1887

Abstract

serovar Typhimurium (. Typhimurium) comprises a group of closely related human and animal pathogens that account for a large proportion of all infections globally. The epidemiological record of . Typhimurium in Europe is characterized by successive waves of dominant clones, each prevailing for approximately 10–15 years before replacement. Succession of epidemic clones may represent a moving target for interventions aimed at controlling the spread and impact of this pathogen on human and animal health. Here, we investigate the relationship of phage sensitivity and population structure of . Typhimurium using data from the Anderson phage typing scheme. We observed greater resistance to phage predation of epidemic clones circulating in livestock over the past decades compared to variants with a restricted host range implicating increased resistance to phage in the emergence of epidemic clones of particular importance to human health. Emergence of monophasic . Typhimurium ST34, the most recent dominant multidrug-resistant clone, was accompanied by increased resistance to phage predation during clonal expansion, in part by the acquisition of the mTmII prophage that may have contributed to the fitness of the strains that replaced ancestors lacking this prophage.

Funding
This study was supported by the:
  • National Institute for Health and Care Research (Award NIHR200892)
    • Principle Award Recipient: MarieA Chattaway
  • Biotechnology and Biological Sciences Research Council (Award BB/R012504/1)
    • Principle Award Recipient: RobertA Kingsley
  • Biotechnology and Biological Sciences Research Council (Award BB/M025489/1)
    • Principle Award Recipient: RobertA Kingsley
  • Biotechnology and Biological Sciences Research Council (Award BB/N007964/1)
    • Principle Award Recipient: RobertA Kingsley
  • Biotechnology and Biological Sciences Research Council (Award BB/M011216/1)
    • Principle Award Recipient: OliverJ Charity
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000897
2022-11-16
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/11/mgen000897.html?itemId=/content/journal/mgen/10.1099/mgen.0.000897&mimeType=html&fmt=ahah

References

  1. Bawn M, Alikhan N-F, Thilliez G, Kirkwood M, Wheeler NE et al. Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation. PLoS Genet 2020; 16:e1008850 [View Article]
    [Google Scholar]
  2. Tassinari E, Bawn M, Thilliez G, Charity O, Acton L et al. Whole-genome epidemiology links phage-mediated acquisition of a virulence gene to the clonal expansion of a pandemic Salmonella enterica serovar Typhimurium clone. Microb Genom 2020; 6:mgen000456 [View Article] [PubMed]
    [Google Scholar]
  3. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage 2011; 1:31–45 [View Article] [PubMed]
    [Google Scholar]
  4. Shkoporov AN, Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe 2019; 25:195–209 [View Article] [PubMed]
    [Google Scholar]
  5. Bossi L, Fuentes JA, Mora G, Figueroa-Bossi N. Prophage contribution to bacterial population dynamics. J Bacteriol 2003; 185:6467–6471 [View Article] [PubMed]
    [Google Scholar]
  6. Gómez-Gómez C, Blanco-Picazo P, Brown-Jaque M, Quirós P, Rodríguez-Rubio L et al. Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Sci Rep 2019; 9:1–11 [View Article] [PubMed]
    [Google Scholar]
  7. Balcázar JL. How do bacteriophages promote antibiotic resistance in the environment?. Clin Microbiol Infect 2018; 24:447–449 [View Article] [PubMed]
    [Google Scholar]
  8. Gómez-Gómez C, Blanco-Picazo P, Brown-Jaque M, Quirós P, Rodríguez-Rubio L et al. Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Sci Rep 2019; 9:13281 [View Article]
    [Google Scholar]
  9. Cowley LA, Dallman TJ, Jenkins C, Sheppard SK. Phage Predation Shapes the Population Structure of Shiga-Toxigenic Escherichia coli O157:H7 in the UK: An Evolutionary Perspective. Front Genet 2019; 10:763 [View Article] [PubMed]
    [Google Scholar]
  10. Holt GS, Lodge JK, McCarthy AJ, Graham AK, Young G et al. Shigatoxin encoding Bacteriophage ϕ24B modulates bacterial metabolism to raise antimicrobial tolerance. Sci Rep 2017; 7:40424 [View Article]
    [Google Scholar]
  11. Chiang YN, Penadés JR, Chen J. Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathog 2019; 15:e1007878 [View Article]
    [Google Scholar]
  12. Humphrey S, Fillol-Salom A, Quiles-Puchalt N, Ibarra-Chávez R, Haag AF et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat Commun 2021; 12:6509 [View Article]
    [Google Scholar]
  13. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med 2015; 12:e1001923 [View Article] [PubMed]
    [Google Scholar]
  14. APHA Salmonella in Livestock Production in GB 2019; 2020 www.gov.uk/government/publications
  15. Zhang S, Li S, Gu W, den Bakker H, Boxrud D et al. Zoonotic source attribution of Salmonella enterica serotype typhimurium using genomic surveillance data, United States. Emerg Infect Dis 2019; 25:82–91 [View Article]
    [Google Scholar]
  16. Anderson ES, Ward LR, Saxe MJ, de Sa JD. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg 1977; 78:297–300 [View Article]
    [Google Scholar]
  17. Anderson ES, Ward LR, Saxe MJ, de Sa JD. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg 1977; 78:297–300 [View Article]
    [Google Scholar]
  18. Threlfall EJ, Ward LR, Rowe B. Spread of multiresistant strains of Salmonella typhimurium phage types 204 and 193 in Britain. Br Med J 1978; 2:997 [View Article] [PubMed]
    [Google Scholar]
  19. Schatten H, Eisenstark A. Salmonella: methods and protocols. Methods Mol Biol 2007; 394:v–vi [View Article]
    [Google Scholar]
  20. Threlfall EJ, Ward LR, Ashley AS, Rowe B. Plasmid-encoded trimethoprim resistance in multiresistant epidemic Salmonella typhimurium phage types 204 and 193 in Britain. Br Med J 1980; 280:1210–1211 [View Article] [PubMed]
    [Google Scholar]
  21. Hampton MD, Threlfall EJ, Frost JA, Ward LR, Rowe B. Salmonella typhimurium DT 193: differentiation of an epidemic phage type by antibiogram, plasmid profile, plasmid fingerprint and salmonella plasmid virulence (spv) gene probe. J Appl Bacteriol 1995; 78:402–408 [View Article] [PubMed]
    [Google Scholar]
  22. Baquar N, Threlfall EJ, Rowe B, Stanley J. Phage type 193 of Salmonella typhimurium contains different chromosomal genotypes and multiple IS200 profiles. FEMS Microbiol Lett 1994; 115:291–295 [View Article] [PubMed]
    [Google Scholar]
  23. Branchu P, Bawn M, Kingsley RA. Genome variation and molecular epidemiology of Salmonella enterica serovar typhimurium pathovariants. Infect Immun 2018; 86:e00079-18 [View Article]
    [Google Scholar]
  24. Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschäpe H et al. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun 2002; 70:2249–2255 [View Article] [PubMed]
    [Google Scholar]
  25. Rabsch W, Tschäpe H, Bäumler AJ. Non-typhoidal salmonellosis: emerging problems. Microbes Infect 2001; 3:237–247 [View Article] [PubMed]
    [Google Scholar]
  26. Kingsley RA, Bäumler AJ. Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol Microbiol 2000; 36:1006–1014 [View Article]
    [Google Scholar]
  27. Branchu P, Charity OJ, Bawn M, Thilliez G, Dallman TJ et al. SGI-4 in Monophasic Salmonella Typhimurium ST34 Is a Novel ICE That Enhances Resistance to Copper. Front Microbiol 2019; 10:1118 [View Article] [PubMed]
    [Google Scholar]
  28. Petrovska L, Mather AE, AbuOun M, Branchu P, Harris SR et al. Microevolution of monophasic Salmonella typhimurium during Epidemic, United Kingdom, 2005-2010. Emerg Infect Dis 2016; 22:617–624 [View Article]
    [Google Scholar]
  29. Brockhurst MA, Morgan AD, Fenton A, Buckling A. Experimental coevolution with bacteria and phage. The Pseudomonas fluorescens--Phi2 model system. Infect Genet Evol 2007; 7:547–552 [View Article] [PubMed]
    [Google Scholar]
  30. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
  31. Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 2009; 4:206–223 [View Article] [PubMed]
    [Google Scholar]
  32. Rodwell EV, Wenner N, Pulford CV, Cai Y, Bowers-Barnard A et al. Isolation and characterisation of bacteriophages with activity against invasive non-typhoidal Salmonella causing bloodstream infection in Malawi. Viruses 2021; 13:478 [View Article]
    [Google Scholar]
  33. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al. Primer3--new capabilities and interfaces. Nucleic Acids Res 2012; 40:e115 [View Article]
    [Google Scholar]
  34. Signorell A et al. DescTools: tools for descriptive statistics. R package version 2018; 0:26
    [Google Scholar]
  35. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  38. Guy L, Kultima JR, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 2010; 26:2334–2335 [View Article] [PubMed]
    [Google Scholar]
  39. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM; 2013
  40. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv.org 2012
    [Google Scholar]
  41. Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. The variant call format and VCFtools. Bioinformatics 2011; 27:2156–2158 [View Article] [PubMed]
    [Google Scholar]
  42. Seemann T. Snippy: rapid haploid variant calling and core SNP phylogeny; 2015
  43. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article] [PubMed]
    [Google Scholar]
  44. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article]
    [Google Scholar]
  45. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  46. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on mathematics in the life sciences 1986; 17:57–86
    [Google Scholar]
  47. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  48. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article]
    [Google Scholar]
  49. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  50. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res 2018; 3:93 [View Article] [PubMed]
    [Google Scholar]
  51. Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 2004; 20:289–290 [View Article] [PubMed]
    [Google Scholar]
  52. Ishikawa SA, Zhukova A, Iwasaki W, Gascuel O. A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios. Mol Biol Evol 2019; 36:2069–2085 [View Article] [PubMed]
    [Google Scholar]
  53. Bollback JP. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 2006; 7:88 [View Article] [PubMed]
    [Google Scholar]
  54. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 2012; 3:217–223 [View Article]
    [Google Scholar]
  55. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article] [PubMed]
    [Google Scholar]
  56. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  57. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 2018; 34:4310–4312 [View Article] [PubMed]
    [Google Scholar]
  58. Lees JA, Vehkala M, Välimäki N, Harris SR, Chewapreecha C. Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat Commun 2016; 7:12797 [View Article]
    [Google Scholar]
  59. Yu G. et al. ggtree: anrpackage for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 2017; 8:128–36
    [Google Scholar]
  60. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res 2018; 46:e134 [View Article]
    [Google Scholar]
  61. Nishimura Y, Watai H, Honda T, Mihara T, Omae K et al. Environmental viral genomes shed new light on virus-host interactions in the Ocean. mSphere 2017; 2:e00359-16 [View Article]
    [Google Scholar]
  62. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA et al. Pfam: The protein families database in 2021. Nucleic Acids Res 2021; 49:D412–D419 [View Article] [PubMed]
    [Google Scholar]
  63. Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics 2013; 29:2487–2489 [View Article] [PubMed]
    [Google Scholar]
  64. Garvey P, McKeown P, Kelly P, Cormican M, Anderson W et al. Investigation and management of an outbreak of Salmonella Typhimurium DT8 associated with duck eggs, Ireland 2009 to 2011. Euro Surveill 2013; 18:20454 [View Article]
    [Google Scholar]
  65. Jakhetia R, Talukder KA, Verma NK. Isolation, characterization and comparative genomics of bacteriophage SfIV: a novel serotype converting phage from Shigella flexneri. BMC Genomics 2013; 14:677 [View Article] [PubMed]
    [Google Scholar]
  66. Zhang Y, Yamaguchi Y, Inouye M. Characterization of YafO, an Escherichia coli toxin. J Biol Chem 2009; 284:25522–25531 [View Article] [PubMed]
    [Google Scholar]
  67. Bindal G, Krishnamurthi R, Seshasayee ASN, Rath D. CRISPR-Cas-Mediated Gene Silencing Reveals RacR To Be a Negative Regulator of YdaS and YdaT Toxins in Escherichia coli K-12. mSphere 2017; 2:e00483-17 [View Article]
    [Google Scholar]
  68. LeRoux M, Srikant S, Teodoro GIC, Zhang T, Littlehale ML et al. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat Microbiol 2022; 7:1028–1040 [View Article] [PubMed]
    [Google Scholar]
  69. FELIX A. Phage typing of Salmonella typhimurium: its place in epidemiological and epizootiological investigations. J Gen Microbiol 1956; 14:208–222 [View Article]
    [Google Scholar]
  70. Hopkins KL, Threlfall EJ. Frequency and polymorphism of sopE in isolates of Salmonella enterica belonging to the ten most prevalent serotypes in England and Wales. J Med Microbiol 2004; 53:539–543 [View Article] [PubMed]
    [Google Scholar]
  71. Cadel-Six S, Cherchame E, Douarre P-E, Tang Y, Felten A et al. The spatiotemporal dynamics and microevolution events that favored the success of the highly clonal multidrug-resistant Monophasic Salmonella Typhimurium Circulating in Europe. Front Microbiol 2021; 12:651124 [View Article]
    [Google Scholar]
  72. Chattaway MA, Dallman TJ, Larkin L, Nair S, McCormick J et al. The Transformation of Reference Microbiology Methods and Surveillance for Salmonella With the Use of Whole Genome Sequencing in England and Wales. Front Public Health 2019; 7:317 [View Article] [PubMed]
    [Google Scholar]
  73. CALLOW BR. A new phage-typing scheme for Salmonella typhi-murium. J Hyg 1959; 57:346–359 [View Article]
    [Google Scholar]
  74. Schmieger H. Molecular survey of the Salmonella phage typing system of Anderson. J Bacteriol 1999; 181:1630–1635 [View Article] [PubMed]
    [Google Scholar]
  75. Helm RA, Porwollik S, Stanley AE, Maloy S, McClelland M et al. Pigeon-associated strains of Salmonella enterica serovar Typhimurium phage type DT2 have genomic rearrangements at rRNA operons. Infect Immun 2004; 72:7338–7341 [View Article] [PubMed]
    [Google Scholar]
  76. Kingsley RA, Kay S, Connor T, Barquist L, Sait L et al. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar. mBio 2013; 4:e00565–13 [View Article] [PubMed]
    [Google Scholar]
  77. Andrews-Polymenis HL, Rabsch W, Porwollik S, McClelland M, Rosetti C et al. Host restriction of Salmonella enterica serotype Typhimurium pigeon isolates does not correlate with loss of discrete genes. J Bacteriol 2004; 186:2619–2628 [View Article] [PubMed]
    [Google Scholar]
  78. Mather AE, Lawson B, de Pinna E, Wigley P, Parkhill J et al. Genomic analysis of Salmonella enterica serovar Typhimurium from Wild Passerines in England and Wales. Appl Environ Microbiol 2016; 82:6728–6735 [View Article]
    [Google Scholar]
  79. Nale JY, Vinner GK, Lopez VC, Thanki AM, Phothaworn P et al. An optimized bacteriophage cocktail can effectively control Salmonella in vitro and in Galleria mellonella. Front Microbiol 2020; 11:609955 [View Article]
    [Google Scholar]
  80. Rabsch W. et al. Typing phages and prophages of Salmonella. Salmonella From Genome to Function 2011 Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  81. Mueller-Doblies D, Speed K, Davies RH. A retrospective analysis of Salmonella serovars isolated from pigs in Great Britain between 1994 and 2010. Prev Vet Med 2013; 110:447–455 [View Article] [PubMed]
    [Google Scholar]
  82. Kirkwood M, Vohra P, Bawn M, Thilliez G, Pye H et al. Ecological niche adaptation of Salmonella Typhimurium U288 is associated with altered pathogenicity and reduced zoonotic potential. Commun Biol 2021; 4:498 [View Article]
    [Google Scholar]
  83. Salmond GPC, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol 2015; 13:777–786 [View Article] [PubMed]
    [Google Scholar]
  84. Koonin EV. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res 2016; 5:5 [View Article]
    [Google Scholar]
  85. García P, Malorny B, Rodicio MR, Stephan R, Hächler H et al. Horizontal acquisition of a multidrug-resistance module (R-type ASSuT) is responsible for the monophasic phenotype in a widespread clone of Salmonella Serovar 4,[5],12:i. Front Microbiol 2016; 7:680 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000897
Loading
/content/journal/mgen/10.1099/mgen.0.000897
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL

Supplementary material 6

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error