1887

Abstract

Extended-spectrum beta lactamase (ESBL)-producing are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing . isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the genes on IncF plasmids. The last ST131 isolate harboured on the chromosome in a unique site between C and D. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.

Funding
This study was supported by the:
  • AgResearch (Award N/A)
    • Principle Award Recipient: BrightwellGale
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000893
2022-10-06
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/10/mgen000893.html?itemId=/content/journal/mgen/10.1099/mgen.0.000893&mimeType=html&fmt=ahah

References

  1. Sharma R, Sandrock CE, Meehan J, Theriault N. Community-acquired bacterial pneumonia-changing epidemiology, resistance patterns, and newer antibiotics: spotlight on delafloxacin. Clin Drug Investig 2020; 40:947–960 [View Article]
    [Google Scholar]
  2. Tamadonfar KO, Omattage NS, Spaulding CN, Hultgren SJ, Cossart P. Reaching the end of the line: urinary tract infections. Microbiol Spectr 2019; 7:7 [View Article]
    [Google Scholar]
  3. Hapuarachchi IU, Hannaway RF, Roman T, Biswas A, Dyet K et al. Genetic evaluation of ESBL-producing Escherichia coli urinary isolates in Otago, New Zealand. JAC Antimicrob Resist 2021; 3:dlab147 [View Article]
    [Google Scholar]
  4. Martischang R, Riccio ME, Abbas M, Stewardson AJ, Kluytmans JAJW et al. Household carriage and acquisition of extended-spectrum β-lactamase-producing Enterobacteriaceae: systematic review. Infect Control Hosp Epidemiol 2020; 41:286–294 [View Article]
    [Google Scholar]
  5. Dahms C, Hübner N-O, Kossow A, Mellmann A, Dittmann K et al. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PLOS One 2015; 10:e0143326 [View Article]
    [Google Scholar]
  6. Leonard AFC, Zhang L, Balfour AJ, Garside R, Gaze WH. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Int 2015; 82:92–100 [View Article]
    [Google Scholar]
  7. Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K et al. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 2018e00470–18 [View Article]
    [Google Scholar]
  8. Sparham SJ, Kwong JC, Valcanis M, Easton M, Trott DJ et al. Emergence of multidrug resistance in locally-acquired human infections with Salmonella Typhimurium in Australia owing to a new clade harbouring blaCTX-M-9. Int J Antimicrob Agents 2017; 50:101–105 [View Article]
    [Google Scholar]
  9. Søraas A, Sundsfjord A, Sandven I, Brunborg C, Jenum PA. Risk factors for community-acquired urinary tract infections caused by ESBL-producing Enterobacteriaceae-a case-control study in a low prevalence country. PLOS One 2013; 8:e69581 [View Article]
    [Google Scholar]
  10. Jørgensen SB, Søraas AV, Arnesen LS, Leegaard TM, Sundsfjord A et al. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLOS One 2017; 12:e0186576 [View Article]
    [Google Scholar]
  11. Baron S, Le Devendec L, Lucas P, Larvor E, Jové T et al. Characterisation of plasmids harbouring extended-spectrum cephalosporin resistance genes in Escherichia coli from French rivers. Vet Microbiol 2020; 243:108619 [View Article]
    [Google Scholar]
  12. Diwan V, Hanna N, Purohit M, Chandran S, Riggi E et al. Seasonal variations in water-quality, antibiotic residues, resistant bacteria and antibiotic resistance genes of Escherichia coli isolates from water and sediments of the Kshipra river in Central India. Int J Environ Res Public Health 2018; 15:1281 [View Article]
    [Google Scholar]
  13. Haberecht HB, Nealon NJ, Gilliland JR, Holder AV, Runyan C et al. Antimicrobial-resistant Escherichia coli from environmental waters in Northern Colorado. J Environ Public Health 20193862949 [View Article]
    [Google Scholar]
  14. Lenart-Boroń A, Prajsnar J, Guzik M, Boroń P, Chmiel M. How much of antibiotics can enter surface water with treated wastewater and how it affects the resistance of waterborne bacteria: a case study of the Białka river sewage treatment plant. Environ Res 2020; 191:110037 [View Article]
    [Google Scholar]
  15. Mbanga J, Amoako DG, Abia ALK, Allam M, Ismail A et al. Genomic insights of multidrug-resistant Escherichia coli from wastewater sources and their association with clinical pathogens in South Africa. Front Vet Sci 2021; 8:636715 [View Article]
    [Google Scholar]
  16. Blaak H, Lynch G, Italiaander R, Hamidjaja RA, Schets FM et al. Multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in dutch surface water and wastewater. PLOS One 2015; 10:e0127752 [View Article]
    [Google Scholar]
  17. Korzeniewska E, Harnisz M. Extended-spectrum beta-lactamase (ESBL)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. J Environ Manage 2013; 128:904–911 [View Article]
    [Google Scholar]
  18. Fagerström A, Mölling P, Khan FA, Sundqvist M, Jass J et al. Comparative distribution of extended-spectrum beta-lactamase-producing Escherichia coli from urine infections and environmental waters. PLOS One 2019; 14:e0224861 [View Article]
    [Google Scholar]
  19. Cookson AL, Marshall JC, Biggs PJ, Rogers LE, Collis RM et al. Whole-genome sequencing and virulome analysis of Escherichia coli isolated from New Zealand environments of contrasting observed land use. Appl Environ Microbiol 2022; 88:e00277–22 [View Article]
    [Google Scholar]
  20. Devane ML, Weaver L, Singh SK, Gilpin BJ. Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds - a review. J Environ Manage 2018; 222:293–303 [View Article]
    [Google Scholar]
  21. Lévesque S, Dufresne PJ, Soualhine H, Domingo M-C, Bekal S et al. A side by side comparison of bruker biotyper and VITEK MS: utility of MALDI-TOF MS technology for microorganism identification in a public health reference aboratory. PLOS One 2015; 10:e0144878 [View Article]
    [Google Scholar]
  22. Hudzicki J. Kirby-bauer disk diffusion susceptibility test protocol. American Society for Microbio 2009; 15:55–63
    [Google Scholar]
  23. Anonymous EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance Basel, Switzerland: EUCAST; 2017
    [Google Scholar]
  24. Gray HA, Biggs PJ, Midwinter AC, Burgess SA. Genome sequences for extended-spectrum beta-lactamase-producing Escherichia coli strains isolated from different water sources. Microbiol Resour Announc 2021; 10:e0032821 [View Article]
    [Google Scholar]
  25. Seemann T, Goncalves da Silva A, Bulach DM, Schultz MB, Kwong JC et al. Nullarbor Github. n.d https://github.com/tseemann/nullarbor
  26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  27. Toombs-Ruane LJ, Benschop J, French NP, Biggs PJ, Midwinter AC et al. Carriage of extended-spectrum-beta-lactamase- and AmpC beta-lactamase-producing Escherichia coli strains from humans and pets in the same households. Appl Environ Microbiol 2020; 86:e01613-20 [View Article]
    [Google Scholar]
  28. Harris PNA, Ben Zakour NL, Roberts LW, Wailan AM, Zowawi HM et al. Whole genome analysis of cephalosporin-resistant Escherichia coli from bloodstream infections in Australia, New Zealand and Singapore: high prevalence of CMY-2 producers and ST131 carrying blaCTX-M-15 and blaCTX-M-27. J Antimicrob Chemother 2018; 73:634–642 [View Article] [PubMed]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  30. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153 [View Article]
    [Google Scholar]
  31. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483-19 [View Article]
    [Google Scholar]
  32. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014; 52:1501–1510 [View Article]
    [Google Scholar]
  33. Seeman S. Abricate, Github; 2020 https://github.com/tseemann/abricate
  34. Seemann T. Snippy: fast bacterial variant calling from NGS reads; 2015 https://github.com/tseemann/snippy
  35. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article]
    [Google Scholar]
  36. Letunic I, Bork P. Interactive tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  37. Ghosh H, Bunk B, Doijad S, Schmiedel J, Falgenhauer L et al. Complete genome sequence of blaCTX-M-27-encoding Escherichia coli strain H105 of sequence type 131 lineage C1/H30R. Genome Announc 2017e00736–17 [View Article]
    [Google Scholar]
  38. Hu Y, Moran RA, Blackwell GA, McNally A, Zong Z. Fine-scale reconstruction of the evolution of FII-33 multidrug resistance plasmids enables high-resolution genomic surveillance. mSystems 2022; 7:e0083121 [View Article]
    [Google Scholar]
  39. Yoon E-J, Kang DY, Yang JW, Kim D, Lee H et al. New delhi metallo-beta-lactamase-producing Enterobacteriaceae in South Korea between 2010 and 2015. Front Microbiol 2018; 9:571 [View Article]
    [Google Scholar]
  40. Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K et al. Separate F-type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence Type 131. mSphere 2016; 1:e00121-16 [View Article]
    [Google Scholar]
  41. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 Is driven by a single highly pathogenic subclone, H 30-Rx. mBio 2013; 4:e00377–13 [View Article]
    [Google Scholar]
  42. Nielsen KL, Hansen KH, Nielsen JB, Knudsen JD, Schønning K et al. Mutational change of CTX-M-15 to CTX-M-127 resulting in mecillinam resistant Escherichia coli during pivmecillinam treatment of a patient. MicrobiologyOpen 2019; 8:e941 [View Article]
    [Google Scholar]
  43. Matsuo N, Nonogaki R, Hayashi M, J-i W, Suzuki M et al. n.d. Characterization of blaCTX-M-27/F1:A2:B20 plasmids harbored by Escherichia coli sequence type 131 sublineage C1/H30R isolates spreading among elderly Japanese in nonacute-care settings. Antimicrob Agents Chemother 64:20
    [Google Scholar]
  44. Mutti M, Sonnevend Á, Pál T, Junttila S, Ekker H et al. Complete genome sequence of Escherichia coli 81009, a representative of the sequence type 131 C1-M27 clade with a multidrug-resistant phenotype. Genome Announc 2018; 6:e00056-18 [View Article]
    [Google Scholar]
  45. Brolund A, Rajer F, Giske CG, Melefors Ö, Titelman E et al. Dynamics of resistance plasmids in extended-spectrum-β-lactamase-producing Enterobacteriaceae during postinfection colonization. Antimicrob Agents Chemother 2019; 63:e02201-18 [View Article]
    [Google Scholar]
  46. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article]
    [Google Scholar]
  47. Bryant D, Moulton V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004; 21:255–265 [View Article] [PubMed]
    [Google Scholar]
  48. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article]
    [Google Scholar]
  49. Carattoli A, Zankari E, Garcìa-Fernandez A, Volby Larsen M, Lund O, Villa L et al. PlasmidFinder and pMLST: in silico detection and typing of plasmids. Antimicrob Agents Chemother 2014
    [Google Scholar]
  50. Chon J-W, Kim Y-J, Kim H-S, Kim D-H, Kim H et al. Evaluation of cephamycins as supplements to selective agar for detecting Campylobacter spp. in chicken carcass rinses. Int J Food Microbiol 2016; 223:75–78 [View Article]
    [Google Scholar]
  51. Jasson V, Sampers I, Botteldoorn N, López-Gálvez F, Baert L et al. Characterization of Escherichia coli from raw poultry in Belgium and impact on the detection of Campylobacter jejuni using bolton broth. Int J Food Microbiol 2009; 135:248–253 [View Article]
    [Google Scholar]
  52. Collis RM, Burgess SA, Biggs PJ, Midwinter AC, French NP et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in dairy farm environments: a New Zealand perspective. Foodborne Pathog Dis 2019; 16:5–22 [View Article]
    [Google Scholar]
  53. Hassen B, Abbassi MS, Benlabidi S, Ruiz-Ripa L, Mama OM et al. Genetic characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from wastewater and river water in Tunisia: predominance of CTX-M-15 and high genetic diversity. Environ Sci Pollut Res Int 2020; 27:44368–44377 [View Article]
    [Google Scholar]
  54. Díaz-Gavidia C, Barría C, Rivas L, García P, Alvarez FP et al. Isolation of ciprofloxacin and ceftazidime-resistant Enterobacterales from vegetables and river water Is strongly associated with the season and the sample type. Front Microbiol 2021; 12:604567 [View Article]
    [Google Scholar]
  55. Heffernan H, Woodhouse R, Draper J, Ren X. Survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae Wellington, New Zealand: Antimicrobial Reference Laboratory and Health Group, ESR; 2018
    [Google Scholar]
  56. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 2019; 32:e00135-18 [View Article]
    [Google Scholar]
  57. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B et al. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 2015; 25:119–128 [View Article] [PubMed]
    [Google Scholar]
  58. Riley LW. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 2014; 20:380–390 [View Article]
    [Google Scholar]
  59. Shawa M, Furuta Y, Paudel A, Kabunda O, Mulenga E et al. Clonal relationship between multidrug-resistant Escherichia coli ST69 from poultry and humans in Lusaka, Zambia. FEMS Microbiol Lett 2019 [View Article] [PubMed]
    [Google Scholar]
  60. Day MJ, Hopkins KL, Wareham DW, Toleman MA, Elviss N et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis 2019; 19:1325–1335 [View Article]
    [Google Scholar]
  61. Platell JL, Johnson JR, Cobbold RN, Trott DJ. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Vet Microbiol 2011; 153:99–108 [View Article]
    [Google Scholar]
  62. Kurittu P, Khakipoor B, Jalava J, Karhukorpi J, Heikinheimo A. Whole-genome sequencing of extended-spectrum beta-lactamase-producing Escherichia coli from human infections in Finland revealed isolates belonging to internationally successful ST131-C1-M27 subclade but distinct from non-human sources. Front Microbiol 2021; 12:789280 [View Article]
    [Google Scholar]
  63. Falgenhauer L, Zur Nieden A, Harpel S, Falgenhauer J, Domann E. Clonal CTX-M-15-producing Escherichia coli ST-949 are present in German surface water. Front Microbiol 2021; 12:617349 [View Article]
    [Google Scholar]
  64. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 2016; 7:e02162 [View Article]
    [Google Scholar]
  65. Finn TJ, Scriver L, Lam L, Duong M, Peirano G et al. A comprehensive account of Escherichia coli sequence type 131 in wastewater reveals an abundance of fluoroquinolone-resistant clade A strains. Appl Environ Microbiol 2020; 86:e01913-19 [View Article]
    [Google Scholar]
  66. Liu H, Zhou H, Li Q, Peng Q, Zhao Q et al. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli isolated from the rivers and lakes in Northwest China. BMC Microbiol 2018; 18:125 [View Article]
    [Google Scholar]
  67. Tóth K, Tóth Á, Kamotsay K, Németh V, Szabó D. Population snapshot of the extended-spectrum β-lactamase-producing Escherichia coli invasive strains isolated from a Hungarian hospital. Ann Clin Microbiol Antimicrob 2022; 21:3 [View Article]
    [Google Scholar]
  68. Jamborova I, Johnston BD, Papousek I, Kachlikova K, Micenkova L et al. Extensive genetic commonality among wildlife, wastewater, community, and nosocomial isolates of Escherichia coli sequence type 131 (H30R1 and H30RX subclones) that carry blaCTX-M-27 or blaCTX-M-15. Antimicrob Agents Chemother 2018; 62: [View Article]
    [Google Scholar]
  69. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012; 158:1005–1015 [View Article]
    [Google Scholar]
  70. Johnson JR, Johnston BD, Porter S, Thuras P, Aziz M et al. Accessory traits and phylogenetic background predict Escherichia coli extraintestinal virulence better than does ecological source. J Infect Dis 2019; 219:121–132 [View Article]
    [Google Scholar]
  71. Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M et al. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog 2019; 11:10 [View Article]
    [Google Scholar]
  72. Mostafa HH, Cameron A, Taffner SM, Wang J, Malek A et al. Genomic surveillance of ceftriaxone-resistant Escherichia coli in Western New York suggests the extended-spectrum β-lactamase blaCTX-M-27 Is emerging on distinct plasmids in ST38. Front Microbiol 2020; 11:1747 [View Article]
    [Google Scholar]
  73. Yasugi M, Hatoya S, Motooka D, Matsumoto Y, Shimamura S et al. Whole-genome analyses of extended-spectrum or AmpC β-lactamase-producing Escherichia coli isolates from companion dogs in Japan. PLOS ONE 2021; 16:e0246482 [View Article]
    [Google Scholar]
  74. Shawa M, Furuta Y, Mulenga G, Mubanga M, Mulenga E et al. Novel chromosomal insertions of ISEcp1-blaCTX-M-15 and diverse antimicrobial resistance genes in Zambian clinical isolates of Enterobacter cloacae and Escherichia coli. Antimicrob Resist Infect Control 2021; 10:79 [View Article]
    [Google Scholar]
  75. Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka M et al. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H 30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother 2015; 70:1639–1649 [View Article]
    [Google Scholar]
  76. Poirel L, Naas T, Nordmann P. Genetic support of extended-spectrum β-lactamases. Clin Microbiol Infect 2008; 14 Suppl 1:75–81 [View Article]
    [Google Scholar]
  77. Decano AG, Ludden C, Feltwell T, Judge K, Parkhill J et al. Complete assembly of Escherichia coli sequence type 131 genomes using long reads demonstrates antibiotic resistance gene variation within diverse plasmid and chromosomal contexts. mSphere 2019; 4:e00130-19 [View Article]
    [Google Scholar]
  78. Kariuki S, Okoro C, Kiiru J, Njoroge S, Omuse G et al. Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients Is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid. Antimicrob Agents Chemother 2015; 59:3133–3139 [View Article]
    [Google Scholar]
  79. Mattioni Marchetti V, Bitar I, Mercato A, Nucleo E, Marchesini F et al. Deadly puppy infection caused by an MDR Escherichia coli O39 blaCTX–M–15, blaCMY–2, blaDHA–1, and aac(6)-Ib-cr – positive in a breeding kennel in Central Italy. Front Microbiol 2019; 11:584 [View Article]
    [Google Scholar]
  80. Pot M, Guyomard-Rabenirina S, Couvin D, Ducat C, Enouf V et al. Dissemination of extended-spectrum-β-lactamase-producing Enterobacter cloacae complex from a hospital to the nearby environment in guadeloupe (French West Indies): ST114 lineage coding for a successful IncHI2/ST1 plasmid. Antimicrob Agents Chemother 2021; 65:20 [View Article]
    [Google Scholar]
  81. Samuelsen Ø, Hansen F, Aasnæs B, Hasman H, Lund BA et al. Dissemination and characteristics of a novel plasmid-encoded carbapenem-hydrolyzing class D β-lactamase, OXA-436, found in isolates from four patients at six different hospitals in Denmark. Antimicrob Agents Chemother 2018; 62:e01260-17 [View Article]
    [Google Scholar]
  82. Schlüter A, Nordmann P, Bonnin RA, Millemann Y, Eikmeyer FG et al. IncH-type plasmid harboring blaCTX-M-15, blaDHA-1, and qnrB4 genes recovered from animal isolates. Antimicrob Agents Chemother 2014; 58:3768–3773 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000893
Loading
/content/journal/mgen/10.1099/mgen.0.000893
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error