1887

Abstract

Violacein is a water-insoluble violet pigment produced by various Gram-negative bacteria. The compound and the bacteria that produce it have been gaining attention due to the antimicrobial and proposed antitumour properties of violacein and the possibility that strains producing it may have broad industrial uses. Bacteria that produce violacein have been isolated from diverse environments including fresh and ocean waters, glaciers, tropical soils, trees, fish and the skin of amphibians. We report here the isolation and characterization of six violacein-producing bacterial strains and three non-violacein-producing close relatives, each isolated from either an aquatic environment or moist food materials in northern California, USA. For each isolate, we characterized traditional phenotypes, generated and analysed draft genome sequences, and carried out multiple types of taxonomic, phylogenetic and phylogenomic analyses. Based on these analyses we assign putative identifications to the nine isolates, which include representatives of the genera , , , , and . In addition, we discuss the utility of various metrics for taxonomic assignment in these groups including average nucleotide identity, whole genome phylogenetic analysis and extent of recent homologous recombination using the software program PopCOGenT.

Funding
This study was supported by the:
  • National Science Foundation (Award 1650042)
    • Principle Award Recipient: MarinaEstella De León
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000971
2023-04-13
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/4/mgen000971.html?itemId=/content/journal/mgen/10.1099/mgen.0.000971&mimeType=html&fmt=ahah

References

  1. Durán N, Justo GZ, Ferreira CV, Melo PS, Cordi L et al. Violacein: properties and biological activities. Biotechnol Appl Biochem 2007; 48:127–133 [View Article] [PubMed]
    [Google Scholar]
  2. Wang H, Wang F, Zhu X, Yan Y, Yu X et al. Biosynthesis and characterization of violacein, deoxyviolacein and oxyviolacein in heterologous host, and their antimicrobial activities. Biochem Eng J 2012; 67:148–155 [View Article]
    [Google Scholar]
  3. Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep 2015; 5:15598 [View Article]
    [Google Scholar]
  4. Lang E, Schumann P, Tindall BJ, Mohr KI, Spröer C. Reclassification of Angiococcus disciformis, Cystobacter minus and Cystobacter violaceus as Archangium disciforme comb. nov., Archangium minus comb. nov. and Archangium violaceum comb. nov., unification of the families Archangiaceae and Cystobacteraceae, and emended descriptions of the families Myxococcaceae and Archangiaceae. Int J Syst Evol Microbiol 2015; 65:4032–4042 [View Article]
    [Google Scholar]
  5. Myeong NR, Seong HJ, Kim HJ, Sul WJ. Complete genome sequence of antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1. J Biotechnol 2016; 223:36–37 [View Article]
    [Google Scholar]
  6. Doing G, Perron GG, Jude BA. Draft genome sequence of a violacein-producing Iodobacter sp. from the Hudson Valley Watershed. Genome Announc 2018; 6:e01428-17 [View Article]
    [Google Scholar]
  7. Jude BA. Draft genome sequence of a Chitinimonas species from Hudson Valley Waterways that expresses violacein pigment. Microbiol Resour Announc 2019; 8:e00683-19 [View Article]
    [Google Scholar]
  8. Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC et al. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 2008; 34:1422–1429 [View Article]
    [Google Scholar]
  9. Sasidharan A, Sasidharan NK, Amma D, Vasu RK, Nataraja AV et al. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). J Microbiol 2015; 53:694–701 [View Article]
    [Google Scholar]
  10. Fang L, Zhang G, Pfeifer BA. Engineering of E. coli for heterologous expression of secondary metabolite biosynthesis pathways recovered from metagenomics libraries. In Charles TC, Liles MR, Sessitsch A. eds Functional Metagenomics: Tools and Applications Cham: Springer International Publishing; 2017 pp 45–63 https://doi.org/10.1007/978-3-319-61510-3_3 accessed 21 April 2022
    [Google Scholar]
  11. Harris RN, James TY, Lauer A, Simon MA, Patel A. Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 2006; 3:53–56 [View Article]
    [Google Scholar]
  12. Mateo-Estrada V, Graña-Miraglia L, López-Leal G, Castillo-Ramírez S. Phylogenomics reveals clear cases of misclassification and genus-wide phylogenetic markers for Acinetobacter. Genome Biol Evol 2019; 11:2531–2541 [View Article]
    [Google Scholar]
  13. Yoon S-H, Baek H-J, Kwon S-W, Lee C-M, Sim J-S et al. Production of violacein by a novel bacterium, Massilia sp. EP15224 strain. Microbiol Biotechnol Lett 2014; 42:317–323 [View Article]
    [Google Scholar]
  14. Clarridge III JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 2004; 17:840–862 [View Article]
    [Google Scholar]
  15. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article] [PubMed]
    [Google Scholar]
  16. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  17. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  18. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article]
    [Google Scholar]
  19. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article]
    [Google Scholar]
  20. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  21. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article]
    [Google Scholar]
  22. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:1–8 [View Article]
    [Google Scholar]
  23. Murray CS, Gao Y, Wu M. Re-evaluating the evidence for a universal genetic boundary among microbial species. Nat Commun 2021; 12:4059 [View Article] [PubMed]
    [Google Scholar]
  24. Warnes MGR, Bolker B, Bonebakker L, Gentleman R, Huber W. Package ‘gplots. In Var R Program Tools Plotting Data 2016
    [Google Scholar]
  25. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  26. Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data manipulation. 2020. R Package Version 08; 2021
  27. Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF. A reverse ecology approach based on a biological definition of microbial populations. Cell 2019; 178:820–834 [View Article]
    [Google Scholar]
  28. Rstudio T. RStudio: Integrated Development Environment for R. Boston, MA: RStudio, Public Benefit Corporation; 2022 http://www.rstudio.com/
  29. Rosvall M, Axelsson D, Bergstrom CT. The map equation. Eur Phys J Spec Top 2009; 178:13–23 [View Article]
    [Google Scholar]
  30. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 2014; 9:e98679 [View Article]
    [Google Scholar]
  31. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438 [View Article] [PubMed]
    [Google Scholar]
  32. Mac Faddin JF. Biochemical Tests for Identification of Medical Bacteria, 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1980
    [Google Scholar]
  33. Carlone GM, Valadez MJ, Pickett MJ. Methods for distinguishing gram-positive from gram-negative bacteria. J Clin Microbiol 1982; 16:1157–1159 [View Article] [PubMed]
    [Google Scholar]
  34. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD et al. PATtyFams: protein families for the microbial genomes in the PATRIC database. Front Microbiol 2016; 7:118 [View Article]
    [Google Scholar]
  35. Rutgers M, Wouterse M, Drost SM, Breure AM, Mulder C. Monitoring soil bacteria with community-level physiological profiles using BiologTM ECO-plates in the Netherlands and Europe. Appl Soil Ecol 2016; 97:23–35 [View Article]
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  37. Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB et al. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems 2020; 5:e00731-19 [View Article]
    [Google Scholar]
  38. Young C-C, Arun AB, Lai W-A, Chen W-M, Chou J-H et al. Chromobacterium aquaticum sp. nov., isolated from spring water samples. Int J Syst Evol Microbiol 2008; 58:877–880 [View Article]
    [Google Scholar]
  39. Kämpfer P, Busse HJ, Scholz HC. Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int J Syst Evol Microbiol 2009; 59:2486–2490 [View Article]
    [Google Scholar]
  40. Lee C-M, Weon H-Y, Kim Y-J, Son J-A, Yoon S-H et al. Aquitalea denitrificans sp. nov., isolated from a Korean wetland. Int J Syst Evol Microbiol 2009; 59:1045–1048 [View Article]
    [Google Scholar]
  41. Lau HT, Faryna J, Triplett EW. Aquitalea magnusonii gen. nov., sp. nov., a novel Gram-negative bacterium isolated from a humic lake. Int J Syst Evol Microbiol 2006; 56:867–871 [View Article]
    [Google Scholar]
  42. Logan N, Brenner DJ, Krieg NR, Staley JT, Garrity GM. Genus VII Iodobacter Logan 1989, 455 VP. In Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer; 2005 pp 833–836
    [Google Scholar]
  43. Srinivas TNR, Manasa P, Begum Z, Sunil B, Sailaja B et al. Iodobacter arcticus sp. nov., a psychrotolerant bacterium isolated from meltwater stream sediment of an Arctic glacier. Int J Syst Evol Microbiol 2013; 63:2800–2805 [View Article]
    [Google Scholar]
  44. Hiraishi A, Shin YK, Sugiyama J. Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. Int J Syst Bacteriol 1997; 47:1249–1252 [View Article]
    [Google Scholar]
  45. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia gen. nov. in validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2000; 50 Pt 2:423–424 [View Article]
    [Google Scholar]
  46. Kämpfer P, Falsen E, Busse H-J. Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter. Int J Syst Evol Microbiol 2008; 58:1680–1684 [View Article]
    [Google Scholar]
  47. De Ley J, Segers P, Gillis M. Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 1978; 28:154–168 [View Article]
    [Google Scholar]
  48. Lincoln SP, Fermor TR, Tindall BJ. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus. Int J Syst Bacteriol 1999; 49 Pt 4:1577–1589 [View Article]
    [Google Scholar]
  49. Lu H, Deng T, Cai Z, Liu F, Yang X et al. Janthinobacterium violaceinigrum sp. nov., Janthinobacterium aquaticum sp. nov. and Janthinobacterium rivuli sp. nov., isolated from a subtropical stream in China. Int J Syst Evol Microbiol 2020; 70:2719–2725 [View Article]
    [Google Scholar]
  50. Jung WJ, Kim SW, Giri SS, Kim HJ, Kim SG et al. Janthinobacterium tructae sp. nov., isolated from kidney of rainbow trout (Oncorhynchus mykiss). Pathogens 2021; 10:229 [View Article]
    [Google Scholar]
  51. Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek 2013; 103:763–769 [View Article]
    [Google Scholar]
  52. Gong X, Skrivergaard S, Korsgaard BS, Schreiber L, Marshall IPG et al. High quality draft genome sequence of Janthinobacterium psychrotolerans sp. nov., isolated from a frozen freshwater pond. Stand Genomic Sci 2017; 12:8 [View Article] [PubMed]
    [Google Scholar]
  53. Chu X, Wang X, Cheung LS, Feng X, Ang P et al. Coastal transient niches shape the microdiversity pattern of a bacterioplankton population with reduced genomes. mBio 2022; 13:e0057122 [View Article]
    [Google Scholar]
  54. Wang J, Li Y, Pinto-Tomás AA, Cheng K, Huang Y. Habitat adaptation drives speciation of a Streptomyces species with distinct habitats and disparate geographic origins. mBio 2022; 13:e0278121 [View Article]
    [Google Scholar]
  55. Gillis M, De Ley J. The genera Chromobacterium and Janthinobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes New York, NY: Springer New York; 2006 pp 737–746 http://link.springer.com/10.1007/0-387-30745-1_32 accessed 5 April 2022
    [Google Scholar]
  56. VanInsberghe D, Arevalo P, Chien D, Polz MF. How can microbial population genomics inform community ecology?. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190253 [View Article]
    [Google Scholar]
  57. Smith H, Akiyama T, Foreman C, Franklin M, Woyke T et al. Draft genome sequence and description of Janthinobacterium sp. strain CG3, a psychrotolerant antarctic supraglacial stream bacterium. Genome Announc 2013; 1:e00960-13 [View Article]
    [Google Scholar]
  58. Valdes N, Soto P, Cottet L, Alarcon P, Gonzalez A et al. Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. Stand Genomic Sci 2015; 10:110 [View Article]
    [Google Scholar]
  59. Dieser M, Smith HJ, Ramaraj T, Foreman CM. Janthinobacterium CG23_2: comparative genome analysis reveals enhanced environmental sensing and transcriptional regulation for adaptation to life in an antarctic supraglacial stream. Microorganisms 2019; 7:10 [View Article]
    [Google Scholar]
  60. Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 2009; 33:191–205 [View Article] [PubMed]
    [Google Scholar]
  61. Balows A. Manual of clinical microbiology 8th edition. Diagn Microbiol Infect Dis 2003; 47:625–626 [View Article]
    [Google Scholar]
  62. Meng X, Ahator SD, Zhang LH. Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems. mSphere 2020; 5:e00119-20 [View Article]
    [Google Scholar]
  63. De León ME, Wilson HS, Jospin G, Eisen JA. Draft genome sequences and genomic analysis for pigment production in bacteria isolated from blue discolored Soymilk and Tofu. J Genomics 2021; 9:55–67 [View Article]
    [Google Scholar]
  64. Trost B, Haakensen M, Pittet V, Ziola B, Kusalik A. Analysis and comparison of the pan-genomic properties of sixteen well-characterized bacterial genera. BMC Microbiol 2010; 10:1–18 [View Article] [PubMed]
    [Google Scholar]
  65. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  66. Hui C-Y, Guo Y, Li H, Gao C-X, Yi J. Detection of environmental pollutant cadmium in water using a visual bacterial biosensor. Sci Rep 2022; 12:6898 [View Article]
    [Google Scholar]
  67. Williams DJ, Grimont PAD, Cazares A, Grimont F, Ageron E et al. The genus Serratia revisited by genomics. Nat Commun 2022; 13:5195 [View Article]
    [Google Scholar]
  68. Gajic I, Kabic J, Kekic D, Jovicevic M, Milenkovic M et al. Antimicrobial susceptibility testing: a comprehensive review of currently used methods. Antibiotics 2022; 11:427 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000971
Loading
/content/journal/mgen/10.1099/mgen.0.000971
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error