1887

Abstract

The spread of carbapenemase-producing (CPE) is of major public health concern. The transmission dynamics of CPE in hospitals, particularly at the national level, are not well understood. Here, we describe a retrospective nationwide genomic surveillance study of CPE in Ireland between 2012 and 2017. We sequenced 746 national surveillance CPE samples obtained between 2012 and 2017. After clustering the sequences, we used thresholds based on pairwise SNPs, and reported within–host diversity along with epidemiological data to infer recent putative transmissions. All clusters in circulating clones, derived from high-resolution phylogenies, of a species (, , , , and ) were individually examined for evidence of transmission. Antimicrobial resistance trends over time were also assessed. We identified 352 putative transmission events in six species including widespread and frequent transmissions in three species. We detected putative outbreaks in 4/6 species with three hospitals experiencing prolonged outbreaks. The gene was the main cause of carbapenem resistance in Ireland in almost all species. An expansion in the number of sequence types carrying was an additional cause of the increasing prevalence of carbapenemase-producing and .

Funding
This study was supported by the:
  • MRC Centre for Global Infectious Disease Analysis (Award MR/R015600/1)
    • Principle Award Recipient: JohnA. Lees
  • National Institute for Health Research (NIHR) Senior Investigator Award
    • Principle Award Recipient: SharonJ. Peacock
  • Wellcome Trust Sir Henry Postdoctoral Fellowship (Award 110243/Z/15/Z)
    • Principle Award Recipient: CatherineLudden
  • Health Innovation Challenge Fund (Award WT098600, HICF-T5- 391 342)
    • Principle Award Recipient: CatherineLudden
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000924
2023-03-14
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000924.html?itemId=/content/journal/mgen/10.1099/mgen.0.000924&mimeType=html&fmt=ahah

References

  1. World organisation. global priority list of antibiotic-resistant bacteria toguide research, discovery, and development of new antibiotics; 2017
  2. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19:56–66 [View Article] [PubMed]
    [Google Scholar]
  3. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 2017; 17:153–163 [View Article] [PubMed]
    [Google Scholar]
  4. Mitgang EA, Hartley DM, Malchione MD, Koch M, Goodman JL. Review and mapping of carbapenem-resistant Enterobacteriaceae in Africa: Using diverse data to inform surveillance gaps. Int J Antimicrob Agents 2018; 52:372–384 [View Article] [PubMed]
    [Google Scholar]
  5. van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017; 8:460–469 [View Article] [PubMed]
    [Google Scholar]
  6. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L et al. Carbapenemase-Producing Organisms: A Global Scourge. Clin Infect Dis 2018; 66:1290–1297 [View Article] [PubMed]
    [Google Scholar]
  7. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 2014; 20:821–830 [View Article] [PubMed]
    [Google Scholar]
  8. David S, Cohen V, Reuter S, Sheppard AE, Giani T et al. Integrated chromosomal and plasmid sequence analyses reveal diverse modes of carbapenemase gene spread among Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2020; 117:25043–25054 [View Article] [PubMed]
    [Google Scholar]
  9. Roberts LW, Catchpoole E, Jennison AV, Bergh H, Hume A et al. Genomic analysis of carbapenemase-producing Enterobacteriaceae in Queensland reveals widespread transmission of bla IMP-4 on an IncHI2 plasmid. Microb Genom 2020; 6: [View Article]
    [Google Scholar]
  10. Kanamori H, Parobek CM, Juliano JJ, van Duin D, Cairns BA et al. A Prolonged Outbreak of KPC-3-Producing Enterobacter cloacae and Klebsiella pneumoniae Driven by Multiple Mechanisms of Resistance Transmission at A Large Academic Burn Center. Antimicrob Agents Chemother 2017; 61:e01516-16 [View Article] [PubMed]
    [Google Scholar]
  11. David S, Reuter S, Harris SR, Glasner C, Feltwell T et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 2019; 4:1919–1929 [View Article] [PubMed]
    [Google Scholar]
  12. Yan JJ, Wang MC, Zheng PX, Tsai LH, Wu JJ. Associations of the major international high-risk resistant clones and virulent clones with specific ompK36 allele groups in Klebsiella pneumoniae in Taiwan. New Microbes New Infect 2015; 5:1–4 [View Article] [PubMed]
    [Google Scholar]
  13. Ferrari C, Corbella M, Gaiarsa S, Comandatore F, Scaltriti E et al. Multiple Klebsiella pneumoniae KPC Clones Contribute to an Extended Hospital Outbreak. Front Microbiol 2019; 10:2767 [View Article] [PubMed]
    [Google Scholar]
  14. Marsh JW, Mustapha MM, Griffith MP, Evans DR, Ezeonwuka C et al. Evolution of Outbreak-Causing Carbapenem-Resistant Klebsiella pneumoniae ST258 at a Tertiary Care Hospital over 8 Years. mBio 2019; 10:e01945-19 [View Article] [PubMed]
    [Google Scholar]
  15. Roberts LW, Harris PNA, Forde BM, Ben Zakour NL, Catchpoole E et al. Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei. Nat Commun 2020; 11:466 [View Article] [PubMed]
    [Google Scholar]
  16. Miltgen G, Garrigos T, Cholley P, Deleume M, Allou N et al. Nosocomial cluster of carbapenemase-producing Enterobacter cloacae in an intensive care unit dedicated COVID-19. Antimicrob Resist Infect Control 2021; 10:151 [View Article] [PubMed]
    [Google Scholar]
  17. Yamagishi T, Matsui M, Sekizuka T, Ito H, Fukusumi M et al. A prolonged multispecies outbreak of IMP-6 carbapenemase-producing Enterobacterales due to horizontal transmission of the IncN plasmid. Sci Rep 2020; 10:4139 [View Article] [PubMed]
    [Google Scholar]
  18. León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol 2021; 6:606–616 [View Article] [PubMed]
    [Google Scholar]
  19. Martin J, Phan HTT, Findlay J, Stoesser N, Pankhurst L et al. Covert dissemination of carbapenemase-producing Klebsiella pneumoniae (KPC) in a successfully controlled outbreak: long- and short-read whole-genome sequencing demonstrate multiple genetic modes of transmission. J Antimicrob Chemother 2017; 72:3025–3034 [View Article] [PubMed]
    [Google Scholar]
  20. Ludden C, Coll F, Gouliouris T, Restif O, Blane B et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe 2021; 2:e472–e480 [View Article] [PubMed]
    [Google Scholar]
  21. Quail MA, Swerdlow H, Turner DJ. Improved protocols for the illumina genome analyzer sequencing system. Curr Protoc Hum Genet 2009; Chapter 18:Unit [View Article]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  23. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article] [PubMed]
    [Google Scholar]
  24. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  25. Page AJ, Taylor B, Keane JA. Multilocus sequence typing by blast from de novo assemblies against PubMLST. The Journal of Open Source Software 2016
    [Google Scholar]
  26. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article] [PubMed]
    [Google Scholar]
  27. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  28. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  29. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304–316 [View Article] [PubMed]
    [Google Scholar]
  30. Seemann T. Snippy: fast bacterial variant calling from NGS reads; 2015 https://github.com/tseemann/snippy
  31. Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R et al. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol 2021; 23:7723–7740 [View Article] [PubMed]
    [Google Scholar]
  32. Wang X, Zhao J, Ji F, Chang H, Qin J et al. Multiple-Replicon Resistance Plasmids of Klebsiella Mediate Extensive Dissemination of Antimicrobial Genes. Front Microbiol 2021; 12:754931 [View Article] [PubMed]
    [Google Scholar]
  33. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453–1462 [View Article] [PubMed]
    [Google Scholar]
  34. Decano AG, Tran N, Al-Foori H, Al-Awadi B, Campbell L et al. Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. Access Microbiol 2021; 3:acmi000179 [View Article] [PubMed]
    [Google Scholar]
  35. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. Nested Russian Doll-Like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene blaKPC. Antimicrob Agents Chemother 2016; 60:3767–3778 [View Article] [PubMed]
    [Google Scholar]
  36. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  37. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  38. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article] [PubMed]
    [Google Scholar]
  39. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  40. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C et al. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic. PLoS One 2015; 10:e0133727 [View Article] [PubMed]
    [Google Scholar]
  41. Perdigão J, Caneiras C, Elias R, Modesto A, Spadar A et al. Genomic Epidemiology of Carbapenemase Producing Klebsiella pneumoniae Strains at a Northern Portuguese Hospital Enables the Detection of a Misidentified Klebsiella variicola KPC-3 Producing Strain. Microorganisms 2020; 8:12 [View Article] [PubMed]
    [Google Scholar]
  42. Coll F, Raven KE, Knight GM, Blane B, Harrison EM et al. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe 2020; 1:e328–e335 [View Article] [PubMed]
    [Google Scholar]
  43. Snitkin ES, Zelazny AM, Thomas PJ, Stock F. NISC Comparative Sequencing Program Group et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012; 4:148 [View Article] [PubMed]
    [Google Scholar]
  44. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother 2015; 59:1656–1663 [View Article] [PubMed]
    [Google Scholar]
  45. Findlay J, Hopkins KL, Loy R, Doumith M, Meunier D et al. OXA-48-like carbapenemases in the UK: an analysis of isolates and cases from 2007 to 2014. J Antimicrob Chemother 2017; 72:1340–1349 [View Article] [PubMed]
    [Google Scholar]
  46. Ortega A, Sáez D, Bautista V, Fernández-Romero S, Lara N et al. Carbapenemase-producing Escherichia coli is becoming more prevalent in Spain mainly because of the polyclonal dissemination of OXA-48. J Antimicrob Chemother 2016; 71:2131–2138 [View Article] [PubMed]
    [Google Scholar]
  47. Vellinga A, Brennan W, Humphreys H, Burns K. Initial impact of a national programme to contain the spread of carbapenemase-producing Enterobacterales in Ireland. J Hosp Infect 2021; 109:107–114 [View Article] [PubMed]
    [Google Scholar]
  48. Schmithausen RM, Sib E, Exner M, Hack S, Rösing C et al. The Washing Machine as a Reservoir for Transmission of Extended-Spectrum-Beta-Lactamase (CTX-M-15)-Producing Klebsiella oxytoca ST201 to Newborns. Appl Environ Microbiol 2019; 85:e01435-19 [View Article] [PubMed]
    [Google Scholar]
  49. Wymant C, Hall M, Ratmann O, Bonsall D, Golubchik T et al. PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity. Mol Biol Evol 2018; 35:719–733 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000924
Loading
/content/journal/mgen/10.1099/mgen.0.000924
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error