1887

Abstract

LldR is a lactate-responsive transcription factor (TF) that transcriptionally regulates the operon consisting of lactate permease and lactate dehydrogenase. The operon facilitates the utilisation of lactic acid in bacteria. However, the role of LldR in whole genomic transcriptional regulation, and the mechanism involved in adaptation to lactate remains unclear. We used genomic SELEX (gSELEX) to comprehensively analyse the genomic regulatory network of LldR to understand the overall regulatory mechanism of lactic acid adaptation of the model intestinal bacterium . In addition to the involvement of the operon in utilising lactate as a carbon source, genes related to glutamate-dependent acid resistance and altering the composition of membrane lipids were identified as novel targets of LldR. A series of and regulatory analyses led to the identification of LldR as an activator of these genes. Furthermore, the results of lactic acid tolerance tests and co-culture experiments with lactic acid bacteria suggested that LldR plays a significant role in adapting to the acid stress induced by lactic acid. Therefore, we propose that LldR is an -/-lactate sensing TF for utilising lactate as a carbon source and for resistance to lactate-induced acid stress in intestinal bacteria.

Funding
This study was supported by the:
  • Sumitomo Foundation
    • Principle Award Recipient: TomohiroShimada
  • Lotte Foundation
    • Principle Award Recipient: TomohiroShimada
  • Japan Society for the Promotion of Science (Award 22K06184)
    • Principle Award Recipient: TomohiroShimada
  • Japan Society for the Promotion of Science (Award 19K06618)
    • Principle Award Recipient: TomohiroShimada
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001015
2023-05-23
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/5/mgen001015.html?itemId=/content/journal/mgen/10.1099/mgen.0.001015&mimeType=html&fmt=ahah

References

  1. Dong JM, Taylor JS, Latour DJ, Iuchi S, Lin ECC. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. J Bacteriol 1993; 175:6671–6678 [View Article] [PubMed]
    [Google Scholar]
  2. Gennis RB, Stewart V. Respiration. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB et al. eds Escherichia Coli and Salmonella: Cellular and Molecular Biology Washington, D. C: American Society for Microbiology; 1996 pp 217–261
    [Google Scholar]
  3. Núñez MF, Teresa Pellicer M, Badı A J, Aguilar J, Baldomà L. The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. Microbiology 2001; 147:1069–1077 [View Article] [PubMed]
    [Google Scholar]
  4. Núñez MF, Kwon O, Wilson TH, Aguilar J, Baldoma L et al. Transport of L-Lactate, D-Lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli. Biochem Biophys Res Commun 2002; 290:824–829 [View Article] [PubMed]
    [Google Scholar]
  5. Aguilera L, Campos E, Giménez R, Badía J, Aguilar J et al. Dual role of LldR in regulation of the lldPRD operon, involved in L-lactate metabolism in Escherichia coli. J Bacteriol 2008; 190:2997–3005 [View Article] [PubMed]
    [Google Scholar]
  6. Lynch AS, Lin ECC. Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: characterization of DNA binding at target promoters. J Bacteriol 1996; 178:6238–6249 [View Article] [PubMed]
    [Google Scholar]
  7. Liu X, De Wulf P. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem 2004; 279:12588–12597 [View Article] [PubMed]
    [Google Scholar]
  8. Anzai T, Imamura S, Ishihama A, Shimada T. Expanded roles of pyruvate-sensing PdhR in transcription regulation of the Escherichia coli K-12 genome: fatty acid catabolism and cell motility. Microb Genom 2020; 6:mgen000442 [View Article] [PubMed]
    [Google Scholar]
  9. Salgado H, Gama-Castro S, Martínez-Antonio A, Díaz-Peredo E, Sánchez-Solano F et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 2004; 32:D303–6 [View Article] [PubMed]
    [Google Scholar]
  10. Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L et al. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 2013; 41:D203–13 [View Article] [PubMed]
    [Google Scholar]
  11. Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative review of the responses of Listeria monocytogenes and Escherichia coli to low pH stress. Genes 2020; 11:1330 [View Article]
    [Google Scholar]
  12. Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K et al. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 2000; 66:2001–2005 [View Article] [PubMed]
    [Google Scholar]
  13. Boot IR, Cash P, O’Byrne C. Sensing and adapting to acid stress. Antonie van Leeuwenhoek 2002; 81:33–42 [View Article] [PubMed]
    [Google Scholar]
  14. Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 1998; 180:767–772 [View Article] [PubMed]
    [Google Scholar]
  15. King T, Lucchini S, Hinton JCD, Gobius K. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl Environ Microbiol 2010; 76:6514–6528 [View Article] [PubMed]
    [Google Scholar]
  16. Rolfe RD. The role of probiotic cultures in the control of gastrointestinal health. J Nutr 2000; 130:396S–402S [View Article] [PubMed]
    [Google Scholar]
  17. Juffrie M. Fructooligosaccharide and Diarrhea. Bioscience Microflora 2002; 21:31–34 [View Article]
    [Google Scholar]
  18. Mitsuoka T. Significance of dietary modulation of intestinal flora and intestinal environment. Bioscience Microflora 2000; 19:15–25 [View Article]
    [Google Scholar]
  19. Mizuno K, Mizuno M, Yamauchi M, Takemura AJ, Medrano Romero V et al. Adjacent-possible ecological niche: growth of Lactobacillus species co-cultured with Escherichia coli in a synthetic minimal medium. Sci Rep 2017; 7:12880 [View Article] [PubMed]
    [Google Scholar]
  20. Wang J, Zeng Y, Wang S, Liu H, Zhang D et al. Swine-derived probiotic Lactobacillus plantarum inhibits growth and adhesion of enterotoxigenic Escherichia coli and mediates host defense. Front Microbiol 2018; 9:1364 [View Article] [PubMed]
    [Google Scholar]
  21. Foster JW. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2004; 2:898–907 [View Article] [PubMed]
    [Google Scholar]
  22. Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K et al. Coordinated regulation of acid resistance in Escherichia coli. BMC Syst Biol 2017; 11:1 [View Article] [PubMed]
    [Google Scholar]
  23. Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H et al. Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem 1991; 266:20922–20927 [View Article] [PubMed]
    [Google Scholar]
  24. Li Z, Jiang B, Zhang X, Yang Y, Hardwidge PR et al. The role of bacterial cell envelope structures in acid stress resistance in E. coli. Appl Microbiol Biotechnol 2020; 104:2911–2921 [View Article] [PubMed]
    [Google Scholar]
  25. Shimada T, Fujita N, Maeda M, Ishihama A. Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells 2005; 10:907–918 [View Article] [PubMed]
    [Google Scholar]
  26. Shimada T, Ogasawara H, Ishihama A. Genomic SELEX screening of regulatory targets of Escherichia coli transcription factors. Methods Mol Biol 2018; 1837:49–69 [View Article] [PubMed]
    [Google Scholar]
  27. Ishihama A, Shimada T. Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 2021; 45:fuab032 [View Article] [PubMed]
    [Google Scholar]
  28. Shimada T, Bridier A, Briandet R, Ishihama A. Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 2011; 82:378–397 [View Article] [PubMed]
    [Google Scholar]
  29. Shimada T, Fujita N, Yamamoto K, Ishihama A. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 2011; 6:e20081 [View Article] [PubMed]
    [Google Scholar]
  30. Shimada T, Yamamoto K, Ishihama A. Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 2011; 193:649–659 [View Article] [PubMed]
    [Google Scholar]
  31. Shimada T, Kori A, Ishihama A. Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli. FEMS Microbiol Lett 2013; 344:159–165 [View Article] [PubMed]
    [Google Scholar]
  32. Shimada T, Shimada K, Matsui M, Kitai Y, Igarashi J et al. Roles of cell division control factor SdiA: recognition of quorum sensing signals and modulation of transcription regulation targets. Genes Cells 2014; 19:405–418 [View Article] [PubMed]
    [Google Scholar]
  33. Shimada T, Saito N, Maeda M, Tanaka K, Ishihama A. Expanded roles of leucine-responsive regulatory protein in transcription regulation of the Escherichia coli genome: genomic SELEX screening of the regulation targets. Microb Genom 2015; 1:e000001 [View Article] [PubMed]
    [Google Scholar]
  34. Shimada T, Takada H, Yamamoto K, Ishihama A. Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes Cells 2015; 20:915–931 [View Article] [PubMed]
    [Google Scholar]
  35. Shimada T, Yokoyama Y, Anzai T, Yamamoto K, Ishihama A. Regulatory role of PlaR (YiaJ) for plant utilization in Escherichia coli K-12. Sci Rep 2019; 9:20415 [View Article] [PubMed]
    [Google Scholar]
  36. Shimada T, Ogasawara H, Kobayashi I, Kobayashi N, Ishihama A. Single-target regulators constitute the minority group of transcription factors in Escherichia coli K-12. Front Microbiol 2021; 12:697803 [View Article] [PubMed]
    [Google Scholar]
  37. Jishage M, Ishihama A. Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol 1997; 179:959–963 [View Article] [PubMed]
    [Google Scholar]
  38. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 2000; 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
  39. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006 [View Article] [PubMed]
    [Google Scholar]
  40. Miller JH. Experiments in molecular genetics Cold Spring Harbor Laboratory Press; 1972 New York, NY:
    [Google Scholar]
  41. Shimada T, Ishihama A, Busby SJW, Grainger DC. The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res 2008; 36:3950–3955 [View Article] [PubMed]
    [Google Scholar]
  42. Bailey TL, Boden M, Buske FA, Frith M, Grant CE et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009; 37:W202–8 [View Article] [PubMed]
    [Google Scholar]
  43. Shimada T, Furuhata S, Ishihama A. Whole set of constitutive promoters for RpoN sigma factor and the regulatory role of its enhancer protein NtrC in Escherichia coli K-12. Microb Genom 2021; 7:000653 [View Article] [PubMed]
    [Google Scholar]
  44. Simons RW, Houman F, Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 1987; 53:85–96 [View Article] [PubMed]
    [Google Scholar]
  45. Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 2010; 34:628–645 [View Article] [PubMed]
    [Google Scholar]
  46. Ishihama A. Prokaryotic genome regulation: a revolutionary paradigm. Proc Jpn Acad Ser B Phys Biol Sci 2012; 88:485–508 [View Article] [PubMed]
    [Google Scholar]
  47. Ma Z, Richard H, Tucker DL, Conway T, Foster JW. Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 2002; 184:7001–7012 [View Article] [PubMed]
    [Google Scholar]
  48. Tucker DL, Tucker N, Ma Z, Foster JW, Miranda RL et al. Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 2003; 185:3190–3201 [View Article] [PubMed]
    [Google Scholar]
  49. Opdyke JA, Kang J-G, Storz G. GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 2004; 186:6698–6705 [View Article] [PubMed]
    [Google Scholar]
  50. Opdyke JA, Fozo EM, Hemm MR, Storz G. RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. J Mol Biol 2011; 406:29–43 [View Article] [PubMed]
    [Google Scholar]
  51. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL. A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 1996; 178:3978–3981 [View Article] [PubMed]
    [Google Scholar]
  52. De Biase D, Tramonti A, Bossa F, Visca P. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 1999; 32:1198–1211 [View Article] [PubMed]
    [Google Scholar]
  53. Ishihama A, Shimada T, Yamazaki Y. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res 2016; 44:2058–2074 [View Article] [PubMed]
    [Google Scholar]
  54. Shimada T, Ogasawara H, Ishihama A. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12. Nucleic Acids Res 2018; 46:3921–3936 [View Article] [PubMed]
    [Google Scholar]
  55. Lord JM. Glycolate oxidoreductase in Escherichia coli. Biochim Biophys Acta 1972; 267:227–237 [View Article] [PubMed]
    [Google Scholar]
  56. Hernández A, Cooke DT, Clarkson DT. In vivo activation of plasma membrane H(+)-ATPase hydrolytic activity by complex lipid-bound unsaturated fatty acids in Ustilago maydis. Eur J Biochem 2002; 269:1006–1011 [View Article] [PubMed]
    [Google Scholar]
  57. Qi Y, Liu H, Yu J, Chen X, Liu L. Med15B regulates acid stress response and tolerance in Candida glabrata by altering membrane lipid composition. Appl Environ Microbiol 2017; 83:e01128-17 [View Article] [PubMed]
    [Google Scholar]
  58. Vorachek-Warren MK, Carty SM, Lin S, Cotter RJ, Raetz CRH. An Escherichia coli mutant lacking the cold shock-induced palmitoleoyltransferase of lipid a biosynthesis: absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C. J Biol Chem 2002; 277:14186–14193 [View Article] [PubMed]
    [Google Scholar]
  59. Chang YY, Cronan JE Jr. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 1999; 33:249–259 [View Article] [PubMed]
    [Google Scholar]
  60. Hammes WP, Hertel C. Lactobacillus. In Bergey’s Manual of Systematics of Archaea and Bacteria Wiley; 2015
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001015
Loading
/content/journal/mgen/10.1099/mgen.0.001015
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error