipooligosaccharide links heptose II lactose expression with pathogenicity. Infect Immun 2018; 86:e00285-18 [View Article] [PubMed]
    [Google Scholar]
  85. Lewis LA, Gulati S, Burrowes E, Zheng B, Ram S et al. α-2,3-sialyltransferase expression level impacts the kinetics of lipooligosaccharide sialylation, complement resistance, and the ability of Neisseria gonorrhoeae to colonize the murine genital tract. mBio 2015; 6:e02465-14 [View Article] [PubMed]
    [Google Scholar]
  86. Mandrell RE, Kim JJ, John CM, Gibson BW, Sugai JV et al. Endogenous sialylation of the lipooligosaccharides of Neisseria meningitidis. J Bacteriol 1991; 173:2823–2832 [View Article] [PubMed]
    [Google Scholar]
  87. Wakarchuk WW, Watson D, St. Michael F, Li J, Wu Y et al. Dependence of the bi-functional nature of a sialyltransferase from Neisseria meningitidis on a single amino acid substitution. J Biol Chem 2001; 276:12785–12790 [View Article]
    [Google Scholar]
  88. Ram S, McQuillen DP, Gulati S, Elkins C, Pangburn MK et al. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of nonsialylated Neisseria gonorrhoeae. J Exp Med 1998; 188:671–680 [View Article]
    [Google Scholar]
  89. van Vliet SJ, Steeghs L, Bruijns SCM, Vaezirad MM, Snijders Blok C et al. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS Pathog 2009; 5:e1000625 [View Article] [PubMed]
    [Google Scholar]
  90. John CM, Jarvis GA, Swanson KV, Leffler H, Cooper MD et al. Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected. Cell Microbiol 2002; 4:649–662 [View Article]
    [Google Scholar]
  91. Minor SY, Banerjee A, Gotschlich EC. Effect of alpha-oligosaccharide phenotype of Neisseria gonorrhoeae strain MS11 on invasion of Chang conjunctival, HEC-1-B endometrial, and ME-180 cervical cells. Infect Immun 2000; 68:6526–6534 [View Article] [PubMed]
    [Google Scholar]
  92. Schneider H, Schmidt KA, Skillman DR, Van De Verg L, Warren RL et al. Sialylation lessens the infectivity of Neisseria gonorrhoeae MS11mkC. J Infect Dis 1996; 173:1422–1427 [View Article] [PubMed]
    [Google Scholar]
  93. van Putten JP. Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J 1993; 12:4043–4051 [View Article] [PubMed]
    [Google Scholar]
  94. Judd RC. Protein I: structure, function, and genetics. Clin Microbiol Rev 1989; 2 (Suppl.):S41–S48 [View Article] [PubMed]
    [Google Scholar]
  95. Barrera O, Swanson J. Proteins IA and IB exhibit different surface exposures and orientations in the outer membranes of Neisseria gonorrhoeae. Infect Immun 1984; 44:565–568 [View Article] [PubMed]
    [Google Scholar]
  96. Kattner C, Zaucha J, Jaenecke F, Zachariae U, Tanabe M. Identification of a cation transport pathway in Neisseria meningitidis PorB. Proteins 2013; 81:830–840 [View Article] [PubMed]
    [Google Scholar]
  97. Chen A, Seifert HS. Saturating mutagenesis of an essential gene: a majority of the Neisseria gonorrhoeae major outer membrane porin (PorB) is mutable. J Bacteriol 2014; 196:540–547 [View Article] [PubMed]
    [Google Scholar]
  98. Cannon JG, Buchanan TM, Sparling PF. Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect Immun 1983; 40:816–819 [View Article] [PubMed]
    [Google Scholar]
  99. van Putten JP, Duensing TD, Carlson J. Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties. J Exp Med 1998; 188:941–952 [View Article] [PubMed]
    [Google Scholar]
  100. Ayala P, Vasquez B, Wetzler L, So M. Neisseria gonorrhoeae porin P1.B induces endosome exocytosis and a redistribution of Lamp1 to the plasma membrane. Infect Immun 2002; 70:5965–5971 [View Article] [PubMed]
    [Google Scholar]
  101. Landig CS, Hazel A, Kellman BP, Fong JJ, Schwarz F et al. Evolution of the exclusively human pathogen Neisseria gonorrhoeae: human-specific engagement of immunoregulatory Siglecs. Evol Appl 2019; 12:337–349 [View Article] [PubMed]
    [Google Scholar]
  102. Duncan JA, Gao X, Huang MT-H, O’Connor BP, Thomas CE et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol 2009; 182:6460–6469 [View Article] [PubMed]
    [Google Scholar]
  103. Lorenzen DR, Günther D, Pandit J, Rudel T, Brandt E et al. Neisseria gonorrhoeae porin modifies the oxidative burst of human professional phagocytes. Infect Immun 2000; 68:6215–6222 [View Article] [PubMed]
    [Google Scholar]
  104. Massari P, Ho Y, Wetzler LM. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc Natl Acad Sci 2000; 97:9070–9075 [View Article] [PubMed]
    [Google Scholar]
  105. Virji M, Zak K, Heckels JE. Monoclonal antibodies to gonococcal outer membrane protein IB: use in investigation of the potential protective effect of antibodies directed against conserved and type-specific epitopes. J Gen Microbiol 1986; 132:1621–1629 [View Article] [PubMed]
    [Google Scholar]
  106. Virji M, Fletcher JN, Zak K, Heckels JE. The potential protective effect of monoclonal antibodies to gonococcal outer membrane protein IA. J Gen Microbiol 1987; 133:2639–2646 [View Article] [PubMed]
    [Google Scholar]
  107. Elkins C, Carbonetti NH, Varela VA, Stirewalt D, Klapper DG et al. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol 1992; 6:2617–2628 [View Article] [PubMed]
    [Google Scholar]
  108. Burns DL, Derrick JP, Urwin R, Suker J, Feavers IM et al. Structural and evolutionary inference from molecular variation in Neisseria porins. Infect Immun 1999; 67:2406–2413 [View Article]
    [Google Scholar]
  109. Pérez-Losada M, Viscidi RP, Demma JC, Zenilman J, Crandall KA. Population genetics of Neisseria gonorrhoeae in a high-prevalence community using a hypervariable outer membrane porB and 13 slowly evolving housekeeping genes. Mol Biol Evol 2005; 22:1887–1902 [View Article] [PubMed]
    [Google Scholar]
  110. Fudyk TC, Maclean IW, Simonsen JN, Njagi EN, Kimani J et al. Genetic diversity and mosaicism at the por locus of Neisseria gonorrhoeae. J Bacteriol 1999; 181:5591–5599 [View Article]
    [Google Scholar]
  111. Carbonetti NH, Simnad VI, Seifert HS, So M, Sparling PF. Genetics of protein I of Neisseria gonorrhoeae: construction of hybrid porins. Proc Natl Acad Sci 1988; 85:6841–6845 [View Article] [PubMed]
    [Google Scholar]
  112. Swanson J. Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci. Infect Immun 1978; 19:320–331 [View Article] [PubMed]
    [Google Scholar]
  113. Bhat KS, Gibbs CP, Barrera O, Morrison SG, Jähnig F et al. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol Microbiol 1991; 5:1889–1901 [View Article] [PubMed]
    [Google Scholar]
  114. Hill SA, Masters TL, Wachter J. Gonorrhea – an evolving disease of the new millennium. Microb Cell 2016; 3:371–389 [View Article] [PubMed]
    [Google Scholar]
  115. Ball LM, Criss AK. Constitutively Opa-expressing and Opa-deficient Neisseria gonorrhoeae strains differentially stimulate and survive exposure to human neutrophils. J Bacteriol 2013; 195:2982–2990 [View Article] [PubMed]
    [Google Scholar]
  116. Billker O, Popp A, Gray-Owen SD, Meyer TF. The structural basis of CEACAM-receptor targeting by neisserial Opa proteins. Trends Microbiol 2000; 8:258–260 [View Article] [PubMed]
    [Google Scholar]
  117. Virji M, Watt SM, Barker S, Makepeace K, Doyonnas R. The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol Microbiol 1996; 22:929–939 [View Article] [PubMed]
    [Google Scholar]
  118. Wu C-T, Huang P-W, Lin C-H, Stein DC, Song W et al. In vitro analysis of matched isolates from localized and disseminated gonococcal infections suggests that opa expression impacts clinical outcome. Pathogens 2022; 11:217 [View Article] [PubMed]
    [Google Scholar]
  119. Yu Q, Chow EMC, McCaw SE, Hu N, Byrd D et al. Association of Neisseria gonorrhoeae Opa(CEA) with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response. PLoS One 2013; 8:e56705 [View Article] [PubMed]
    [Google Scholar]
  120. Bos MP, Grunert F, Belland RJ. Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae. Infect Immun 1997; 65:2353–2361 [View Article] [PubMed]
    [Google Scholar]
  121. Lambden PR, Heckels JE, James LT, Watt PJ. Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J General Microbiol 1979; 114:305–312 [View Article]
    [Google Scholar]
  122. Virji M, Everson JS. Comparative virulence of opacity variants of Neisseria gonorrhoeae strain P9. Infect Immun 1981; 31:965–970 [View Article]
    [Google Scholar]
  123. Kupsch EM, Knepper B, Kuroki T, Heuer I, Meyer TF. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J 1993; 12:641–650 [View Article] [PubMed]
    [Google Scholar]
  124. Halter R, Pohlner J, Meyer TF. IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product. EMBO J 1984; 3:1595–1601 [View Article]
    [Google Scholar]
  125. Pohlner J, Halter R, Beyreuther K, Meyer TF. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 1987; 325:458–462 [View Article] [PubMed]
    [Google Scholar]
  126. Klauser T, Pohlner J, Meyer TF. The secretion pathway of IgA protease-type proteins in gram-negative bacteria. Bioessays 1993; 15:799–805 [View Article] [PubMed]
    [Google Scholar]
  127. Plaut AG, Gilbert JV, Artenstein MS, Capra JD. Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 1975; 190:1103–1105 [View Article] [PubMed]
    [Google Scholar]
  128. Lin L, Ayala P, Larson J, Mulks M, Fukuda M et al. The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol Microbiol 1997; 24:1083–1094 [View Article] [PubMed]
    [Google Scholar]
  129. Ayala P, Lin L, Hopper S, Fukuda M, So M. Infection of epithelial cells by pathogenic neisseriae reduces the levels of multiple lysosomal constituents. Infect Immun 1998; 66:5001–5007 [View Article] [PubMed]
    [Google Scholar]
  130. Hopper S, Vasquez B, Merz A, Clary S, Wilbur JS et al. Effects of the immunoglobulin A1 protease on Neisseria gonorrhoeae trafficking across polarized T84 epithelial monolayers. Infect Immun 2000; 68:906–911 [View Article] [PubMed]
    [Google Scholar]
  131. Halter R, Pohlner J, Meyer TF. Mosaic-like organization of IgA protease genes in Neisseria gonorrhoeae generated by horizontal genetic exchange in vivo. EMBO J 1989; 8:2737–2744 [View Article] [PubMed]
    [Google Scholar]
  132. Lomholt H, Poulsen K, Kilian M. Comparative characterization of the iga gene encoding IgA1 protease in Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae. Mol Microbiol 1995; 15:495–506 [View Article]
    [Google Scholar]
  133. Mulks MH, Plaut AG. IgA protease production as a characteristic distinguishing pathogenic from harmless Neisseriaceae. N Engl J Med 1978; 299:973–976 [View Article]
    [Google Scholar]
  134. Johannsen DB, Johnston DM, Koymen HO, Cohen MS, Cannon JG. A Neisseria gonorrhoeae immunoglobulin A1 protease mutant is infectious in the human challenge model of urethral infection. Infect Immun 1999; 67:3009–3013 [View Article] [PubMed]
    [Google Scholar]
  135. Wang F, Coureuil M, Osinski T, Orlova A, Altindal T et al. Cryoelectron microscopy reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae type IV pili at sub-nanometer resolution. Structure 2017; 25:1423–1435 [View Article] [PubMed]
    [Google Scholar]
  136. Higashi DL, Lee SW, Snyder A, Weyand NJ, Bakke A et al. Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect Immun 2007; 75:4743–4753 [View Article] [PubMed]
    [Google Scholar]
  137. Rudel T, van Putten JPM, Gibbs CP, Haas R, Meyer TF. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 1992; 6:3439–3450 [View Article] [PubMed]
    [Google Scholar]
  138. Rudel T, Scheurerpflug I, Meyer TF. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 1995; 373:357–359 [View Article] [PubMed]
    [Google Scholar]
  139. Winther-Larsen HC, Hegge FT, Wolfgang M, Hayes SF, van Putten JP et al. Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc Natl Acad Sci 2001; 98:15276–15281 [View Article] [PubMed]
    [Google Scholar]
  140. Higashi DL, Zhang GH, Biais N, Myers LR, Weyand NJ et al. Influence of type IV pilus retraction on the architecture of the Neisseria gonorrhoeae-infected cell cortex. Microbiology 2009; 155:4084–4092 [View Article] [PubMed]
    [Google Scholar]
  141. Kim WJ, Mai A, Weyand NJ, Rendón MA, Van Doorslaer K et al. Neisseria gonorrhoeae evades autophagic killing by downregulating CD46-cyt1 and remodeling lysosomes. PLoS Pathog 2019; 15:e1007495 [View Article] [PubMed]
    [Google Scholar]
  142. Plant LJ, Jonsson AB. Type IV pili of Neisseria gonorrhoeae influence the activation of human CD4+ T cells. Infect Immun 2006; 74:442–448 [View Article] [PubMed]
    [Google Scholar]
  143. Blom AM, Rytkönen A, Vasquez P, Lindahl G, Dahlbäck B et al. A novel interaction between type IV pili of Neisseria gonorrhoeae and the human complement regulator C4B-binding protein. J Immunol 2001; 166:6764–6770 [View Article] [PubMed]
    [Google Scholar]
  144. Hamrick TS, Dempsey JAF, Cohen MS, Cannon JG. Antigenic variation of gonococcal pilin expression in vivo: analysis of the strain FA1090 pilin repertoire and identification of the pilS gene copies recombining with pilE during experimental human infection. Microbiology 2001; 147:839–849 [View Article] [PubMed]
    [Google Scholar]
  145. Haas R, Meyer TF. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 1986; 44:107–115 [View Article] [PubMed]
    [Google Scholar]
  146. Criss AK, Kline KA, Seifert HS. The frequency and rate of pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 2005; 58:510–519 [View Article] [PubMed]
    [Google Scholar]
  147. Hegge FT, Hitchen PG, Aas FE, Kristiansen H, Løvold C et al. Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. Proc Natl Acad Sci 2004; 101:10798–10803 [View Article] [PubMed]
    [Google Scholar]
  148. Wanford JJ, Green LR, Aidley J, Bayliss CD. Phasome analysis of pathogenic and commensal Neisseria species expands the known repertoire of phase variable genes, and highlights common adaptive strategies. PLoS One 2018; 13:e0196675 [View Article] [PubMed]
    [Google Scholar]
  149. Warner DM, Shafer WM, Jerse AE. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 2008; 70:462–478 [View Article] [PubMed]
    [Google Scholar]
  150. Lee EH, Shafer WM. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 1999; 33:839–845 [View Article] [PubMed]
    [Google Scholar]
  151. Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA et al. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 2003; 71:5576–5582 [View Article] [PubMed]
    [Google Scholar]
  152. Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L et al. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat Commun 2020; 11:4126 [View Article] [PubMed]
    [Google Scholar]
  153. Spence SA, Clark VL, Isabella VM. The role of catalase in gonococcal resistance to peroxynitrite. Microbiology 2012; 158:560–570 [View Article] [PubMed]
    [Google Scholar]
  154. Rodas PI, Álamos-Musre AS, Álvarez FP, Escobar A, Tapia CV et al. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiol Lett 2016; 363:fnw181 [View Article] [PubMed]
    [Google Scholar]
  155. Starnino S, Leuzzi R, Ghisetti V, De Francesco MA, Cusini M et al. Molecular analysis of two novel Neisseria gonorrhoeae virulent components: the macrophage infectivity potentiator and the outer membrane protein A. New Microbiol 2010; 33:167–170 [PubMed]
    [Google Scholar]
  156. Leuzzi R, Serino L, Scarselli M, Savino S, Fontana MR et al. Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has a peptidyl-prolyl cis/trans isomerase (PPIase) activity and is involved in persistence in macrophages. Mol Microbiol 2005; 58:669–681 [View Article] [PubMed]
    [Google Scholar]
  157. Mavrogiorgos N, Mekasha S, Yang Y, Kelliher MA, Ingalls RR. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun 2014; 20:377–389 [View Article] [PubMed]
    [Google Scholar]
  158. Ragland SA, Schaub RE, Hackett KT, Dillard JP, Criss AK. Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cell Microbiol 2017; 19:e12662 [View Article] [PubMed]
    [Google Scholar]
  159. Copley CG. Neisseria gonorrhoeae: subdivision of auxogroups by genetic transformation. Genitourin Med 1987; 63:153–156 [View Article] [PubMed]
    [Google Scholar]
  160. Carifo K, Catlin BW. Neisseria gonorrhoeae auxotyping: differentiation of clinical isolates based on growth responses on chemically defined media. Appl Microbiol 1973; 26:223–230 [View Article] [PubMed]
    [Google Scholar]
  161. Jacques M, Turgeon PL, deRepentigny J, Mathieu LG. Antibiotic susceptibilities and auxotypes of Neisseria gonorrhoeae strains from women with pelvic inflammatory disease or uncomplicated infections. Antimicrob Agents Chemother 1983; 24:952–954 [View Article] [PubMed]
    [Google Scholar]
  162. Knapp JS, Holmes KK. Disseminated gonococcal infections caused by Neisseria gonorrhoeae with unique nutritional requirements. J Infect Dis 1975; 132:204–208 [View Article] [PubMed]
    [Google Scholar]
  163. Noble RC, Reyes RR, Parekh MC, Haley JV. Incidence of disseminated gonococcal infection correlated with the presence of AHU auxotype of Neisseria gonorrhoeae in a community. Sex Transm Dis 1984; 11:68–71 [View Article] [PubMed]
    [Google Scholar]
  164. Chen NH, Ong C-LY, O’Sullivan J, Ibranovic I, Davey K et al. Two distinct L-lactate dehydrogenases play a role in the survival of Neisseria gonorrhoeae in cervical epithelial cells. J Infect Dis 2020; 221:449–453 [View Article]
    [Google Scholar]
  165. Mickelsen PA, Sparling PF. Ability of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect Immun 1981; 33:555–564 [View Article] [PubMed]
    [Google Scholar]
  166. Harrison OB, Bennett JS, Derrick JP, Maiden MCJ, Bayliss CD. Distribution and diversity of the haemoglobin–haptoglobin iron-acquisition systems in pathogenic and non-pathogenic Neisseria. Microbiology 2013; 159:1920–1930 [View Article]
    [Google Scholar]
  167. Chen CJ, Elkins C, Sparling PF. Phase variation of hemoglobin utilization in Neisseria gonorrhoeae. Infect Immun 1998; 66:987–993 [View Article]
    [Google Scholar]
  168. Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MCJ. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 2014; 15:1138 [View Article] [PubMed]
    [Google Scholar]
  169. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  170. McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D et al. Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res 2017; 27:2072–2082 [View Article]
    [Google Scholar]
  171. Moreau MR, Massari P, Genco CA. The ironclad truth: how in vivo transcriptomics and in vitro mechanistic studies shape our understanding of Neisseria gonorrhoeae gene regulation during mucosal infection. Pathog Dis 2017; 75:ftx057 [View Article] [PubMed]
    [Google Scholar]
  172. Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA et al. Estradiol-treated female mice as surrogate hosts for Neisseria gonorrhoeae genital tract infections. Front Microbiol 2011; 2:107 [View Article] [PubMed]
    [Google Scholar]
  173. Sikora AE, Gomez C, Le Van A, Baarda BI, Darnell S et al. A novel gonorrhea vaccine composed of MetQ lipoprotein formulated with CpG shortens experimental murine infection. Vaccine 2020; 38:8175–8184 [View Article] [PubMed]
    [Google Scholar]
  174. Liu Y, Hammer LA, Liu W, Hobbs MM, Zielke RA et al. Experimental vaccine induces Th1-driven immune responses and resistance to Neisseria gonorrhoeae infection in a murine model. Mucosal Immunol 2017; 10:1594–1608 [View Article]
    [Google Scholar]
  175. Song W, Condron S, Mocca BT, Veit SJ, Hill D et al. Local and humoral immune responses against primary and repeat Neisseria gonorrhoeae genital tract infections of 17beta-estradiol-treated mice. Vaccine 2008; 26:5741–5751 [View Article] [PubMed]
    [Google Scholar]
  176. Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: drug resistance, mouse models, and vaccine development. Annu Rev Microbiol 2017; 71:665–686 [View Article] [PubMed]
    [Google Scholar]
  177. Liu Y, Islam EA, Jarvis GA, Gray-Owen SD, Russell MW. Neisseria gonorrhoeae selectively suppresses the development of Th1 and Th2 cells, and enhances Th17 cell responses, through TGF-β-dependent mechanisms. Mucosal Immunol 2012; 5:320–331 [View Article]
    [Google Scholar]
  178. Feinen B, Jerse AE, Gaffen SL, Russell MW. Critical role of Th17 responses in a murine model of Neisseria gonorrhoeae genital infection. Mucosal Immunol 2010; 3:312–321 [View Article]
    [Google Scholar]
  179. Seifert HS. Gc Insertional Mutants https://ngosociety.org/ngors-useful-links/
    [Google Scholar]
  180. Pinto M, Borges V, Isidro J, Rodrigues JC, Vieira L et al. Neisseria gonorrhoeae clustering to reveal major European whole-genome-sequencing-based genogroups in association with antimicrobial resistance. Microb Genom 2021; 7:000481 [View Article] [PubMed]
    [Google Scholar]
  181. Zollinger WD, Mandrell RE. Importance of complement source in bactericidal activity of human antibody and murine monoclonal antibody to meningococcal group B polysaccharide. Infect Immun 1983; 40:257–264 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001040
Loading
/content/journal/mgen/10.1099/mgen.0.001040
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error