1887

Abstract

Malarial parasites exhibit extensive genomic plasticity, which induces the antigen diversification and the development of antimalarial drug resistance. Only a few studies have examined the genome maintenance mechanisms of parasites. The study aimed at elucidating the impact of a mutation in a DNA mismatch repair gene on genome stability by maintaining the mutant and wild-type parasites through serial cultures for approximately 400 days and analysing the subsequent spontaneous mutations. A P513T mutant of the DNA mismatch repair protein PfMSH2-1 from 3D7 was created. The mutation did not influence the base substitution rate but significantly increased the insertion/deletion (indel) mutation rate in short tandem repeats (STRs) and minisatellite loci. STR mutability was affected by allele size, genomic category and certain repeat motifs. In the mutants, significant telomere healing and homologous recombination at chromosomal ends caused extensive gene loss and generation of chimeric genes, resulting in large-scale chromosomal alteration. Additionally, the mutant showed increased tolerance to N-methyl-Nʹ-nitro-N-nitrosoguanidine, suggesting that PfMSH2-1 was involved in recognizing DNA methylation damage. This work provides valuable insights into the role of PfMSH2-1 in genome stability and demonstrates that the genomic destabilization caused by its dysfunction may lead to antigen diversification.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001003
2023-04-21
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/4/mgen001003.html?itemId=/content/journal/mgen/10.1099/mgen.0.001003&mimeType=html&fmt=ahah

References

  1. WHO World malaria report 2021. World Health Organization; 2021
  2. Gardner MJ, Hall N, Fung E, White O, Berriman M et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002; 419:498–511 [View Article] [PubMed]
    [Google Scholar]
  3. Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314–328 [View Article] [PubMed]
    [Google Scholar]
  4. Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol 2018; 16:156–170 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang X, Alexander N, Leonardi I, Mason C, Kirkman LA et al. Rapid antigen diversification through mitotic recombination in the human malaria parasite Plasmodium falciparum. PLoS Biol 2019; 17:e3000271 [View Article] [PubMed]
    [Google Scholar]
  6. Frank M, Kirkman L, Costantini D, Sanyal S, Lavazec C et al. Frequent recombination events generate diversity within the multi-copy variant antigen gene families of Plasmodium falciparum. Int J Parasitol 2008; 38:1099–1109 [View Article] [PubMed]
    [Google Scholar]
  7. Freitas-Junior LH, Bottius E, Pirrit LA, Deitsch KW, Scheidig C et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 2000; 407:1018–1022 [View Article] [PubMed]
    [Google Scholar]
  8. Bopp SER, Manary MJ, Bright AT, Johnston GL, Dharia NV et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet 2013; 9:e1003293 [View Article] [PubMed]
    [Google Scholar]
  9. McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 2008; 18:148–161 [View Article] [PubMed]
    [Google Scholar]
  10. Honma H, Hirai M, Nakamura S, Hakimi H, Kawazu S-I et al. Generation of rodent malaria parasites with a high mutation rate by destructing proofreading activity of DNA polymerase δ. DNA Res 2014; 21:439–446 [View Article] [PubMed]
    [Google Scholar]
  11. Honma H, Niikura M, Kobayashi F, Horii T, Mita T et al. Mutation tendency of mutator Plasmodium berghei with proofreading-deficient DNA polymerase δ. Sci Rep 2016; 6:36971 [View Article] [PubMed]
    [Google Scholar]
  12. Yoo E, Schulze CJ, Stokes BH, Onguka O, Yeo T et al. The antimalarial natural product palinipostin A identifies essential α/β serine hydrolases involved in lipid metabolism in P. falciparum parasites. Cell Chem Biol 2020; 27:143–157 [View Article] [PubMed]
    [Google Scholar]
  13. LeClerc JE, Li B, Payne WL, Cebula TA. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 1996; 274:1208–1211 [View Article] [PubMed]
    [Google Scholar]
  14. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000; 288:1251–1254 [View Article] [PubMed]
    [Google Scholar]
  15. Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun 2016; 7:11128 [View Article] [PubMed]
    [Google Scholar]
  16. Dellière S, Healey K, Gits-Muselli M, Carrara B, Barbaro A et al. Fluconazole and echinocandin resistance of Candida glabrata correlates better with antifungal drug exposure rather than with MSH2 mutator genotype in a French cohort of patients harboring low rates of resistance. Front Microbiol 2016; 7:2038 [View Article] [PubMed]
    [Google Scholar]
  17. Lee AH, Fidock DA. Evidence of a mild mutator phenotype in Cambodian Plasmodium falciparum malaria parasites. PLoS One 2016; 11:e0154166 [View Article] [PubMed]
    [Google Scholar]
  18. Trotta RF, Brown ML, Terrell JC, Geyer JA. Defective DNA repair as a potential mechanism for the rapid development of drug resistance in Plasmodium falciparum. Biochemistry 2004; 43:4885–4891 [View Article] [PubMed]
    [Google Scholar]
  19. Castellini MA, Buguliskis JS, Casta LJ, Butz CE, Clark AB et al. Malaria drug resistance is associated with defective DNA mismatch repair. Mol Biochem Parasitol 2011; 177:143–147 [View Article] [PubMed]
    [Google Scholar]
  20. Bethke L, Thomas S, Walker K, Lakhia R, Rangarajan R et al. The role of DNA mismatch repair in generating genetic diversity and drug resistance in malaria parasites. Mol Biochem Parasitol 2007; 155:18–25 [View Article] [PubMed]
    [Google Scholar]
  21. Lang GI, Parsons L, Gammie AE. Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3 (Bethesda) 2013; 3:1453–1465 [View Article] [PubMed]
    [Google Scholar]
  22. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 2014; 32:819–821 [View Article] [PubMed]
    [Google Scholar]
  23. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 2016; 44:W272–6 [View Article] [PubMed]
    [Google Scholar]
  24. Tougan T, Edula JR, Morita M, Takashima E, Honma H et al. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malar J 2020; 19:155 [View Article] [PubMed]
    [Google Scholar]
  25. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976; 193:673–675 [View Article] [PubMed]
    [Google Scholar]
  26. Mizuno Y, Hatabu T, Kawazu S-I, Masuda G, Ohtomo H et al. Cultivation of Plasmodium falciparum isolates under the anaeropack gas condition in a portable thermostatic incubator. Jap J Trop Med Hyg 2000; 28:383–385 [View Article]
    [Google Scholar]
  27. Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC et al. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 1993; 48:739–741 [View Article] [PubMed]
    [Google Scholar]
  28. Nkhoma S, Molyneux M, Ward S. In vitro antimalarial susceptibility profile and prcrt/pfmdr-1 genotypes of Plasmodium falciparum field isolates from Malawi. Am J Trop Med Hyg 2007; 76:1107–1112 [View Article] [PubMed]
    [Google Scholar]
  29. Salanti A, Staalsoe T, Lavstsen T, Jensen ATR, Sowa MPK et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 2003; 49:179–191 [View Article] [PubMed]
    [Google Scholar]
  30. Sprouffske K, Wagner A. Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics 2016; 17:172 [View Article] [PubMed]
    [Google Scholar]
  31. Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 2010; 26:589–595 [View Article] [PubMed]
    [Google Scholar]
  32. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Genomics 2017201178 [View Article]
    [Google Scholar]
  33. Li H. FermiKit: assembly-based variant calling for Illumina resequencing data. Bioinformatics 2015; 31:3694–3696 [View Article] [PubMed]
    [Google Scholar]
  34. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 2014; 46:912–918 [View Article] [PubMed]
    [Google Scholar]
  35. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22:568–576 [View Article] [PubMed]
    [Google Scholar]
  36. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:giab008 [View Article] [PubMed]
    [Google Scholar]
  37. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012; 28:i333–i339 [View Article] [PubMed]
    [Google Scholar]
  38. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 2014; 15:R84 [View Article] [PubMed]
    [Google Scholar]
  39. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016; 32:1220–1222 [View Article] [PubMed]
    [Google Scholar]
  40. Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET et al. Wham: identifying structural variants of biological consequence. PLoS Comput Biol 2015; 11:e1004572 [View Article] [PubMed]
    [Google Scholar]
  41. Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun 2017; 8:14061 [View Article] [PubMed]
    [Google Scholar]
  42. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14:178–192 [View Article] [PubMed]
    [Google Scholar]
  43. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012; 6:80–92 [View Article] [PubMed]
    [Google Scholar]
  44. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  45. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  46. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  47. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  48. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  49. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  50. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article] [PubMed]
    [Google Scholar]
  51. Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res 2016; 26:1288–1299 [View Article] [PubMed]
    [Google Scholar]
  52. Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C et al. Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat Methods 2015; 12:623–630 [View Article] [PubMed]
    [Google Scholar]
  53. McDew-White M, Li X, Nkhoma SC, Nair S, Cheeseman I et al. Mode and tempo of microsatellite length change in a malaria parasite mutation accumulation experiment. Genome Biol Evol 2019; 11:1971–1985 [View Article] [PubMed]
    [Google Scholar]
  54. Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 2016; 11:e0163962 [View Article] [PubMed]
    [Google Scholar]
  55. Xu S, Stapley J, Gablenz S, Boyer J, Appenroth KJ et al. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat Commun 2019; 10:1243 [View Article] [PubMed]
    [Google Scholar]
  56. Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 2018; 34:867–868 [View Article] [PubMed]
    [Google Scholar]
  57. Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK et al. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol Biol Evol 2015; 32:239–243 [View Article] [PubMed]
    [Google Scholar]
  58. Feng C, Pettersson M, Lamichhaney S, Rubin C-J, Rafati N et al. Moderate nucleotide diversity in the Atlantic herring is associated with a low mutation rate. Elife 2017; 6:e23907 [View Article] [PubMed]
    [Google Scholar]
  59. Team RC R: A language and environment for statistical computing; 2021
  60. Wickham H. ggplot2: elegant graphics for data analysis New York: Springer-Verlag; 2016
    [Google Scholar]
  61. Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw 2015; 67:1–48 [View Article]
    [Google Scholar]
  62. Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Soft 2017; 82:13 [View Article]
    [Google Scholar]
  63. Alemayehu GS, Blackburn K, Lopez K, Cambel Dieng C, Lo E et al. Detection of high prevalence of Plasmodium falciparum histidine-rich protein 2/3 gene deletions in Assosa zone, Ethiopia: implication for malaria diagnosis. Malar J 2021; 20:109 [View Article] [PubMed]
    [Google Scholar]
  64. Lee N, Gatton ML, Pelecanos A, Bubb M, Gonzalez I et al. Identification of optimal epitopes for Plasmodium falciparum rapid diagnostic tests that target histidine-rich proteins 2 and 3. J Clin Microbiol 2012; 50:1397–1405 [View Article] [PubMed]
    [Google Scholar]
  65. Duckett DR, Drummond JT, Murchie AI, Reardon JT, Sancar A et al. Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc Natl Acad Sci U S A 1996; 93:6443–6447 [View Article] [PubMed]
    [Google Scholar]
  66. de Wind N, Dekker M, Berns A, Radman M, te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995; 82:321–330 [View Article] [PubMed]
    [Google Scholar]
  67. Chou ES, Abidi SZ, Teye M, Leliwa-Sytek A, Rask TS et al. A high parasite density environment induces transcriptional changes and cell death in Plasmodium falciparum blood stages. FEBS J 2018; 285:848–870 [View Article] [PubMed]
    [Google Scholar]
  68. Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM et al. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res 2017; 45:1889–1901 [View Article] [PubMed]
    [Google Scholar]
  69. Denver DR, Feinberg S, Estes S, Thomas WK, Lynch M. Mutation rates, spectra and hotspots in mismatch repair-deficient Caenorhabditis elegans. Genetics 2005; 170:107–113 [View Article] [PubMed]
    [Google Scholar]
  70. Nielsen SV, Stein A, Dinitzen AB, Papaleo E, Tatham MH et al. Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations. PLoS Genet 2017; 13:e1006739 [View Article] [PubMed]
    [Google Scholar]
  71. Belfield EJ, Ding ZJ, Jamieson FJC, Visscher AM, Zheng SJ et al. DNA mismatch repair preferentially protects genes from mutation. Genome Res 2018; 28:66–74 [View Article] [PubMed]
    [Google Scholar]
  72. Serero A, Jubin C, Loeillet S, Legoix-Né P, Nicolas AG. Mutational landscape of yeast mutator strains. Proc Natl Acad Sci U S A 2014; 111:1897–1902 [View Article] [PubMed]
    [Google Scholar]
  73. Katju V, Konrad A, Deiss TC, Bergthorsson U. Mutation rate and spectrum in obligately outcrossing Caenorhabditis elegans mutation accumulation lines subjected to RNAi-induced knockdown of the mismatch repair gene msh-2. G3 (Bethesda) 2022; 12:jkab364 [View Article] [PubMed]
    [Google Scholar]
  74. Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem Res Toxicol 2006; 19:1580–1594 [View Article] [PubMed]
    [Google Scholar]
  75. Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA. AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 2007; 6:2612–2619 [View Article] [PubMed]
    [Google Scholar]
  76. Delavallée L, Cabon L, Galán-Malo P, Lorenzo HK, Susin SA. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 2011; 63:221–232 [View Article] [PubMed]
    [Google Scholar]
  77. Primmer CR, Saino N, Moller AP, Ellegren H. Unraveling the processes of microsatellite evolution through analysis of germ line mutations in barn swallows Hirundo rustica. Molecular Biology and Evolution 1998; 15:1047–1054 [View Article]
    [Google Scholar]
  78. Wierdl M, Dominska M, Petes TD. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 1997; 146:769–779 [View Article] [PubMed]
    [Google Scholar]
  79. Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD. The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 2008; 18:30–38 [View Article] [PubMed]
    [Google Scholar]
  80. Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A 2012; 109:E2774–83 [View Article] [PubMed]
    [Google Scholar]
  81. Xu X, Peng M, Fang Z. The direction of microsatellite mutations is dependent upon allele length. Nat Genet 2000; 24:396–399 [View Article] [PubMed]
    [Google Scholar]
  82. Huang Q-Y, Xu F-H, Shen H, Deng H-Y, Liu Y-J et al. Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genet 2002; 70:625–634 [View Article] [PubMed]
    [Google Scholar]
  83. Claessens A, Harris LM, Stanojcic S, Chappell L, Stanton A et al. RecQ helicases in the malaria parasite Plasmodium falciparum affect genome stability, gene expression patterns and DNA replication dynamics. PLoS Genet 2018; 14:e1007490 [View Article] [PubMed]
    [Google Scholar]
  84. Lee AH, Symington LS, Fidock DA. DNA repair mechanisms and their biological roles in the malaria parasite Plasmodium falciparum. Microbiol Mol Biol Rev 2014; 78:469–486 [View Article] [PubMed]
    [Google Scholar]
  85. Calhoun SF, Reed J, Alexander N, Mason CE, Deitsch KW et al. Chromosome end repair and genome stability in Plasmodium falciparum. mBio 2017; 8:e00547-17 [View Article] [PubMed]
    [Google Scholar]
  86. Gamboa D, Ho M-F, Bendezu J, Torres K, Chiodini PL et al. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 2010; 5:e8091 [View Article] [PubMed]
    [Google Scholar]
  87. Verma AK, Bharti PK, Das A. HRP-2 deletion: a hole in the ship of malaria elimination. Lancet Infect Dis 2018; 18:826–827 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001003
Loading
/content/journal/mgen/10.1099/mgen.0.001003
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error