1887

Abstract

remains one of the leading causes of infections worldwide and a common cause of bacteraemia. However, studies documenting the epidemiology of in South America using genomics are scarce. We hereby report on the largest genomic epidemiology study to date of both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) in South America, conducted by the StaphNET-SA network. We characterised 404 genomes recovered from a prospective observational study of bacteraemia in 58 hospitals from Argentina, Bolivia, Brazil, Paraguay and Uruguay between April and October 2019. We show that a minority of isolates are phenotypically multi-drug resistant (5.2%), but more than a quarter are resistant to macrolide–lincosamide–streptogramin B (MLSb). MSSA were more genetically diverse than MRSA. Lower rates of associated antimicrobial resistance in community-associated(CA)-MRSA versus hospital-associated (HA)-MRSA were found in association with three genotypes dominating the MRSA population: CC30-MRSA-IVc-, CC5-MRSA-IV- and CC8-MRSA-IVc--COMER+. These are historically from a CA origin, carry on average fewer antimicrobial resistance determinants, and often lack key virulence genes. Surprisingly, CC398-MSSA- related to the CC398 human-associated lineage is widely disseminated throughout the region, and is described here for the first time as the most prevalent MSSA lineage in South America. Moreover, CC398 strains carrying (largely responsible for the MLSb resistance rates of MSSA strains: inducible iMLSb phenotype) and (related to triclosan resistance) were recovered from both CA and HA origin. The frequency of MRSA and MSSA lineages differed between countries but the most prevalent genotypes are high-risk clones widely distributed in the South American region without a clear country-specific phylogeographical structure. Therefore, our findings underline the need for continuous genomic surveillance by regional networks such as StaphNET-SA. This article contains data hosted by Microreact.

Keyword(s): CC30 , CC398 , CC5 , CC8 , MRSA , MSSA , S. aureus and South America
Funding
This study was supported by the:
  • National Institute for Health and Care Research (Award Global Health Research Unit on genomic Surveillance of AMR (16_136_111))
    • Principle Award Recipient: DavidM. Aanensen
  • Agencia Nacional de Promoción Científica y Tecnológica (Award Préstamo BID PICT-2018-03068)
    • Principle Award Recipient: SabrinaDi Gregorio
  • Agencia Nacional de Promoción Científica y Tecnológica (Award Préstamo BID PICT-2016-1726 and PICT2020-03132)
    • Principle Award Recipient: MartaMollerach
  • Consejo Nacional de Investigaciones Científicas y Técnicas (Award PIP 2015 11220150100694CO)
    • Principle Award Recipient: MartaMollerach
  • Universidad de Buenos Aires (Award UBACYT 2018-2020-20020170100665BA)
    • Principle Award Recipient: MartaMollerach
  • Academy of Medical Sciences (Award GCRFNG100309)
    • Principle Award Recipient: MartaMollerach
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001020
2023-05-25
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/5/mgen001020.html?itemId=/content/journal/mgen/10.1099/mgen.0.001020&mimeType=html&fmt=ahah

References

  1. WHO Antimicrobial resistance. Global report on surveillance. n.d
  2. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022; 399:629–655 [View Article]
    [Google Scholar]
  3. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019; 17:203–218 [View Article] [PubMed]
    [Google Scholar]
  4. Bal AM, Coombs GW, Holden MTG, Lindsay JA, Nimmo GR et al. Genomic insights into the emergence and spread of international clones of healthcare-, community- and livestock-associated meticillin-resistant Staphylococcus aureus: blurring of the traditional definitions. J Glob Antimicrob Resist 2016; 6:95–101 [View Article] [PubMed]
    [Google Scholar]
  5. Coll F, Harrison EM, Toleman MS, Reuter S, Raven KE et al. Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Sci Transl Med 2017; 9:eaak9745 [View Article] [PubMed]
    [Google Scholar]
  6. Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA et al. Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. mBio 2016; 7:e00444-16 [View Article] [PubMed]
    [Google Scholar]
  7. Pan American Health Organization Magnitud y tendencias de la resistencia a los antimicrobianos en latinoamérica. RELAVRA 2014, 2015, 2016; 2020 https://www.paho.org/en/topics/antimicrobial-resistance
  8. Arias CA, Reyes J, Carvajal LP, Rincon S, Diaz L et al. A prospective cohort multicenter study of molecular epidemiology and phylogenomics of Staphylococcus aureus bacteremia in nine latin American countries. Antimicrob Agents Chemother 2017; 61:e00816-17 [View Article] [PubMed]
    [Google Scholar]
  9. Viana AS, Nunes Botelho AM, Moustafa AM, Boge CLK, Pires Ferreira AL et al. Multidrug-resistant methicillin-resistant Staphylococcus aureus associated with bacteremia and monocyte evasion, Rio de Janeiro, Brazil. Emerg Infect Dis 2021; 27:2825–2835 [View Article] [PubMed]
    [Google Scholar]
  10. Planet PJ, Diaz L, Kolokotronis S-O, Narechania A, Reyes J et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. J Infect Dis 2015; 212:1874–1882 [View Article] [PubMed]
    [Google Scholar]
  11. Kourtis AP, Hatfield K, Baggs J, Mu Y, See I et al. Vital signs: epidemiology and recent trends in Methicillin-resistant and in Methicillin-susceptible Staphylococcus aureus bloodstream infections- United States. MMWR Morb Mortal Wkly Rep 2019; 68:214–219 [View Article] [PubMed]
    [Google Scholar]
  12. Jackson KA, Gokhale RH, Nadle J, Ray SM, Dumyati G et al. Public health importance of invasive Methicillin-sensitive Staphylococcus aureus infections: surveillance in 8 US Counties, 2016. Clin Infect Dis 2020; 70:1021–1028 [View Article] [PubMed]
    [Google Scholar]
  13. Gagliotti C, Högberg LD, Billström H, Eckmanns T, Giske CG et al. Staphylococcus aureus bloodstream infections: diverging trends of meticillin-resistant and meticillin-susceptible isolates, EU/EEA, 2005 to 2018. Euro Surveill 2021; 26:2002094 [View Article] [PubMed]
    [Google Scholar]
  14. World Health Organization GLASS whole-genome sequencing for surveillance of antimicrobial resistance. Geneva:World Health Organization; 2020 https://apps.who.int/iris/handle/10665/334354
  15. Di Gregorio S, Haim MS, Vielma Vallenilla J, Cohen V, Rago L et al. Genomic epidemiology of CC30 Methicillin-resistant Staphylococcus aureus strains from Argentina reveals four major clades with distinctive genetic features. mSphere 2021; 6:e01297-20 [View Article] [PubMed]
    [Google Scholar]
  16. Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D et al. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010; 7:e1000215 [View Article] [PubMed]
    [Google Scholar]
  17. Grundmann H, Schouls LM, Aanensen DM, Pluister GN, Tami A et al. The dynamic changes of dominant clones of Staphylococcus aureus causing bloodstream infections in the European region: Results of a second structured survey. Eurosurveillance 2014; 19:20987 [View Article]
    [Google Scholar]
  18. CLSI Performance Standards for Antimicrobial Susceptibility Testing. 29th edition
    [Google Scholar]
  19. WHO n.d. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016-2017.
  20. Aanensen DM, Huntley DM, Menegazzo M, Powell CI, Spratt BG. EpiCollect+: linking smartphones to web applications for complex data collection projects. F1000Res 2014; 3:199 [View Article] [PubMed]
    [Google Scholar]
  21. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  22. Underwood A. GHRU (Genomic Surveillance of Antimicrobial Resistance) Retrospective 1 Bioinformatics Methods. protocols.io; 2020 https://www.protocols.io/view/ghru-genomic-surveillance-of-antimicrobial-resista-bpn6mmhe
  23. Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN et al. Combination of multiplex PCRs for Staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 2007; 51:264–274 [View Article] [PubMed]
    [Google Scholar]
  24. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article] [PubMed]
    [Google Scholar]
  25. Petit RA, Read TD. Staphylococcus aureus viewed from the perspective of 40,000+ genomes. PeerJ 2018; 6:e5261 [View Article] [PubMed]
    [Google Scholar]
  26. Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB et al. SCC mec finder, a web-based tool for typing of Staphylococcal Cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018; 3: [View Article]
    [Google Scholar]
  27. Bacterial antimicrobial resistance reference gene. (ID 313047) - BioProject - NCBI. n.d https://www.ncbi.nlm.nih.gov/bioproject/313047 accessed 30 September 2022 [PubMed]
  28. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 2017; 72:2764–2768 [View Article] [PubMed]
    [Google Scholar]
  29. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–8 [View Article] [PubMed]
    [Google Scholar]
  30. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  32. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  33. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics 2016; 2: [View Article]
    [Google Scholar]
  34. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  35. Tonkin-Hill G. pairsnp; 2022 https://github.com/gtonkinhill/pairsnp accessed 23 November 2022
  36. Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 2016; 11:e0163962 [View Article] [PubMed]
    [Google Scholar]
  37. Hu X, Yuan J, Shi Y, Lu J, Liu B et al. pIRS: Profile-based Illumina pair-end reads simulator. Bioinformatics 2012; 28:1533–1535 [View Article]
    [Google Scholar]
  38. remove_blocks_from_aln; 2021 https://github.com/sanger-pathogens/remove_blocks_from_aln accessed 20 October 2022
  39. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  40. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  41. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  42. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  43. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  44. R Core Team R: A language and environment for statistical computing; 2022 https://www.R-project.org/
  45. Torchiano M. Effsize - A package for efficient effect size computation. Epub ahead of print 2020 [View Article]
    [Google Scholar]
  46. Hsieh TC, Ma KH, Chao A, McInerny G. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 2016; 7:1451–1456 [View Article]
    [Google Scholar]
  47. Egea AL, Gagetti P, Lamberghini R, Faccone D, Lucero C et al. New patterns of methicillin-resistant Staphylococcus aureus (MRSA) clones, community-associated MRSA genotypes behave like healthcare-associated MRSA genotypes within hospitals, Argentina. Int J Med Microbiol 2014; 304:1086–1099 [View Article] [PubMed]
    [Google Scholar]
  48. Fernandez S, de Vedia L, Lopez Furst MJ, Gardella N, Di Gregorio S et al. Methicillin-resistant Staphylococcus aureus ST30-SCCmec IVc clone as the major cause of community-acquired invasive infections in Argentina. Infect Genet Evol 2013; 14:401–405 [View Article] [PubMed]
    [Google Scholar]
  49. Rodriguez F, Salinas C, Fernandez S, Haim S, Mollerach M et al. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) clones from Paraguayan children. J Infect Dev Ctries 2020; 14:290–297 [View Article] [PubMed]
    [Google Scholar]
  50. Nahmias A, Sakurai N, Blumberg R, Doe Ge A, Sulzer C. The Staphylococcus "80/81 complex: epidemiological and laboratory observations. J Infect Dis 1961; 109:211–222 [View Article] [PubMed]
    [Google Scholar]
  51. Johnson AP, Aucken HM, Cavendish S, Ganner M, Wale MC et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J Antimicrob Chemother 2001; 48:143–144 [View Article] [PubMed]
    [Google Scholar]
  52. Collignon P, Gosbell I, Vickery A, Nimmo G, Stylianopoulos T et al. Community-acquired meticillin-resistant Staphylococcus aureus in Australia. The Lancet 1998; 352:145–146 [View Article]
    [Google Scholar]
  53. DeLeo FR, Kennedy AD, Chen L, Bubeck Wardenburg J, Kobayashi SD et al. Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci 2011; 108:18091–18096 [View Article] [PubMed]
    [Google Scholar]
  54. Challagundla L, Reyes J, Rafiqullah I, Sordelli DO, Echaniz-Aviles G et al. Phylogenomic classification and the evolution of clonal complex 5 methicillin-resistant Staphylococcus aureus in the Western hemisphere. Front Microbiol 2018; 9:1901 [View Article] [PubMed]
    [Google Scholar]
  55. Rodríguez-Noriega E, Seas C. The changing pattern of methicillin-resistant Staphylococcus aureus clones in Latin America: implications for clinical practice in the region. Braz J Infect Dis 2010; 14 Suppl 2:S87–96 [View Article] [PubMed]
    [Google Scholar]
  56. Mayor L, Ortellado J, Menacho C, Lird G, Courtier C et al. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates collected in Asunción, Paraguay. J Clin Microbiol 2007; 45:2298–2300 [View Article] [PubMed]
    [Google Scholar]
  57. Becker AP, Santos O, Castrucci FM, Dias C, D’Azevedo PA. First report of methicillin-resistant Staphylococcus aureus ordobes/Chilean clone involved in nosocomial infections in Brazil. Epidemiol Infect 2012; 140:1372–1375 [View Article] [PubMed]
    [Google Scholar]
  58. de Carvalho SP, de Almeida JB, Andrade Y, Silva L da, Chamon RC et al. Molecular characteristics of methicillin-resistant Staphylococcus aureus isolates from hospital and community environments in northeastern Brazil. Braz J Infect Dis 2019; 23:134–138 [View Article] [PubMed]
    [Google Scholar]
  59. Bowers JR, Driebe EM, Albrecht V, McDougal LK, Granade M et al. Improved subtyping of Staphylococcus aureus clonal complex 8 strains based on whole-genome phylogenetic analysis. mSphere 2018; 3:e00464-17 [View Article] [PubMed]
    [Google Scholar]
  60. Frisch MB, Castillo-Ramírez S, Petit RA, Farley MM, Ray SM et al. Invasive methicillin-resistant Staphylococcus aureus USA500 strains from the U.S. Emerging infections program constitute three geographically distinct lineages. mSphere 2018; 3:e00571–17 [View Article]
    [Google Scholar]
  61. Laumay F, Benchetrit H, Corvaglia A-R, van der Mee-Marquet N, François P. The Staphylococcus aureus CC398 Lineage: an evolution driven by the acquisition of prophages and other mobile genetic elements. Genes 2021; 12:1752 [View Article] [PubMed]
    [Google Scholar]
  62. Bouiller K, Bertrand X, Hocquet D, Chirouze C. Human infection of methicillin-susceptible Staphylococcus aureus CC398: a review. Microorganisms 2020; 8:1737 [View Article] [PubMed]
    [Google Scholar]
  63. Ward MJ, Gibbons CL, McAdam PR, van Bunnik BAD, Girvan EK et al. Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol 2014; 80:7275–7282 [View Article] [PubMed]
    [Google Scholar]
  64. Uhlemann A-C, McAdam PR, Sullivan SB, Knox JR, Khiabanian H et al. Evolutionary dynamics of pandemic methicillin-sensitive Staphylococcus aureus ST398 and its international spread via routes of human migration. mBio 2017; 8:e01375-16 [View Article] [PubMed]
    [Google Scholar]
  65. Uhlemann A-C, Porcella SF, Trivedi S, Sullivan SB, Hafer C et al. Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. mBio 2012; 3:e00027–12
    [Google Scholar]
  66. Argudín MA, Deplano A, Vandendriessche S, Dodémont M, Nonhoff C et al. CC398 Staphylococcus aureus subpopulations in Belgian patients. Eur J Clin Microbiol Infect Dis 2018; 37:911–916 [View Article] [PubMed]
    [Google Scholar]
  67. Gómez-Sanz E, Kadlec K, Fessler AT, Billerbeck C, Zarazaga M et al. Analysis of a novel erm(T)- and cadDX-carrying plasmid from methicillin-susceptible Staphylococcus aureus ST398-t571 of human origin. J Antimicrob Chemother 2013; 68:471–473 [View Article] [PubMed]
    [Google Scholar]
  68. Vandendriessche S, Kadlec K, Schwarz S, Denis O. Methicillin-susceptible Staphylococcus aureus ST398-t571 harbouring the macrolide-lincosamide-streptogramin B resistance gene erm(T) in Belgian hospitals. J Antimicrob Chemother 2011; 66:2455–2459 [View Article] [PubMed]
    [Google Scholar]
  69. Furi L, Haigh R, Al Jabri ZJH, Morrissey I, Ou H-Y et al. Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes. Front Microbiol 2016; 7:1008 [View Article] [PubMed]
    [Google Scholar]
  70. Diekema DJ, Hsueh P-R, Mendes RE, Pfaller MA, Rolston KV et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2019; 63:e00355-19 [View Article] [PubMed]
    [Google Scholar]
  71. Gutiérrez LA. PAHO/WHO data - 3. resistance percentages for selected pathogens | PAHO/WHO. Pan American Health Organization / World Health Organization 2015
    [Google Scholar]
  72. Menocal A, Lucero C, Gagetti P, Pasteran F, Tuduri E et al. Staphylococcus aureus: Perfil de sensibilidad a los antimicrobianos 2018-2021. In Programa Nacional de Vigilancia de la Resistencia a los Antimicrobianos, WHONET vol 1 Argentina: XXII Congr SADI 2022; 2022.
    [Google Scholar]
  73. Rolo J, Miragaia M, Turlej-Rogacka A, Empel J, Bouchami O et al. High genetic diversity among community-associated Staphylococcus aureus in Europe: results from a multicenter study. PLoS One 2012; 7:e34768 [View Article] [PubMed]
    [Google Scholar]
  74. Sapri HF, Ismail MAH, Sani NAM, Noordin A, Tan TL et al. Molecular surveillance of methicillin-susceptible Staphylococcus aureus (MSSA) isolated over a one-year period from a Malaysian Teaching Hospital. Germs 2020; 10:104–111 [View Article] [PubMed]
    [Google Scholar]
  75. Ghasemzadeh-Moghaddam H, Ghaznavi-Rad E, Sekawi Z, Yun-Khoon L, Aziz MN et al. Methicillin-susceptible Staphylococcus aureus from clinical and community sources are genetically diverse. Int J Med Microbiol 2011; 301:347–353 [View Article] [PubMed]
    [Google Scholar]
  76. Tayebi Z, Goudarzi H, Dadashi M, Goudarzi M. Genotype distribution of methicillin-susceptible Staphylococcus aureus clinical isolates in Iran: high multiresistant clonal complex 8. BMC Res Notes 2020; 13:277 [View Article] [PubMed]
    [Google Scholar]
  77. Chen X, Wang W-K, Han L-Z, Liu Y, Zhang H et al. Epidemiological and genetic diversity of Staphylococcus aureus causing bloodstream infection in Shanghai, 2009-2011. PLoS One 2013; 8:e72811 [View Article]
    [Google Scholar]
  78. Ruimy R, Angebault C, Djossou F, Dupont C, Epelboin L et al. Are host genetics the predominant determinant of persistent nasal Staphylococcus aureus carriage in humans?. J Infect Dis 2010; 202:924–934 [View Article]
    [Google Scholar]
  79. Bartoloni A, Riccobono E, Magnelli D, Villagran AL, Di Maggio T et al. Methicillin-resistant Staphylococcus aureus in hospitalized patients from the Bolivian Chaco. Int J Infect Dis 2015; 30:156–160 [View Article] [PubMed]
    [Google Scholar]
  80. André ED, Pereira RFA, Snyder RE, Machado TS, André LSP et al. Emergence of methicillin-resistant Staphylococcus aureus from clonal complex 398 with no livestock association in Brazil. Mem Inst Oswaldo Cruz 2017; 112:647–649 [View Article] [PubMed]
    [Google Scholar]
  81. Jiménez JN, Vélez LA, Mediavilla JR, Ocampo AM, Vanegas JM et al. Livestock-associated Methicillin-Susceptible Staphylococcus aureus ST398 Infection in Woman, Colombia. Emerg Infect Dis 2011; 17:1970–1971 [View Article]
    [Google Scholar]
  82. Zurita J, Barba P, Ortega-Paredes D, Mora M, Rivadeneira S. Local circulating clones of Staphylococcus aureus in Ecuador. Braz J Infect Dis 2016; 20:525–533 [View Article] [PubMed]
    [Google Scholar]
  83. Miller WR, Seas C, Carvajal LP, Diaz L, Echeverri AM et al. The Cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect Dis 2018; 5:ofy123 [View Article] [PubMed]
    [Google Scholar]
  84. López Furst MJ. Grupo de estudio de infecciones por staphylococcus aureus de la comunidad - sociedad argentina de infectología (SADI). [community-associated methicillin-resistant Staphylococcus aureus: the emergency of a pathogen]. Medicina 2011; 71:585–586
    [Google Scholar]
  85. Pardo L, Vola M, Macedo-Viñas M, Machado V, Cuello D et al. Community-associated methicillin-resistant Staphylococcus aureus in children treated in Uruguay. J Infect Dev Ctries 2013; 7:10–16 [View Article] [PubMed]
    [Google Scholar]
  86. Mercosur MERCOSUR RES GMC No 35/20. Reglamento técnico MERCOSUR sobre lista de sustancias de accióN conservadora permitidas para productos de higiene personal, cosméticos y perfumes (derogacióN de la resolucióN GMC No 07/11); 2020 https://normas.mercosur.int/simfiles/normativas/82669_RES_035-2020_ES_RTM%20Lista%20Sust%20Accion%20Conservadora.pdf
  87. Carvajal LP, Rincon S, Echeverri AM, Porras J, Rios R et al. Novel insights into the classification of Staphylococcal β-Lactamases in relation to the cefazolin inoculum effect. Antimicrob Agents Chemother 2020; 64:e02511-19 [View Article] [PubMed]
    [Google Scholar]
  88. Rincon S, Carvajal LP, Gomez-Villegas SI, Echeverri AM, Rios R et al. A test for the rapid detection of the cefazolin inoculum effect in methicillin-susceptible Staphylococcus aureus. J Clin Microbiol 2021; 59:e01938-20 [View Article] [PubMed]
    [Google Scholar]
  89. López Furst MJ, de Vedia L, Fernández S, Gardella N, Ganaha MC et al. Prospective multicenter study of community-associated skin and skin structure infections due to methicillin-resistant Staphylococcus aureus in Buenos Aires, Argentina. PLoS One 2013; 8:e78303 [View Article] [PubMed]
    [Google Scholar]
  90. Cavalcante FS, Saintive S, Carvalho Ferreira D, Rocha Silva AB, Guimarães LC et al. Methicillin-resistant Staphylococcus aureus from infected skin lesions present several virulence genes and are associated with the CC30 in Brazilian children with atopic dermatitis. Virulence 2021; 12:260–269 [View Article] [PubMed]
    [Google Scholar]
  91. Pardo L, Machado V, Mollerach M, Mota MI, Tuchscherr LPN et al. Characteristics of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains isolated from skin and soft-tissue infections in Uruguay. Int J Microbiol 2009; 2009:472126 [View Article] [PubMed]
    [Google Scholar]
  92. Ma XX, Galiana A, Pedreira W, Mowszowicz M, Christophersen I et al. Community-acquired Methicillin-resistant Staphylococcus aureus, Uruguay. Emerg Infect Dis 2005; 11:973–976 [View Article]
    [Google Scholar]
  93. Ribeiro A, Dias C, Silva-Carvalho MC, Berquó L, Ferreira FA et al. First report of infection with community-acquired methicillin-resistant Staphylococcus aureus in South America. J Clin Microbiol 2005; 43:1985–1988 [View Article] [PubMed]
    [Google Scholar]
  94. Prunier A-L, Leclercq R. Role of mutS and mutL genes in hypermutability and recombination in Staphylococcus aureus. J Bacteriol 2005; 187:3455–3464 [View Article] [PubMed]
    [Google Scholar]
  95. Wang S, Wu C, Shen J, Wu Y, Wang Y. Hypermutable Staphylococcus aureus strains present at high frequency in subclinical bovine mastitis isolates are associated with the development of antibiotic resistance. Vet Microbiol 2013; 165:410–415 [View Article] [PubMed]
    [Google Scholar]
  96. Fitzgerald JR, Reid SD, Ruotsalainen E, Tripp TJ, Liu M et al. Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the Staphylococcal exotoxin-like family of proteins. Infect Immun 2003; 71:2827–2838 [View Article] [PubMed]
    [Google Scholar]
  97. Von Dach E, Diene SM, Fankhauser C, Schrenzel J, Harbarth S et al. Comparative genomics of community-associated methicillin-resistant Staphylococcus aureus shows the emergence of clone ST8-USA300 in Geneva, Switzerland. J Infect Dis 2016; 213:1370–1379 [View Article] [PubMed]
    [Google Scholar]
  98. Kaku N, Sasaki D, Ota K, Miyazaki T, Yanagihara K. Changing molecular epidemiology and characteristics of MRSA isolated from bloodstream infections: nationwide surveillance in Japan in 2019. J Antimicrob Chemother 2022; 77:2130–2141 [View Article] [PubMed]
    [Google Scholar]
  99. Lee C-Y, Fang Y-P, Chang Y-F, Wu T-H, Yang Y-Y et al. Comparison of molecular epidemiology of bloodstream methicillin-resistant Staphylococcus aureus isolates between a new and an old hospital in central Taiwan. Int J Infect Dis 2019; 79:162–168 [View Article] [PubMed]
    [Google Scholar]
  100. Nakaminami H, Takadama S, Ito A, Hasegawa M, Jono C et al. Characterization of SCCmec type IV methicillin-resistant Staphylococcus aureus clones increased in Japanese hospitals. J Med Microbiol 2018; 67:769–774 [View Article]
    [Google Scholar]
  101. Martínez JRW, Diaz L, Rojas M, Rios R, Hanson B et al. 556. Phylogenomic epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) Chilean-cordobes clone in Latin America. Open Forum Infect Dis 2019; 6:S263–S264 [View Article]
    [Google Scholar]
  102. Caiaffa-Filho HH, Trindade PA, Gabriela da Cunha P, Alencar CS, Prado GVB et al. Methicillin-resistant Staphylococcus aureus carrying SCCmec type II was more frequent than the Brazilian endemic clone as a cause of nosocomial bacteremia. Diagn Microbiol Infect Dis 2013; 76:518–520 [View Article] [PubMed]
    [Google Scholar]
  103. Silva DNS, Beltrame CO, Botelho AMN, Martini CL, Esteves MAC et al. Anti-restriction gene homologs are highly represented in Methicillin-resistant and multidrug-resistant Staphylococcus aureus ST239 and ST398: implications for resistance gene acquisitions. Antibiotics 2022; 11:1217 [View Article] [PubMed]
    [Google Scholar]
  104. Tuchscherr L, Löffler B, Buzzola FR, Sordelli DO. Staphylococcus aureus adaptation to the host and persistence: role of loss of capsular polysaccharide expression. Future Microbiol 2010; 5:1823–1832 [View Article] [PubMed]
    [Google Scholar]
  105. Das S, Lindemann C, Young BC, Muller J, Österreich B et al. Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proc Natl Acad Sci 2016; 113:E3101–10 [View Article] [PubMed]
    [Google Scholar]
  106. Smeltzer MS. Staphylococcus aureus pathogenesis: the importance of reduced cytotoxicity. Trends Microbiol 2016; 24:681–682 [View Article] [PubMed]
    [Google Scholar]
  107. Côrtes MF, Botelho AMN, Bandeira PT, Mouton W, Badiou C et al. Reductive evolution of virulence repertoire to drive the divergence between community- and hospital-associated methicillin-resistant Staphylococcus aureus of the ST1 lineage. Virulence 2021; 12:951–967 [View Article] [PubMed]
    [Google Scholar]
  108. Giulieri SG, Guérillot R, Duchene S, Hachani A, Daniel D et al. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. Elife 2022; 11:e77195 [View Article] [PubMed]
    [Google Scholar]
  109. Ikuta KS, Swetschinski LR, Robles Aguilar G, Sharara F, Mestrovic T. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022; 400:2221–2248 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001020
Loading
/content/journal/mgen/10.1099/mgen.0.001020
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Supplementary material 6

EXCEL

Supplementary material 7

EXCEL

Supplementary material 8

EXCEL

Supplementary material 9

EXCEL

Supplementary material 10

EXCEL

Supplementary material 11

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error