1887

Abstract

Complete Type VI Secretion Systems were identified in the genome sequence data of isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in spp. The characteristics of each type in are further investigated here and in the context of the other spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of and associated effector / immunity pairs are present in spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, , and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in spp.

Funding
This study was supported by the:
  • Kingston University (Award School of Life Sciences, Pharmacy, and Chemistry)
    • Principle Award Recipient: AlanCalder
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000986
2023-04-13
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/4/mgen000986.html?itemId=/content/journal/mgen/10.1099/mgen.0.000986&mimeType=html&fmt=ahah

References

  1. Fan Y, Wang Y, Yu H, Liu B. A view to A kill: the bacterial type 6 secretion system. Adv Intell Syst Comput 2017; 612:242–253 [View Article]
    [Google Scholar]
  2. Gorasia DG, Veith PD, Reynolds EC. The type IX secretion system: advances in structure, function and organisation. Microorganisms 2020; 8:1–9 [View Article] [PubMed]
    [Google Scholar]
  3. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr 2016; 4:1–32 [View Article] [PubMed]
    [Google Scholar]
  4. Lauber F, Deme JC, Lea SM, Berks BC. Type 9 secretion system structures reveal a new protein transport mechanism. Nature 2018; 564:77–82 [View Article] [PubMed]
    [Google Scholar]
  5. Palmer T, Finney AJ, Saha CK, Atkinson GC, Sargent F. A holin/peptidoglycan hydrolase-dependent protein secretion system. Mol Microbiol 2021; 115:345–355 [View Article] [PubMed]
    [Google Scholar]
  6. Rêgo AT, Chandran V, Waksman G. Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J 2010; 425:475–488 [View Article] [PubMed]
    [Google Scholar]
  7. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the dictyostelium host model system. Proc Natl Acad Sci 2006; 103:1528–1533 [View Article] [PubMed]
    [Google Scholar]
  8. Folkesson A, Löfdahl S, Normark S. The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 2002; 153:537–545 [View Article] [PubMed]
    [Google Scholar]
  9. Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 2003; 16:53–64 [View Article] [PubMed]
    [Google Scholar]
  10. Rao PSS, Yamada Y, Tan YP, Leung KY. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 2004; 53:573–586 [View Article] [PubMed]
    [Google Scholar]
  11. Nano FE, Zhang N, Cowley SC, Klose KE, Cheung KKM et al. A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 2004; 186:6430–6436 [View Article] [PubMed]
    [Google Scholar]
  12. Williams SG, Varcoe LT, Attridge SR, Manning PA. Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun 1996; 64:283–289 [View Article] [PubMed]
    [Google Scholar]
  13. Aschtgen MS, Thomas MS, Cascales E. Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP… what else?. Virulence 2010; 1:535–540 [View Article] [PubMed]
    [Google Scholar]
  14. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 2009; 10:104 [View Article] [PubMed]
    [Google Scholar]
  15. Coulthurst SJ. The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol 2013; 164:640–654 [View Article] [PubMed]
    [Google Scholar]
  16. Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 2007; 153:2689–2699 [View Article] [PubMed]
    [Google Scholar]
  17. Shyntum DY, Venter SN, Moleleki LN, Toth I, Coutinho TA. Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics 2014; 15:1–15 [View Article] [PubMed]
    [Google Scholar]
  18. Alteri CJ, Mobley HLT. The versatile type VI secretion system. Microbiol Spectr 2016; 4: [View Article] [PubMed]
    [Google Scholar]
  19. Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB et al. Identification of novel Acinetobacter baumannii type VI secretion system antibacterial effector and immunity pairs. Infect Immun 2018; 86:1–23 [View Article]
    [Google Scholar]
  20. Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 2016; 24:51–62 [View Article] [PubMed]
    [Google Scholar]
  21. Yang X, Pan J, Wang Y, Shen X. Type VI secretion systems present new insights on pathogenic Yersinia. Front Cell Infect Microbiol 2018; 8:260 [View Article] [PubMed]
    [Google Scholar]
  22. Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS et al. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 2016; 35:1613–1627 [View Article] [PubMed]
    [Google Scholar]
  23. Bernal P, Furniss RCD, Fecht S, Leung RCY, Spiga L et al. A novel stabilization mechanism for the type VI secretion system sheath. Proc Natl Acad Sci 2021; 118:1–9 [View Article] [PubMed]
    [Google Scholar]
  24. Zoued A, Durand E, Santin YG, Journet L, Roussel A et al. TssA: the cap protein of the type VI secretion system tail. Bioessays 2017; 39:1–9 [View Article] [PubMed]
    [Google Scholar]
  25. Alcoforado Diniz J, Coulthurst SJ. Intraspecies competition in Serratia marcescens is mediated by type VI-secreted rhs effectors and a conserved effector-associated accessory protein. J Bacteriol 2015; 197:2350–2360 [View Article] [PubMed]
    [Google Scholar]
  26. Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M et al. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 2016; 12:e1005735 [View Article] [PubMed]
    [Google Scholar]
  27. Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 2009; 28:315–325 [View Article] [PubMed]
    [Google Scholar]
  28. Zoued A, Brunet YR, Durand E, Aschtgen M-S, Logger L et al. Architecture and assembly of the type VI secretion system. Biochim Biophys Acta 2014; 1843:1664–1673 [View Article] [PubMed]
    [Google Scholar]
  29. Renault MG, Zamarreno Beas J, Douzi B, Chabalier M, Zoued A et al. The gp27-like hub of VgrG serves as adaptor to promote Hcp tube assembly. J Mol Biol 2018; 430:3143–3156 [View Article] [PubMed]
    [Google Scholar]
  30. De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA et al. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics 2011; 12:576 [View Article] [PubMed]
    [Google Scholar]
  31. Santos MNM, Cho S-T, Wu C-F, Chang C-J, Kuo C-H et al. Redundancy and specificity of type VI secretion vgrG loci in antibacterial activity of Agrobacterium tumefaciens 1D1609 strain. Front Microbiol 2020; 10:3004 [View Article] [PubMed]
    [Google Scholar]
  32. Liang X, Kamal F, Pei TT, Xu P, Mekalanos JJ et al. An onboard checking mechanism ensures effector delivery of the type VI secretion system in Vibrio cholerae. Proc Natl Acad Sci 2019; 116:23292–23298 [View Article] [PubMed]
    [Google Scholar]
  33. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci 2007; 104:15508–15513 [View Article] [PubMed]
    [Google Scholar]
  34. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 2013; 500:350–353 [View Article] [PubMed]
    [Google Scholar]
  35. Flaugnatti N, Le TTH, Canaan S, Aschtgen M-S, Nguyen VS et al. A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 2016; 99:1099–1118 [View Article] [PubMed]
    [Google Scholar]
  36. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 2013; 500:350–353 [View Article] [PubMed]
    [Google Scholar]
  37. Dar Y, Salomon D, Bosis E. The antibacterial and anti-eukaryotic type VI secretion system MIX-Effector repertoire in Vibrionaceae. Mar Drugs 2018; 16:433 [View Article] [PubMed]
    [Google Scholar]
  38. Thomas J, Watve SS, Ratcliff WC, Hammer BK. Horizontal gene transfer of functional type VI killing genes by natural transformation. mBio 2017; 8:1–11 [View Article] [PubMed]
    [Google Scholar]
  39. Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 2004; 17:14–56 [View Article] [PubMed]
    [Google Scholar]
  40. Veening JW, Blokesch M. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621–629 [View Article] [PubMed]
    [Google Scholar]
  41. Ma J, Sun M, Pan Z, Lu C, Yao H. Diverse toxic effectors are harbored by vgrG islands for interbacterial antagonism in type VI secretion system. Biochim Biophys Acta Gen Subj 2018; 1862:1635–1643 [View Article] [PubMed]
    [Google Scholar]
  42. Trunk K, Peltier J, Liu Y-C, Dill BD, Walker L et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018; 3:920–931 [View Article] [PubMed]
    [Google Scholar]
  43. Jiang F, Wang X, Wang B, Chen L, Zhao Z et al. The Pseudomonas aeruginosa type VI secretion PGAP1-like effector induces host autophagy by activating endoplasmic reticulum stress. Cell Reports 2016; 16:1502–1509 [View Article] [PubMed]
    [Google Scholar]
  44. Chen L, Zou Y, Kronfl AA, Wu Y. Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation. MicrobiologyOpen 2020; 9:1–10 [View Article] [PubMed]
    [Google Scholar]
  45. DeShazer D. A novel contact-independent T6SS that maintains redox homeostasis via Zn2+ and Mn2+ acquisition is conserved in the Burkholderia pseudomallei complex. Microbiol Res 2019; 226:48–54 [View Article] [PubMed]
    [Google Scholar]
  46. Lin J, Zhang W, Cheng J, Yang X, Zhu K et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888 [View Article] [PubMed]
    [Google Scholar]
  47. Liu L, Hao S, Lan R, Wang G, Xiao D et al. The type VI secretion system modulates flagellar gene expression and secretion in Citrobacter freundii and contributes to adhesion and cytotoxicity to Host Cells. Infect Immun 2015; 83:2596–2604 [View Article] [PubMed]
    [Google Scholar]
  48. Hood RD, Singh P, Hsu F, Güvener T, Carl MA et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7:25–37 [View Article] [PubMed]
    [Google Scholar]
  49. Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E et al. The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors. J Bacteriol 2011; 193:6057–6069 [View Article] [PubMed]
    [Google Scholar]
  50. Carruthers MD, Nicholson PA, Tracy EN, Munson RS. Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS One 2013; 8:e59388 [View Article] [PubMed]
    [Google Scholar]
  51. Liu L, Ye M, Li X, Li J, Deng Z et al. Identification and characterization of an antibacterial type VI secretion system in the carbapenem-resistant strain Klebsiella pneumoniae HS11286. Front Cell Infect Microbiol 2017; 7:442 [View Article] [PubMed]
    [Google Scholar]
  52. Storey D, McNally A, Åstrand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog 2020; 16:e1007969 [View Article] [PubMed]
    [Google Scholar]
  53. Joshi A, Kostiuk B, Rogers A, Teschler J, Pukatzki S et al. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol 2017; 25:267–279 [View Article] [PubMed]
    [Google Scholar]
  54. Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G et al. Type VI secretion system killing by commensal Neisseria is influenced by the spatial dynamics of bacteria. Microbiology 2020 [View Article]
    [Google Scholar]
  55. Filloux A. The rise of the type VI secretion system. F1000Prime Rep 2013; 5:52 [View Article] [PubMed]
    [Google Scholar]
  56. Unterweger D, Kostiuk B, Pukatzki S. Adaptor proteins of type VI secretion system effectors. Trends Microbiol 2017; 25:8–10 [View Article] [PubMed]
    [Google Scholar]
  57. Kim WJ, Higashi D, Goytia M, Rendón MA, Pilligua-Lucas M et al. Commensal Neisseria kill Neisseria gonorrhoeae through a DNA-dependent mechanism. Cell Host Microbe 2019; 26:228–239 [View Article] [PubMed]
    [Google Scholar]
  58. Evans CM, Pratt CB, Matheson M, Vaughan TE, Findlow J et al. Nasopharyngeal colonization by Neisseria lactamica and induction of protective immunity against Neisseria meningitidis. Clin Infect Dis 2011; 52:70–77 [View Article] [PubMed]
    [Google Scholar]
  59. Abt MC, Pamer EG. Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol 2014; 29:16–22 [View Article] [PubMed]
    [Google Scholar]
  60. Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 2015; 194:4081–4087 [View Article] [PubMed]
    [Google Scholar]
  61. Bogaert D, de R, Hermans PWM. Dynamics of nasopharyngeal colonisation: the key to pneumococcal disease. Lancet Infect Dis 2004; 4:144–154 [PubMed]
    [Google Scholar]
  62. Mukundan D, Ecevit Z, Patel M, Marrs CF, Gilsdorf JR. Pharyngeal colonization dynamics of Haemophilus influenzae and Haemophilus haemolyticus in healthy adult carriers. J Clin Microbiol 2007; 45:3207–3217 [View Article] [PubMed]
    [Google Scholar]
  63. Marri PR, Paniscus M, Weyand NJ, Rendón MA, Calton CM et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 2010; 5:e11835 [View Article] [PubMed]
    [Google Scholar]
  64. Calder A, Menkiti CJ, Çağdaş A, Lisboa Santos J, Streich R et al. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb Genom 2020; 6:mgen000423 [View Article] [PubMed]
    [Google Scholar]
  65. Li L, Mac Aogáin M, Xu T, Jaggi TK, Chan LLY et al. Neisseria species as pathobionts in bronchiectasis. Cell Host Microbe 2022; 30:1311–1327 [View Article] [PubMed]
    [Google Scholar]
  66. Baraldès MA, Domingo P, Barrio JL, Pericas R, Gurguí M et al. Meningitis due to neisseria subflava: case report and review. Clin Infect Dis 2000; 30:615–617 [View Article] [PubMed]
    [Google Scholar]
  67. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  68. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article] [PubMed]
    [Google Scholar]
  69. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  70. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  71. Li J, Yao Y, Xu HH, Hao L, Deng Z et al. SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol 2015; 17:2196–2202 [View Article] [PubMed]
    [Google Scholar]
  72. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  73. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  74. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article] [PubMed]
    [Google Scholar]
  75. Okonechnikov K, Golosova O, Fursov M, Varlamov A, Vaskin Y et al. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012; 28:1166–1167 [View Article] [PubMed]
    [Google Scholar]
  76. Stothard P. Internet on-ramp. BioTechniques 2000; 28:1102–1104 [View Article] [PubMed]
    [Google Scholar]
  77. Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 2018; 46:D493–D496 [View Article] [PubMed]
    [Google Scholar]
  78. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015; 10:845–858 [View Article] [PubMed]
    [Google Scholar]
  79. Pissaridou P, Allsopp LP, Wettstadt S, Howard SA, Mavridou DAI et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci 2018; 115:12519–12524 [View Article] [PubMed]
    [Google Scholar]
  80. Bondage DD, Lin J-S, Ma L-S, Kuo C-H, Lai E-M. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci 2016; 113:E3931–40 [View Article] [PubMed]
    [Google Scholar]
  81. Ma J, Sun M, Dong W, Pan Z, Lu C et al. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol 2017; 19:345–360 [View Article] [PubMed]
    [Google Scholar]
  82. Liang X, Moore R, Wilton M, Wong MJQ, Lam L et al. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci 2015; 112:9106–9111 [View Article] [PubMed]
    [Google Scholar]
  83. Solovyev V. V.Solovyev, A Salamov (2011) Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Li RW. eds Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies Nova Science Publishers (February); 2011 pp 61–78
    [Google Scholar]
  84. Taboada B, Estrada K, Ciria R, Merino E. Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 2018; 34:4118–4120 [View Article] [PubMed]
    [Google Scholar]
  85. Wang J, Yang B, Leier A, Marquez-Lago TT, Hayashida M et al. Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics 2018; 34:2546–2555 [View Article] [PubMed]
    [Google Scholar]
  86. Shrivastava S, Mande SS. Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. PLoS One 2008; 3:e2955 [View Article] [PubMed]
    [Google Scholar]
  87. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019; 37:420–423 [View Article] [PubMed]
    [Google Scholar]
  88. Ricker N, Qian H, Fulthorpe RR. The limitations of draft assemblies for understanding prokaryotic adaptation and evolution. Genomics 2012; 100:167–175 [View Article] [PubMed]
    [Google Scholar]
  89. Kingsford C, Schatz MC, Pop M. Assembly complexity of prokaryotic genomes using short reads. BMC Bioinformatics 2010; 11:21 [View Article] [PubMed]
    [Google Scholar]
  90. Treangen TJ, Abraham AL, Touchon M, Rocha EPC. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 2009; 33:539–571 [View Article] [PubMed]
    [Google Scholar]
  91. Díaz-Viraqué F, Pita S, Greif G, de Souza R de C, Iraola G et al. Nanopore sequencing significantly improves genome assembly of the protozoan parasite trypanosoma cruzi. Genome Biol Evol 2019; 11:1952–1957 [View Article] [PubMed]
    [Google Scholar]
  92. Tammi MT, Arner E, Kindlund E, Andersson B. Correcting errors in shotgun sequences. Nucleic Acids Res 2003; 31:4663–4672 [View Article] [PubMed]
    [Google Scholar]
  93. Schmid M, Frei D, Patrignani A, Schlapbach R, Frey JE et al. Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Res 2018; 46:8953–8965 [View Article] [PubMed]
    [Google Scholar]
  94. Coyne MJ, Roelofs KG, Comstock LE. Type VI secretion systems of human gut bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics 2016; 17:58 [View Article] [PubMed]
    [Google Scholar]
  95. Ma J, Bao Y, Sun M, Dong W, Pan Z et al. Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun 2014; 82:3867–3879 [View Article] [PubMed]
    [Google Scholar]
  96. Jiang X, Beust A, Sappa PK, Völker U, Dinse T et al. Two functionally deviating type 6 secretion systems occur in the nitrogen-fixing endophyte Azoarcus olearius BH72. Front Microbiol 2019; 10:459 [View Article] [PubMed]
    [Google Scholar]
  97. Qiu Y, Hu L, Yang W, Yin Z, Zhou D et al. The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR. Microb Pathog 2020; 149:104579 [View Article] [PubMed]
    [Google Scholar]
  98. Tan K, Johnson PM, Stols L, Boubion B, Eschenfeldt W et al. The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Acta Crystallogr F Struct Biol Commun 2015; 71:702–709 [View Article] [PubMed]
    [Google Scholar]
  99. Fan E, Chauhan N, Udatha D, Leo JC, Linke D. Type V secretion systems in bacteria. Microbiol Spectr 2016; 4:305–335 [View Article] [PubMed]
    [Google Scholar]
  100. Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA et al. Contact-dependent inhibition of growth in Escherichia coli. Science 2005; 309:1245–1248 [View Article] [PubMed]
    [Google Scholar]
  101. Huang J, Zhang Q, Chen J, Zhang T, Chen Z et al. Neisseria gonorrhoeae NGO2105 Is an autotransporter protein involved in adhesion to human cervical epithelial cells and in vivo colonization. Front Microbiol 2020; 11:1–13 [View Article] [PubMed]
    [Google Scholar]
  102. Gunderson CW, Seifert HS. Neisseria gonorrhoeae elicits extracellular traps in primary neutrophil culture while suppressing the oxidative burst. mBio 2015; 6:1–10 [View Article] [PubMed]
    [Google Scholar]
  103. Criss AK, Seifert HSS. Neisseria gonorrhoeae suppresses the oxidative burst of human polymorphonuclear leukocytes. Cellular Microbiology 2008; 10:2257–2270 [View Article]
    [Google Scholar]
  104. Barret M, Egan F, Fargier E, Morrissey JP, O’Gara F. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology 2011; 157:1726–1739 [View Article] [PubMed]
    [Google Scholar]
  105. Barret M, Egan F, O’Gara F. Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep 2013; 5:117–126 [View Article] [PubMed]
    [Google Scholar]
  106. Liu SV, Saunders NJ, Jeffries A, Rest RF. Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J Bacteriol 2002; 184:6163–6173 [View Article] [PubMed]
    [Google Scholar]
  107. Snyder LAS, Cole JA, Pallen MJ. Comparative analysis of two Neisseria gonorrhoeae genome sequences reveals evidence of mobilization of correia repeat enclosed elements and their role in regulation. BMC Genomics 2009; 10:70 [View Article] [PubMed]
    [Google Scholar]
  108. van der Ende A, Hopman CT, Dankert J. Deletion of porA by recombination between clusters of repetitive extragenic palindromic sequences in Neisseria meningitidis. Infect Immun 1999; 67:2928–2934 [View Article] [PubMed]
    [Google Scholar]
  109. Black CG, Fyfe JAM, Davies JK. A promoter associated with the neisserial repeat can be used to transcribe the uvrB gene from Neisseria gonorrhoeae. J Bacteriol 1995; 177:1952–1958 [View Article] [PubMed]
    [Google Scholar]
  110. Snyder LAS, Davies JK, Saunders NJ. Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with minimal mobile elements. BMC Genomics 2004; 5:1–12 [View Article] [PubMed]
    [Google Scholar]
  111. Nguyen VS, Spinelli S, Cascales É, Roussel A, Cambillau C et al. Anchoring the T6SS to the cell wall: crystal structure of the peptidoglycan binding domain of the TagL accessory protein. PLoS One 2021; 16:e0254232 [View Article] [PubMed]
    [Google Scholar]
  112. Asolkar T, Ramesh R. The involvement of the type six secretion system (T6SS) in the virulence of Ralstonia solanacearum on brinjal. 3 Biotech 2020; 10:324 [View Article] [PubMed]
    [Google Scholar]
  113. Lin JS, Pissaridou P, Wu HH, Tsai MD, Filloux A et al. TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha. J Biol Chem 2018; 293:8829–8842 [View Article] [PubMed]
    [Google Scholar]
  114. Alcoforado Diniz J, Liu YC, Coulthurst SJ. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol 2015; 17:1742–1751 [View Article] [PubMed]
    [Google Scholar]
  115. Cascales E, Cambillau C. Structural biology of type VI secretion systems. Philos Trans R Soc Lond B Biol Sci 2012; 367:1102–1111 [View Article] [PubMed]
    [Google Scholar]
  116. Bennett JS, Jolley KA, Earle SG, Corton C, Bentley SD et al. A genomic approach to bacterial taxonomy: an examination and proposed reclassification of species within the genus Neisseria. Microbiology 2012; 158:1570–1580 [View Article] [PubMed]
    [Google Scholar]
  117. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  118. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD et al. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 2009; 25:2071–2073 [View Article] [PubMed]
    [Google Scholar]
  119. Shinha T. Cellulitis and bacteremia due to Neisseria weaveri following a dog bite. IDCases 2018; 12:56–57 [View Article] [PubMed]
    [Google Scholar]
  120. Ujvári B, Orbán B, Incze Z, Psáder R, Magyar T. Occurrence of Pasteurellaceae and Neisseriaceae bacteria in the pharyngeal and respiratory tract of dogs and cats - short communication. Acta Vet Hung 2020; 68:231–235 [View Article] [PubMed]
    [Google Scholar]
  121. Zhang L, Xu J, Xu J, Zhang H, He L et al. TssB is essential for virulence and required for type VI secretion system in Ralstonia solanacearum. Microb Pathog 2014; 74:1–7 [View Article] [PubMed]
    [Google Scholar]
  122. Repizo GD, Espariz M, Seravalle JL, Salcedo SP, Mussi MA. Bioinformatic analysis of the type VI secretion system and its potential toxins in the Acinetobacter Genus. Front Microbiol 2019; 10:2519 [View Article] [PubMed]
    [Google Scholar]
  123. Volokhov DV, Amselle M, Bodeis-Jones S, Delmonte P, Zhang S et al. Neisseria zalophi sp. nov., isolated from oral cavity of California sea lions (Zalophus californianus). Arch Microbiol 2018; 200:819–828 [View Article] [PubMed]
    [Google Scholar]
  124. Clemence MEA, Harrison OB, Maiden MCJ. Neisseria meningitidis has acquired sequences within the capsule locus by horizontal genetic transfer. Wellcome Open Res 2019; 4:99 [View Article]
    [Google Scholar]
  125. Mulhall RM, Brehony C, O’Connor L, Meyler K, Jolley KA et al. Resolution of a protracted serogroup B meningococcal outbreak with whole-genome sequencing shows interspecies genetic transfer. J Clin Microbiol 2016; 54:2891–2899 [View Article] [PubMed]
    [Google Scholar]
  126. Bennett JS, Thompson EAL, Kriz P, Jolley KA, Maiden MCJ. A common gene pool for the Neisseria FetA antigen. Int J Med Microbiol 2009; 299:133–139 [View Article] [PubMed]
    [Google Scholar]
  127. Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I et al. Evidence of horizontal gene transfer of 50S ribosomal genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:1–17 [View Article]
    [Google Scholar]
  128. Bernard CS, Brunet YR, Gueguen E, Cascales E. Nooks and crannies in type VI secretion regulation. J Bacteriol 2010; 192:3850–3860 [View Article] [PubMed]
    [Google Scholar]
  129. Ambur OH, Frye SA, Tønjum T. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 2007; 189:2077–2085 [View Article] [PubMed]
    [Google Scholar]
  130. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 2011; 8:11–13 [View Article] [PubMed]
    [Google Scholar]
  131. Spencer-Smith R, Roberts S, Gurung N, Snyder LAS. DNA uptake sequences in Neisseria gonorrhoeae as intrinsic transcriptional terminators and markers of horizontal gene transfer. Microb Genom 2016; 2:e000069 [View Article] [PubMed]
    [Google Scholar]
  132. Sarris PF, Ladoukakis ED, Panopoulos NJ, Scoulica EV. A phage tail-derived element with wide distribution among both prokaryotic domains: a comparative genomic and phylogenetic study. Genome Biol Evol 2014; 6:1739–1747 [View Article] [PubMed]
    [Google Scholar]
  133. Büttner CR, Wu Y, Maxwell KL, Davidson AR. Baseplate assembly of phage Mu: defining the conserved core components of contractile-tailed phages and related bacterial systems. Proc Natl Acad Sci 2016; 113:10174–10179 [View Article] [PubMed]
    [Google Scholar]
  134. Lopez J, Ly PM, Feldman MF. The tip of the VgrG spike is essential to functional type VI secretion system assembly in Acinetobacter baumannii. mBio 2020; 11:1–14 [View Article] [PubMed]
    [Google Scholar]
  135. Lien Y-W, Lai E-M. Type VI secretion effectors: methodologies and biology. Front Cell Infect Microbiol 2017; 7:254 [View Article] [PubMed]
    [Google Scholar]
  136. Hachani A, Lossi NS, Hamilton A, Jones C, Bleves S et al. Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem 2011; 286:12317–12327 [View Article] [PubMed]
    [Google Scholar]
  137. Jones C, Hachani A, Manoli E, Filloux A. An rhs gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol 2014; 196:800–810 [View Article] [PubMed]
    [Google Scholar]
  138. Wood TE, Howard SA, Förster A, Nolan LM, Manoli E et al. The Pseudomonas aeruginosa T6SS delivers a periplasmic toxin that disrupts bacterial cell morphology. Cell Rep 2019; 29:187–201 [View Article] [PubMed]
    [Google Scholar]
  139. Dutta P, Jijumon AS, Mazumder M, Dileep D, Mukhopadhyay AK et al. Presence of actin binding motif in VgrG-1 toxin of Vibrio cholerae reveals the molecular mechanism of actin cross-linking. Int J Biol Macromol 2019; 133:775–785 [View Article] [PubMed]
    [Google Scholar]
  140. Salomon D, Kinch LN, Trudgian DC, Guo X, Klimko JA et al. Marker for type VI secretion system effectors. Proc Natl Acad Sci 2014; 111:9271–9276 [View Article] [PubMed]
    [Google Scholar]
  141. Flaugnatti N, Rapisarda C, Rey M, Beauvois SG, Nguyen VA et al. Structural basis for loading and inhibition of a bacterial T6 SS phospholipase effector by the VgrG spike. EMBO J 2020; 39:1–14 [View Article]
    [Google Scholar]
  142. Jurėnas D, Journet L. Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol 2021; 115:383–394 [View Article] [PubMed]
    [Google Scholar]
  143. Ramsey ME, Woodhams KL, Dillard JP. The gonococcal genetic Island and type IV secretion in the pathogenic Neisseria. Front Microbiol 2011; 2:61 [View Article] [PubMed]
    [Google Scholar]
  144. Woodhams KL, Benet ZL, Blonsky SE, Hackett KT, Dillard JP. Prevalence and detailed mapping of the gonococcal genetic island in Neisseria meningitidis. J Bacteriol 2012; 194:2275–2285 [View Article] [PubMed]
    [Google Scholar]
  145. Domínguez NM, Hackett KT, Dillard JP. XerCD-mediated site-specific recombination leads to loss of the 57-kilobase gonococcal genetic Island. J Bacteriol 2011; 193:377–388 [View Article] [PubMed]
    [Google Scholar]
  146. Hamilton HL, Domínguez NM, Schwartz KJ, Hackett KT, Dillard JP. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 2005; 55:1704–1721 [View Article] [PubMed]
    [Google Scholar]
  147. Frye SA, Nilsen M, Tønjum T, Ambur OH. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet 2013; 9:e1003458 [View Article] [PubMed]
    [Google Scholar]
  148. Kroll JS, Wilks KE, Farrant JL, Langford PR. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci 1998; 95:12381–12385 [View Article] [PubMed]
    [Google Scholar]
  149. Seifert HS. Location, location, location-commensalism, damage and evolution of the pathogenic Neisseria. J Mol Biol 2019; 431:3010–3014 [View Article] [PubMed]
    [Google Scholar]
  150. Goodman SD, Scocca JJ. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci 1988; 85:6982–6986 [View Article] [PubMed]
    [Google Scholar]
  151. Hotokezaka H, Ohara N, Hayashida H, Matsumoto S, Matsuo T et al. Transcriptional analysis of the groESL operon from Porphyromonas gingivalis. Oral Microbiol Immunol 1997; 12:236–239 [View Article] [PubMed]
    [Google Scholar]
  152. Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL. Prediction of transcription terminators in bacterial genomes. J Mol Biol 2000; 301:27–33 [View Article] [PubMed]
    [Google Scholar]
  153. Hespanhol JT, Sanchez-Limache DE, Nicastro GG, Mead L, Llontop EE et al. Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases. eLife 2022; 11:1–26 [View Article] [PubMed]
    [Google Scholar]
  154. Yang X, Long M, Shen X. Effector–immunitypairs provide the T6SS nanomachine its offensive and defensive capabilities. Molecules 2018; 23:1009 [View Article] [PubMed]
    [Google Scholar]
  155. Barretto LAF, Fowler CC. Identification of a putative T6SS immunity islet in Salmonella typhi. Pathogens 2020; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  156. Kirchberger PC, Unterweger D, Provenzano D, Pukatzki S, Boucher Y. Sequential displacement of type VI secretion system effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017; 7:1–12 [View Article]
    [Google Scholar]
  157. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 2012; 7:1–76 [View Article] [PubMed]
    [Google Scholar]
  158. Letunic I, Bork P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000986
Loading
/content/journal/mgen/10.1099/mgen.0.000986
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error