1887

Abstract

Sclerotia are specialized fungal structures formed by pigmented and aggregated hyphae, which can survive under unfavourable environmental conditions and serve as the primary inocula for several phytopathogenic fungi including . Among 154 . anastomosis group 7 (AG-7) isolates collected in fields, the sclerotia-forming capability regarding sclerotia number and sclerotia size varied in the fungal population, but the genetic makeup of these phenotypes remained unclear. As limited studies have focused on the genomics of AG-7 and the population genetics of sclerotia formation, this study completed the whole genome sequencing and gene prediction of AG-7 using the Oxford NanoPore and Illumina RNA sequencing. Meanwhile, a high-throughput image-based method was established to quantify the sclerotia-forming capability, and the phenotypic correlation between sclerotia number and sclerotia size was low. A genome-wide association study identified three and five significant SNPs associated with sclerotia number and size in distinct genomic regions, respectively. Of these significant SNPs, two and four showed significant differences in the phenotypic mean separation for sclerotia number and sclerotia size, respectively. Gene ontology enrichment analysis focusing on the linkage disequilibrium blocks of significant SNPs identified more categories related to oxidative stress for sclerotia number, and more categories related to cell development, signalling and metabolism for sclerotia size. These results indicated that different genetic mechanisms may underlie these two phenotypes. Moreover, the heritability of sclerotia number and sclerotia size were estimated for the first time to be 0.92 and 0.31, respectively. This study provides new insights into the heritability and gene functions related to the development of sclerotia number and sclerotia size, which could provide additional knowledge to reduce fungal residues in fields and achieve sustainable disease management.

Funding
This study was supported by the:
  • Council of Agriculture (Award 111AS-1.3.2-ST-aQ)
    • Principle Award Recipient: Hao-XunChang
  • Ministry of Science and Technology (Award MOST-110-2313-B-002-032-MY3)
    • Principle Award Recipient: Hao-XunChang
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000948
2023-03-03
2024-07-13
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000948.html?itemId=/content/journal/mgen/10.1099/mgen.0.000948&mimeType=html&fmt=ahah

References

  1. Bradley CA, Allen TW, Sisson AJ, Bergstrom GC, Bissonnette KM et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Progress 2021; 22:483–495 [View Article]
    [Google Scholar]
  2. Ajayi-Oyetunde OO, Bradley CA. Identification and characterization of Rhizoctonia species associated with soybean seedling disease. Plant Dis 2017; 101:520–533 [View Article]
    [Google Scholar]
  3. Molla KA, Karmakar S, Molla J, Bajaj P, Varshney RK et al. Understanding sheath blight resistance in rice: the road behind and the road ahead. Plant Biotechnol J 2020; 18:895–915 [View Article] [PubMed]
    [Google Scholar]
  4. Li N, Lin B, Wang H, Li X, Yang F et al. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 2019; 51:1540–1548 [View Article] [PubMed]
    [Google Scholar]
  5. Bandy BP. Anastomosis group 3 is the major cause of Rhizoctonia disease of potato in Maine. Plant Dis 1988; 72:596 [View Article]
    [Google Scholar]
  6. Mahoney AK, Babiker EM, Paulitz TC, See D, Okubara PA et al. Characterizing and mapping resistance in synthetic-derived wheat to Rhizoctonia root rot in a green bridge environment. Phytopathology 2016; 106:1170–1176 [View Article]
    [Google Scholar]
  7. Yang XB. Seedling infection of soybean by isolates of Rhizoctonia solani AG-1, causal agent of aerial blight and web blight of soybean. Plant Dis 1990; 74:485 [View Article]
    [Google Scholar]
  8. Yang XB, Hartman GL. Compendium of Soybean Diseases and Pests, 5th ed. St. Paul, MN: APS press; 2016 pp pp 80–82
    [Google Scholar]
  9. Dorrance AE, Kleinhenz MD, McClure SA, Tuttle NT. Temperature, moisture, and seed treatment effects on Rhizoctonia solani root rot of soybean. Plant Dis 2003; 87:533–538 [View Article]
    [Google Scholar]
  10. Lin YC, Tseng MN, Chang HX. First report of soybean seedling disease caused by Rhizoctonia solani AG-7 in taiwan. Plant Dis 2022; 106:314 [View Article]
    [Google Scholar]
  11. Muyolo NG. Anastomosis grouping and variation in virulence among isolates of Rhizoctonia solani associated with dry bean and soybean in Ohio and Zaire. Phytopathology 1993; 83:438 [View Article]
    [Google Scholar]
  12. Nelson B. Characterization and pathogenicity of Rhizoctonia from soybean. Plant Dis 1996; 80:74 [View Article]
    [Google Scholar]
  13. Feng S, Shu C, Wang C, Jiang S, Zhou E. Survival of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight, under different environmental conditions. J Phytopathol 2017; 165:44–52 [View Article]
    [Google Scholar]
  14. Smith ME, Henkel TW, Rollins JA. How many fungi make sclerotia?. Fungal Ecology 2015; 13:211–220 [View Article]
    [Google Scholar]
  15. Bolton MD, Thomma B, Nelson BD. Sclerotinia sclerotiorum (lib.) de bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 2006; 7:1–16 [View Article]
    [Google Scholar]
  16. Sumner DR. Sclerotia formation by Rhizoctonia species and their survival. In Sneh B, Jabaji-Hare S, Neate S, Dijst G. eds Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control Dordrecht: Springer Netherlands; 1996 pp 207–215
    [Google Scholar]
  17. Townsend BB, Willetts HJ. The development of sclerotia of certain fungi. Trans Br Myco 1954; 37:213–221 [View Article]
    [Google Scholar]
  18. Takashi N, Tadao U. Ecological and morphological characteristics of the sclerotia of Rhizoctonia solani Kühn produced in soil. Soil Bio Bioch 1978; 10:471–478 [View Article]
    [Google Scholar]
  19. Coley-Smith JR, Cooke RC. Survival and germination of fungal sclerotia. Annu Rev Phytopathol 1971; 9:65–92 [View Article]
    [Google Scholar]
  20. Ritchie F, McQuilken MP, Bain RA. Effects of water potential on mycelial growth, sclerotial production, and germination of Rhizoctonia solani from potato. Mycol Res 2006; 110:725–733 [View Article]
    [Google Scholar]
  21. Georgiou CD, Patsoukis N, Papapostolou I, Zervoudakis G. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol 2006; 46:691–712 [View Article] [PubMed]
    [Google Scholar]
  22. Papapostolou I, Georgiou CD. Superoxide radical is involved in the sclerotial differentiation of filamentous phytopathogenic fungi: identification of a fungal xanthine oxidase. Fungal Biol 2010; 114:387–395 [View Article] [PubMed]
    [Google Scholar]
  23. Papapostolou I, Georgiou CD. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. J Appl Microbiol 2010; 109:1929–1936 [View Article] [PubMed]
    [Google Scholar]
  24. Liu HH, Huang CC, Lin YH, Tseng MN, Chang HX. Superoxide initiates the hyphal differentiation to microsclerotia formation of Macrophomina phaseolina. Microbiol Spectr 2022; 10:e0208421 [View Article]
    [Google Scholar]
  25. Georgiou CD, Petropoulou KP. Effect of the antioxidant ascorbic acid on sclerotial differentiation in Rhizoctonia solani. Plant Pathol 2001; 50:594–600 [View Article]
    [Google Scholar]
  26. Georgiou CD, Tairis N, Sotiropoulou A. Hydroxyl radical scavengers inhibit sclerotial differentiation and growth in Sclerotinia sclerotiorum and Rhizoctonia solani. Mycol Res 2000; 104:1191–1196 [View Article]
    [Google Scholar]
  27. Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915–1928 [View Article]
    [Google Scholar]
  28. Liu B, Wang H, Ma Z, Gai X, Sun Y et al. Transcriptomic evidence for involvement of reactive oxygen species in Rhizoctonia solani AG1 IA sclerotia maturation. PeerJ 2018; 6:e5103 [View Article]
    [Google Scholar]
  29. Liu B, Ma Z, Gai X, Sun Y, Wang Y et al. Analysis of putative sclerotia maturation-related gene expression in Rhizoctonia solani AG1-IA. Arch Biol Sci 2018; 70:647–653 [View Article]
    [Google Scholar]
  30. Shu C, Zhao M, Anderson JP, Garg G, Singh KB et al. Transcriptome analysis reveals molecular mechanisms of sclerotial development in the rice sheath blight pathogen Rhizoctonia solani AG1-IA. Funct Integr Genomics 2019; 19:743–758 [View Article]
    [Google Scholar]
  31. Kwon YS, Kim SG, Chung WS, Bae H, Jeong SW et al. Proteomic analysis of Rhizoctonia solani AG-1 sclerotia maturation. Fungal Biol 2014; 118:433–443 [View Article]
    [Google Scholar]
  32. Aliferis KA, Jabaji S. Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. J Agric Food Chem 2010; 58:7604–7615 [View Article]
    [Google Scholar]
  33. Aliferis KA, Jabaji S. 1H NMR and GC-MS metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia. Metabolomics 2010; 6:96–108 [View Article]
    [Google Scholar]
  34. Albertorio F, Chapa VA, Chen X, Diaz AJ, Cremer PS. The alpha,alpha-(1-->1) linkage of trehalose is key to anhydrobiotic preservation. J Am Chem Soc 2007; 129:10567–10574 [View Article] [PubMed]
    [Google Scholar]
  35. Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O. New strategies and tools in quantitative genetics: how to go from the phenotype to the genotype. Annu Rev Plant Biol 2017; 68:435–455 [View Article]
    [Google Scholar]
  36. Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 2016; 14:1941–1955 [View Article] [PubMed]
    [Google Scholar]
  37. Jørgensen TR, Burggraaf A-M, Arentshorst M, Schutze T, Lamers G et al. Identification of SclB, a Zn(II)2Cys6 transcription factor involved in sclerotium formation in Aspergillus niger. Fungal Genet Biol 2020; 139:103377 [View Article]
    [Google Scholar]
  38. Gordon A, Basler R, Bansept-Basler P, Fanstone V, Harinarayan L et al. The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles. Theor Appl Genet 2015; 128:2447–2460 [View Article]
    [Google Scholar]
  39. Gordon A, McCartney C, Knox RE, Ereful N, Hiebert CW et al. Genetic and transcriptional dissection of resistance to Claviceps purpurea in the durum wheat cultivar Greenshank. Theor Appl Genet 2020; 133:1873–1886 [View Article] [PubMed]
    [Google Scholar]
  40. Tam V, Patel N, Turcotte M, Bossé Y, Paré G et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467–484 [View Article]
    [Google Scholar]
  41. Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y et al. Genome-wide association studies. Nat Rev Methods Primers 2021; 1:1–21 [View Article]
    [Google Scholar]
  42. Power RA, Parkhill J, de Oliveira T. Microbial genome-wide association studies: lessons from human GWAS. Nat Rev Genet 2017; 18:41–50 [View Article] [PubMed]
    [Google Scholar]
  43. Baird RE. Characterization and comparison of isolates of Rhizoctonia solani AG-7 from Arkansas, Indiana, and Japan, and select AG-4 isolates. Plant Dis 1996; 80:1421 [View Article]
    [Google Scholar]
  44. Baird RE, Carling DE. First report of Rhizoctonia solani AG-7 in Indiana. Plant Dis 1995; 79:321
    [Google Scholar]
  45. Baird RE, Carling DE. First report of Rhizoctonia solani AG-7 in Georgia. Plant Dis 1997; 81:832 [View Article]
    [Google Scholar]
  46. Baird RE, Gitaitis RD, Carling DE, Baird SM, Alt PJ et al. Determination of whole-cell fatty acid profiles for the characterization and differentiation of isolates of Rhizoctonia solani AG-4 and AG-7. Plant Dis 2000; 84:785–788 [View Article]
    [Google Scholar]
  47. Carling DE, Brainard KA, Virgen-Calleros G, Olalde-Portugal V. First report of Rhizoctonia solani AG-7 on potato in mexico. Plant Dis 1998; 82:127 [View Article]
    [Google Scholar]
  48. Rothrock CS. Occurrence of Rhizoctonia solani AG-7 in Arkansas. Plant Dis 1993; 77:1262C [View Article]
    [Google Scholar]
  49. Erper I, Ozkoc I, Karaca GH. Identification and pathogenicity of Rhizoctonia species isolated from bean and soybean plants in Samsun, Turkey. Arch Phytopathol Plant Prot 2011; 44:78–84 [View Article]
    [Google Scholar]
  50. Cubeta MA, Thomas E, Dean RA, Jabaji S, Neate SM et al. Draft genome sequence of the plant-pathogenic soil fungus Rhizoctonia solani anastomosis group 3 strain rhs1ap. Genome Announc 2014; 2:e01072–14 [View Article]
    [Google Scholar]
  51. Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet 2014; 10:e1004281 [View Article]
    [Google Scholar]
  52. Lee D-Y, Jeon J, Kim K-T, Cheong K, Song H et al. Comparative genome analyses of four rice-infecting Rhizoctonia solani isolates reveal extensive enrichment of homogalacturonan modification genes. BMC Genomics 2021; 22:242 [View Article]
    [Google Scholar]
  53. Wibberg D, Rupp O, Jelonek L, Kröber M, Verwaaijen B et al. Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the miseq (illumina) system. J Biotechnol 2015; 203:19–21 [View Article]
    [Google Scholar]
  54. Zhang Z, Xia X, Du Q, Xia L, Ma X et al. Genome sequence of Rhizoctonia solani anastomosis group 4 strain Rhs4ca, a widespread pathomycete in field crops. Mol Plant Microbe Interact 2021; 34:826–829 [View Article]
    [Google Scholar]
  55. Zheng A, Lin R, Zhang D, Qin P, Xu L et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 2013; 4:1424 [View Article]
    [Google Scholar]
  56. Ko W. A selective medium for the quantitative determination of Rhizoctonia solani in soil. Phytopathology 1971; 61:707 [View Article]
    [Google Scholar]
  57. Johanson A, Turner HC, McKay GJ, Brown AE. A PCR-based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzae-sativae. FEMS Microbiol Lett 1998; 162:289–294 [View Article]
    [Google Scholar]
  58. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article]
    [Google Scholar]
  59. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article]
    [Google Scholar]
  60. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  61. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  62. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  63. Letunic I, Bork P. Interactive Tree Of Life (iTOL) V5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  64. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  65. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  66. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  67. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 2019; 20:224 [View Article] [PubMed]
    [Google Scholar]
  68. Li C, Guo Z, Zhou S, Han Q, Zhang M et al. Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Commun Biol 2021; 4:201 [View Article]
    [Google Scholar]
  69. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article]
    [Google Scholar]
  70. Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun 2020; 11:1432 [View Article] [PubMed]
    [Google Scholar]
  71. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  72. Palmer J, Stajich JE. Funannotate: a fungal genome annotation and comparative genomics pipeline (v1.5.2). Zenodo 2016
    [Google Scholar]
  73. Smit A, Hubley R, Green P. RepeatMasker open-4.0; 2013
  74. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  75. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37:907–915 [View Article] [PubMed]
    [Google Scholar]
  76. Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom Bioinform 2021; 3:lqaa108 [View Article] [PubMed]
    [Google Scholar]
  77. Stanke M, Keller O, Gunduz I, Hayes A, Waack S et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 2006; 34:W435–9 [View Article]
    [Google Scholar]
  78. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019; 37:420–423 [View Article] [PubMed]
    [Google Scholar]
  79. Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 2007; 35:W429–32 [View Article] [PubMed]
    [Google Scholar]
  80. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article] [PubMed]
    [Google Scholar]
  81. Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics 2008; 9:392 [View Article]
    [Google Scholar]
  82. de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS et al. ScanProsite: detection of PROSITE signature matches and prorule-associated functional and structural residues in proteins. Nucleic Acids Res 2006; 34:W362–W365 [View Article]
    [Google Scholar]
  83. Sperschneider J, Dodds PN. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol Plant Microbe Interact 2022; 35:146–156 [View Article]
    [Google Scholar]
  84. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
  85. Lepais O, Weir JT. SimRAD: an R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Mol Ecol Resour 2014; 14:1314–1321 [View Article] [PubMed]
    [Google Scholar]
  86. Chang HX, Wen Z, Tan R, Dong H, Wickland DP et al. Linkage mapping for foliar necrosis of soybean sudden death syndrome. Phytopathology 2020; 110:907–915 [View Article]
    [Google Scholar]
  87. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011; 6:e19379 [View Article]
    [Google Scholar]
  88. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA MEM. arXiv:13033997 [q-bio]. 2013 [cited 26 Mar 2022]; 2013 http://arxiv.org/abs/1303.3997
  89. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:giab008 [View Article] [PubMed]
    [Google Scholar]
  90. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 2007; 23:2633–2635 [View Article] [PubMed]
    [Google Scholar]
  91. Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019; 8:giy154 [View Article] [PubMed]
    [Google Scholar]
  92. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57:289–300
    [Google Scholar]
  93. Wang J, Zhang Z. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom Proteomic Bioinform 2021; 19:629–640 [View Article]
    [Google Scholar]
  94. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81:559–575 [View Article] [PubMed]
    [Google Scholar]
  95. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008; 91:4414–4423 [View Article]
    [Google Scholar]
  96. Chang H-X, Lipka AE, Domier LL, Hartman GL. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Phytopathology 2016; 106:1139–1151 [View Article] [PubMed]
    [Google Scholar]
  97. Altenhoff AM, Škunca N, Glover N, Train C-M, Sueki A et al. The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements. Nucleic Acids Res 2015; 43:D240–D249 [View Article]
    [Google Scholar]
  98. Wu T, Hu E, Xu S, Chen M, Guo P et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2021; 2:100141 [View Article]
    [Google Scholar]
  99. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011; 6:e21800 [View Article]
    [Google Scholar]
  100. Abd-Elsalam KA, Omar MR, Aly AA. First report of Rhizoctonia solani AG-7 on cotton in egypt. J Phytopathol 2010307–309
    [Google Scholar]
  101. Ritchie F, Bain RA, McQuilken MP. Effects of nutrient status, temperature and pH on mycelial growth, sclerotial production and germination of Rhizoctonia solani from potato. J Plant Pathol 2009; 91:589–596
    [Google Scholar]
  102. Page OT. The influence of light and other environmental factors on mycelial growth and sclerotial production by Botrytis squamosa. Can J Bot 1956; 34:881–890 [View Article]
    [Google Scholar]
  103. Rudolph ED. The effect of some physiological and environmental factors on sclerotial Apergilli. Am J Bot 1962; 49:71–78 [View Article]
    [Google Scholar]
  104. Belmar SB. Influence of crop rotation on inoculum density of Rhizoctonia solani and sheath blight incidence in rice. Phytopathology 1987; 77:1138 [View Article]
    [Google Scholar]
  105. Damicone JP. Density of sclerotia of Rhizoctonia solani and incidence of sheath blight in rice fields in Mississippi. Plant Dis 1993; 77:257 [View Article]
    [Google Scholar]
  106. Hu W, Pan X, Abbas HMK, Li F, Dong W. Metabolites contributing to Rhizoctonia solani AG-1-IA maturation and sclerotial differentiation revealed by UPLC-QTOF-MS metabolomics. PLoS One 2017; 12:e0177464 [View Article]
    [Google Scholar]
  107. Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 20006102–6109
    [Google Scholar]
  108. Zhang J, Wang Y, Du J, Huang Z, Fang A et al. Sclerotinia sclerotiorum thioredoxin reductase is required for oxidative stress tolerance, virulence, and sclerotial development. Front Microbiol 2019; 10: [View Article]
    [Google Scholar]
  109. Holtzman DA, Yang S, Drubin DG. Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J Cell Biol 1993; 122:635–644 [View Article]
    [Google Scholar]
  110. Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 2011; 12:683–691 [View Article] [PubMed]
    [Google Scholar]
  111. Jin FJ, Takahashi T, Matsushima K, Hara S, Shinohara Y et al. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae. Eukaryot Cell 2011; 10:945–955 [View Article]
    [Google Scholar]
  112. Luo X, Xie C, Dong J, Yang X. Comparative transcriptome analysis reveals regulatory networks and key genes of microsclerotia formation in the cotton vascular wilt pathogen. Fungal Genet Biol 2019; 126:25–36 [View Article]
    [Google Scholar]
  113. Sang H, Chang HX, Chilvers MI. A Sclerotinia sclerotiorum transcription factor involved in sclerotial development and virulence on pea. mSphere 2019; 4:e00615-18 [View Article]
    [Google Scholar]
  114. Liu L, Lyu X, Pan Z, Wang Q, Mu W et al. The C2H2 transcription factor SsZFH1 regulates the size, number, and development of apothecia in Sclerotinia sclerotiorum. Phytopathology 2022; 112:1476–1485 [View Article]
    [Google Scholar]
  115. Cao H, Huang P, Zhang L, Shi Y, Sun D et al. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol 2016; 211:1035–1051 [View Article]
    [Google Scholar]
  116. Tran V-T, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A et al. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytol 2014; 202:565–581 [View Article]
    [Google Scholar]
  117. Zhao S, Ge W, Watanabe A, Fortwendel JR, Gibbons JG. Genome-wide association for itraconazole sensitivity in non-resistant clinical isolates of Aspergillus fumigatus. Front Fungal Biol 2021; 1: [View Article]
    [Google Scholar]
  118. Fan Y, Wang Y, Korfanty GA, Archer M, Xu J. Genome-wide association analysis for triazole resistance in Aspergillus fumigatus. Pathogens 2021; 10:701 [View Article]
    [Google Scholar]
  119. Spanner R, Taliadoros D, Richards J, Rivera-Varas V, Neubauer J et al. Genome-wide association and selective sweep studies reveal the complex genetic architecture of DMI fungicide resistance in Cercospora beticola. Genome Biol Evol 2021; 13:evab209 [View Article]
    [Google Scholar]
  120. Broberg M, Dubey M, Sun M-H, Ihrmark K, Schroers H-J et al. Out in the cold: identification of genomic regions associated with cold tolerance in the biocontrol fungus Clonostachys rosea through genome-wide association mapping. Front Microbiol 2018; 9: [View Article]
    [Google Scholar]
  121. Talas F, Kalih R, Miedaner T, McDonald BA. Genome-wide association study identifies novel candidate genes for aggressiveness, deoxynivalenol production, and azole sensitivity in natural field populations of Fusarium graminearum. Mol Plant Microbe Interact 2016; 29:417–430 [View Article]
    [Google Scholar]
  122. Dalman K, Himmelstrand K, Olson Å, Lind M, Brandström-Durling M et al. A genome-wide association study identifies genomic regions for virulence in the non-model organism Heterobasidion annosum s.s. PLoS One 2013; 8:e53525 [View Article]
    [Google Scholar]
  123. Korinsak S, Tangphatsornruang S, Pootakham W, Wanchana S, Plabpla A et al. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach. Genomics 2019; 111:661–668 [View Article]
    [Google Scholar]
  124. Palma-Guerrero J, Hall CR, Kowbel D, Welch J, Taylor JW et al. Genome wide association identifies novel loci involved in fungal communication. PLoS Genet 2013; 9:e1003669 [View Article]
    [Google Scholar]
  125. Gao Y, Liu Z, Faris JD, Richards J, Brueggeman RS et al. Validation of genome-wide association studies as a tool to identify virulence factors in Parastagonospora nodorum. Phytopathology 2016; 106:1177–1185 [View Article]
    [Google Scholar]
  126. Pereira D, McDonald BA, Croll D. The genetic architecture of emerging fungicide resistance in populations of a global wheat pathogen. Genome Biol Evol 2020; 12:2231–2244 [View Article]
    [Google Scholar]
  127. Martin A, Moolhuijzen P, Tao Y, McIlroy J, Ellwood SR et al. Genomic regions associated with virulence in Pyrenophora teres f. teres identified by genome-wide association analysis and biparental mapping. Phytopathology 2020; 110:881–891 [View Article]
    [Google Scholar]
  128. Mohd‐Assaad N, McDonald BA, Croll D. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mol Ecol 2016; 25:6124–6142 [View Article]
    [Google Scholar]
  129. Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J 2017; 11:1189–1204 [View Article]
    [Google Scholar]
  130. Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F et al. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J Biotechnol 2013; 167:142–155 [View Article]
    [Google Scholar]
  131. Kaushik A, Roberts DP, Ramaprasad A, Mfarrej S, Nair M et al. Pangenome analysis of the soilborne fungal phytopathogen Rhizoctonia solani and development of a comprehensive web resource: RsolaniDB. Front Microbiol 2022; 13:839524 [View Article]
    [Google Scholar]
  132. Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J et al. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2 IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genomics 2016; 17:245 [View Article]
    [Google Scholar]
  133. Wibberg D, Genzel F, Verwaaijen B, Blom J, Rupp O et al. Draft genome sequence of the potato pathogen Rhizoctonia solani AG3-PT isolate Ben3. Arch Microbiol 2017; 199:1065–1068 [View Article]
    [Google Scholar]
  134. Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet 2014; 10:e1004281 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000948
Loading
/content/journal/mgen/10.1099/mgen.0.000948
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Supplementary material 6

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error