1887

Abstract

is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in and non- species, suggesting that the T3SS2 gene cluster is not restricted to the and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I–VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the T3SS2 gene cluster.

Funding
This study was supported by the:
  • Universidad de Santiago de Chile (USACH) (Award DICYT grant 022001BZ)
    • Principle Award Recipient: BravoVeronica
  • Agencia Nacional de Investigación y Desarrollo (Award FONDECYT Grant 3200874)
    • Principle Award Recipient: M UrrutiaItalo
  • Agencia Nacional de Investigación y Desarrollo (Award PhD grant 21210879)
    • Principle Award Recipient: A JerezSebastian
  • Howard Hughes Medical Institute (Award 55008749)
    • Principle Award Recipient: J BlondelCarlos
  • Agencia Nacional de Investigación y Desarrollo (Award FONDECYT Grant 1201805)
    • Principle Award Recipient: J BlondelCarlos
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000973
2023-04-05
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/4/mgen000973.html?itemId=/content/journal/mgen/10.1099/mgen.0.000973&mimeType=html&fmt=ahah

References

  1. Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS et al. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314–7340 [View Article]
    [Google Scholar]
  2. Letchumanan V, Chan K-G, Lee L-H. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 2014; 5:705 [View Article]
    [Google Scholar]
  3. Velazquez-Roman J, León-Sicairos N, de Jesus Hernández-Díaz L, Canizalez-Roman A. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front Cell Infect Microbiol 2014; 3:110 [View Article]
    [Google Scholar]
  4. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 2003; 361:743–749 [View Article]
    [Google Scholar]
  5. Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014; 68:415–438 [View Article] [PubMed]
    [Google Scholar]
  6. Lara-Tejero M, Galán JE. Protein secretion in bacteria. EcoSal Plus 2019; 8:245–259 [View Article]
    [Google Scholar]
  7. Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. Type III secretion: building and operating a remarkable nanomachine. Trends Biochem Sci 2016; 41:175–189 [View Article]
    [Google Scholar]
  8. Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100–1125 [View Article] [PubMed]
    [Google Scholar]
  9. Scott NE, Hartland EL. Post-translational mechanisms of host subversion by bacterial effectors. Trends Mol Med 2017; 23:1088–1102 [View Article]
    [Google Scholar]
  10. Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M et al. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science 2021; 371:eabc9531 [View Article] [PubMed]
    [Google Scholar]
  11. Brown NF, Finlay BB. Potential origins and horizontal transfer of type III secretion systems and effectors. Mob Genet Elements 2011; 1:118–121 [View Article] [PubMed]
    [Google Scholar]
  12. Stavrinides J, Ma W, Guttman DS. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2006; 2:e104 [View Article] [PubMed]
    [Google Scholar]
  13. Hu Y, Huang H, Cheng X, Shu X, White AP et al. A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol 2017; 19:3879–3895
    [Google Scholar]
  14. Yang H, de Souza Santos M, Lee J, Law HT, Chimalapati S et al. A novel mouse model of enteric Vibrio parahaemolyticus infection reveals that the type III secretion system 2 effector VopC plays a key role in tissue invasion and gastroenteritis. mBio 2019; 10:e02608-19 [View Article]
    [Google Scholar]
  15. Ritchie JM, Rui H, Zhou X, Iida T, Kodoma T et al. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog 2012; 8:e1002593 [View Article]
    [Google Scholar]
  16. Piñeyro P, Zhou X, Orfe LH, Friel PJ, Lahmers K et al. Development of two animal models to study the function of Vibrio parahaemolyticus type III secretion systems. Infect Immun 2010; 78:4551–4559 [View Article]
    [Google Scholar]
  17. Hubbard TP, Chao MC, Abel S, Blondel CJ, Abel Zur Wiesch P et al. Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proc Natl Acad Sci USA 2016; 113:6283–6288 [View Article]
    [Google Scholar]
  18. Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on Vibrio parahaemolyticus research in the postgenomic era. Microbiol Immunol 2020; 64:167–181 [View Article]
    [Google Scholar]
  19. Gotoh K, Kodama T, Hiyoshi H, Izutsu K, Park K-S et al. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS One 2010; 5:e13365 [View Article]
    [Google Scholar]
  20. Li P, Rivera-Cancel G, Kinch LN, Salomon D, Tomchick DR et al. Bile salt receptor complex activates a pathogenic type III secretion system. Elife 2016; 5:e15718 [View Article] [PubMed]
    [Google Scholar]
  21. Kodama T, Gotoh K, Hiyoshi H, Morita M, Izutsu K et al. Two regulators of Vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region. PLoS One 2010; 5:e8678 [View Article]
    [Google Scholar]
  22. Blondel CJ, Park JS, Hubbard TP, Pacheco AR, Kuehl CJ et al. CRISPR/Cas9 screens reveal requirements for host cell sulfation and fucosylation in bacterial type III secretion system-mediated cytotoxicity. Cell Host Microbe 2016; 20:226–237 [View Article]
    [Google Scholar]
  23. Matz C, Nouri B, McCarter L, Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One 2011; 6:e20275 [View Article]
    [Google Scholar]
  24. Okada N, Iida T, Park K-S, Goto N, Yasunaga T et al. Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect Immun 2009; 77:904–913 [View Article]
    [Google Scholar]
  25. Okada N, Matsuda S, Matsuyama J, Park K-S, de los Reyes C et al. Presence of genes for type III secretion system 2 in Vibrio mimicus strains. BMC Microbiol 2010; 10:302 [View Article]
    [Google Scholar]
  26. Xu F, Gonzalez-Escalona N, Drees KP, Sebra RP, Cooper VS et al. Parallel evolution of two clades of an Atlantic-endemic pathogenic lineage of Vibrio parahaemolyticus by independent acquisition of related pathogenicity islands. Appl Environ Microbiol 2017; 83:e01168-17 [View Article]
    [Google Scholar]
  27. Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66–73 [View Article]
    [Google Scholar]
  28. Plaza N, Urrutia IM, Garcia K, Waldor MK, Blondel CJ. Identification of a family of Vibrio type III secretion system effectors that contain a conserved serine/threonine kinase domain. mSphere 2021; 6:e00599-21 [View Article]
    [Google Scholar]
  29. Zhang L, Krachler AM, Broberg CA, Li Y, Mirzaei H et al. Type III effector VopC mediates invasion for Vibrio species. Cell Rep 2012; 1:453–460 [View Article]
    [Google Scholar]
  30. Kodama T, Rokuda M, Park K-S, Cantarelli VV, Matsuda S et al. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cell Microbiol 2007; 9:2598–2609 [View Article]
    [Google Scholar]
  31. Hiyoshi H, Okada R, Matsuda S, Gotoh K, Akeda Y et al. Interaction between the type III effector VopO and GEF-H1 activates the RhoA-ROCK pathway. PLoS Pathog 2015; 11:e1004694 [View Article] [PubMed]
    [Google Scholar]
  32. Zhou X, Gewurz BE, Ritchie JM, Takasaki K, Greenfeld H et al. A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Rep 2013; 3:1690–1702 [View Article]
    [Google Scholar]
  33. Trosky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L et al. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 2004; 279:51953–51957 [View Article]
    [Google Scholar]
  34. Hiyoshi H, Kodama T, Saito K, Gotoh K, Matsuda S et al. VopV, an F-actin-binding type III secretion effector, is required for Vibrio parahaemolyticus-induced enterotoxicity. Cell Host Microbe 2011; 10:401–409 [View Article]
    [Google Scholar]
  35. Liverman ADB, Cheng H-C, Trosky JE, Leung DW, Yarbrough ML et al. Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci USA 2007; 104:17117–17122 [View Article]
    [Google Scholar]
  36. Calder T, Kinch LN, Fernandez J, Salomon D, Grishin NV et al. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins. PLoS One 2014; 9:e104387 [View Article]
    [Google Scholar]
  37. Hu M, Zhang Y, Gu D, Chen X, Waldor MK et al. Nucleolar c-Myc recruitment by a Vibrio T3SS effector promotes host cell proliferation and bacterial virulence. EMBO J 2021; 40:e105699 [View Article]
    [Google Scholar]
  38. Tandhavanant S, Matsuda S, Hiyoshi H, Iida T, Kodama T. Vibrio parahaemolyticus senses intracellular K+ to translocate type III secretion system 2 effectors effectively. mBio 2018; 9:e01366-18 [View Article]
    [Google Scholar]
  39. Suzuki M, Danilchanka O, Mekalanos JJ. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe 2014; 16:581–591 [View Article]
    [Google Scholar]
  40. Chaand M, Miller KA, Sofia MK, Schlesener C, Weaver JWA et al. Type three secretion system island encoded proteins required for colonization by non-O1/non-O139 serogroup Vibrio cholerae. Infect Immun 2015; 83:2862–2869 [View Article]
    [Google Scholar]
  41. Alam A, Miller KA, Chaand M, Butler JS, Dziejman M. Identification of Vibrio cholerae type III secretion system effector proteins. Infect Immun 2011; 79:1728–1740 [View Article]
    [Google Scholar]
  42. Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P et al. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci USA 2005; 102:3465–3470 [View Article]
    [Google Scholar]
  43. Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL et al. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 2011; 79:2889–2900 [View Article]
    [Google Scholar]
  44. Arteaga M, Velasco J, Rodriguez S, Vidal M, Arellano C et al. Genomic characterization of the non-O1/non-O139 Vibrio cholerae strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018. Microb Genom 2020; 6:e000340 [View Article] [PubMed]
    [Google Scholar]
  45. Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE, Souza V. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes?. Pathog Dis 2017; 75:ftx059 [View Article]
    [Google Scholar]
  46. Wilkinson P, Waterfield NR, Crossman L, Corton C, Sanchez-Contreras M et al. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 2009; 10:302 [View Article]
    [Google Scholar]
  47. Akeda Y, Kodama T, Saito K, Iida T, Oishi K et al. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC. FEMS Microbiol Lett 2011; 324:156–164 [View Article]
    [Google Scholar]
  48. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  49. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article] [PubMed]
    [Google Scholar]
  50. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the artemis comparison tool. Bioinformatics 2005; 21:3422–3423 [View Article]
    [Google Scholar]
  51. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article]
    [Google Scholar]
  52. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article] [PubMed]
    [Google Scholar]
  53. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  54. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  55. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:W3–W10 [View Article] [PubMed]
    [Google Scholar]
  56. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  57. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  58. Eichinger V, Nussbaumer T, Platzer A, Jehl M-A, Arnold R et al. EffectiveDB – updates and novel features for a better annotation of bacterial secreted proteins and type III, IV, VI secretion systems. Nucleic Acids Res 2016; 44:D669–D674 [View Article]
    [Google Scholar]
  59. Wang J, Li J, Yang B, Xie R, Marquez-Lago TT et al. Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics 2019; 35:2017–2028 [View Article]
    [Google Scholar]
  60. Dong X, Lu X, Zhang Z. BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors. Database 2015; 2015:bav064 [View Article]
    [Google Scholar]
  61. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021; 49:D344–D354 [View Article]
    [Google Scholar]
  62. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020; 48:D265–D268 [View Article] [PubMed]
    [Google Scholar]
  63. Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 2022; 40:1023–1025 [View Article] [PubMed]
    [Google Scholar]
  64. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018; 430:2237–2243 [View Article]
    [Google Scholar]
  65. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  66. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000; 302:205–217 [View Article]
    [Google Scholar]
  67. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014; 42:W320–W324 [View Article]
    [Google Scholar]
  68. Abby SS, Rocha EPC. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 2012; 8:e1002983 [View Article] [PubMed]
    [Google Scholar]
  69. Islam MT, Nasreen T, Kirchberger PC, Liang KYH, Orata FD et al. Population analysis of Vibrio cholerae in aquatic reservoirs reveals a novel sister species (Vibrio paracholerae sp. nov.) with a history of association with humans. Appl Environ Microbiol 2021; 87:e0042221 [View Article]
    [Google Scholar]
  70. Islam MT, Liang K, Orata FD, Im MS, Alam M et al. Vibrio tarriae sp. nov., a novel member of the Cholerae clade. Int J Syst Evol Microbiol 2022; 72:005571 [View Article]
    [Google Scholar]
  71. Loughran RM, Emsley SA, Jefferson T, Wasson BJ, Deadmond MC et al. Vibrio tetraodonis subsp. pristinus subsp. nov., isolated from the coral Acropora cytherea at Palmyra Atoll, and creation and emended description of Vibrio tetraodonis subsp. tetraodonis subsp. nov. Antonie van Leeuwenhoek 2022; 115:1215–1228 [View Article]
    [Google Scholar]
  72. Altun S, Duman M, Ay H, Saticioglu IB. Shewanella oncorhynchi sp. nov., a novel member of the genus Shewanella, isolated from rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2022; 72:005460 [View Article]
    [Google Scholar]
  73. Yu L, Jian H, Gai Y, Yi Z, Feng Y et al. Characterization of two novel psychrophilic and piezotolerant strains, Shewanella psychropiezotolerans sp. nov. and Shewanella eurypsychrophilus sp. nov, adapted to an extreme deep-sea environment. Syst Appl Microbiol 2021; 44:126266 [View Article]
    [Google Scholar]
  74. Gerrard JG, McNevin S, Alfredson D, Forgan-Smith R, Fraser N. Photorhabdus species: bioluminescent bacteria as emerging human pathogens?. Emerg Infect Dis 2003; 9:251–254 [View Article]
    [Google Scholar]
  75. Macori G, Romano A, Adriano D, Razzuoli E, Bianchi DM et al. Draft genome sequences of four Yersinia enterocolitica strains, isolated from wild ungulate carcasses. Genome Announc 2017; 5:e00192-17 [View Article]
    [Google Scholar]
  76. Morita M, Yamamoto S, Hiyoshi H, Kodama T, Okura M et al. Horizontal gene transfer of a genetic island encoding a type III secretion system distributed in Vibrio cholerae. Microbiol Immunol 2013; 57:334–339 [View Article]
    [Google Scholar]
  77. Liu Q, Xu M, He Y, Tao Z, Yang R et al. Complete genome sequence of Vibrio mediterranei 117-T6, a potentially pathogenic bacterium isolated from the conchocelis of Pyropia spp. Microbiol Resour Announc 2019; 8:e01569-18 [View Article]
    [Google Scholar]
  78. Chimalapati S, de Souza Santos M, Lafrance AE, Ray A, Lee W-R et al. Vibrio deploys type 2 secreted lipase to esterify cholesterol with host fatty acids and mediate cell egress. Elife 2020; 9:e58057 [View Article]
    [Google Scholar]
  79. Ma W, Dong FFT, Stavrinides J, Guttman DS. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet 2006; 2:e209 [View Article] [PubMed]
    [Google Scholar]
  80. Ortega AP, Villagra NA, Urrutia IM, Valenzuela LM, Talamilla-Espinoza A et al. Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV-dependent survival to H2O2, and inside human macrophage-like cells. Infect Genet Evol 2016; 45:111–121 [View Article]
    [Google Scholar]
  81. Rohmer L, Guttman DS, Dangl JL. Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae. Genetics 2004; 167:1341–1360 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000973
Loading
/content/journal/mgen/10.1099/mgen.0.000973
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error