1887

Abstract

is a leading cause of foodborne outbreaks and systemic infections worldwide. Emerging multi-drug resistant lineages such as a ciprofloxacin-resistant subclade (CIP) within serovar Kentucky ST198 threaten the effective prevention and treatment of infections. To understand the genomic diversity and antimicrobial resistance gene content associated with S. Kentucky in Switzerland, we whole-genome sequenced 70 human clinical isolates obtained between 2010 and 2020. Most isolates belonged to ST198-CIP. High- and low-level ciprofloxacin resistance among CIP isolates was associated with variable mutations in and in combination with stable mutations in quinolone-resistance determining regions (QRDRs). Analysis of isolates from patients with prolonged ST198 colonization indicated subclonal adaptions with the locus as a mutational hotspot. SNP analyses identified multiple clusters of near-identical isolates, which were often associated with travel but included spatiotemporally linked isolates from Switzerland. The largest SNP cluster was associated with travellers returning from Indonesia, and investigation of global data linked >60 additional ST198 salmonellosis isolates to this cluster. Our results emphasize the urgent need for implementing whole-genome sequencing as a routine tool for surveillance and outbreak detection.

Funding
This study was supported by the:
  • Bundesamt für Gesundheit
    • Principle Award Recipient: RogerStephan
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000877
2022-10-27
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/10/mgen000877.html?itemId=/content/journal/mgen/10.1099/mgen.0.000877&mimeType=html&fmt=ahah

References

  1. EFSA & ECDC The European Union One Health 2020 Zoonoses Report. EFSA J. n.d http://doi.wiley.com/10.2903/j.efsa.2021.6971
  2. Zollner-Schwetz I, Krause R. Therapy of acute gastroenteritis: role of antibiotics. Clin Microbiol Infect 2015; 21:744–749 [View Article]
    [Google Scholar]
  3. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327 [View Article]
    [Google Scholar]
  4. Cavaco LM, Aarestrup FM. Eval. of quinolones for use in detection of determinants of acquired quinolone resistance, INCL. the new transm. resistance mechanisms qnrA, qnrB, qnrS, and AAC (6′) Ib-cr, in E. coli and S. enterica. J Clin Microbiol 2009; 47(9):2751–2758
    [Google Scholar]
  5. Williamson DA, Lane CR, Easton M, Valcanis M, Strachan J et al. Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrob Agents Chemother 2018; 62:e02012-17 [View Article]
    [Google Scholar]
  6. Tadesse G, Tessema TS, Beyene G, Aseffa A. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: a systematic review and meta-analysis. PLoS One 2018; 13:e0192575 [View Article]
    [Google Scholar]
  7. Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S et al. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb Genom 2018; 4: [View Article]
    [Google Scholar]
  8. Wong MH, Chan EW, Liu LZ, Chen S. PMQR genes oqxAB and aac(6’)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front Microbiol 2014; 5:521 [View Article]
    [Google Scholar]
  9. Hooper DC, Jacoby GA. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 2016; 6:a025320 [View Article]
    [Google Scholar]
  10. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337–418 [View Article]
    [Google Scholar]
  11. Slowey R, Kim SW, Prendergast D, Madigan G, Van Kessel JAS et al. Genomic diversity and resistome profiles of Salmonella enterica subsp. enterica serovar Kentucky isolated from food and animal sources in Ireland. Zoonoses Public Health 2022; 69:1–12 [View Article]
    [Google Scholar]
  12. Haley BJ, Kim SW, Pettengill J, Luo Y, Karns JS et al. Genomic and evolutionary analysis of two Salmonella enterica serovar Kentucky sequence types isolated from bovine and poultry sources in North America. PLoS One 2016; 11:e0161225 [View Article]
    [Google Scholar]
  13. Hawkey J, Le Hello S, Doublet B, Granier SA, Hendriksen RS et al. Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198. Microb Genom 2019; 5: [View Article]
    [Google Scholar]
  14. Mahindroo J, Thanh DP, Nguyen TNT, Mohan B, Thakur S et al. Endemic fluoroquinolone-resistant Salmonella enterica serovar Kentucky ST198 in northern India. Microb Genom 2019; 5: [View Article]
    [Google Scholar]
  15. Pallo-Zimmerman LM, Byron JK, Graves TK. Fluoroquinolones: then and now. Compend Contin Educ Vet 2010; 32(7):
    [Google Scholar]
  16. Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T et al. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 1991; 27:199–208 [View Article]
    [Google Scholar]
  17. Samper-Cativiela C, Diéguez-Roda B, Trigo da Roza F, Ugarte-Ruiz M, Elnekave E et al. Genomic characterization of multidrug-resistant Salmonella serovar Kentucky ST198 isolated in poultry flocks in Spain (2011-2017). Microb Genom 2022; 8: [View Article]
    [Google Scholar]
  18. Chen H, Song J, Zeng X, Chen D, Chen R et al. National prevalence of Salmonella enterica serotype Kentucky ST198 with high-level resistance to ciprofloxacin and extended-spectrum cephalosporins in China, 2013 to 2017. mSystems 2021; 6:e00935-20 [View Article]
    [Google Scholar]
  19. EFSA & ECDC The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J 2021; 19(4):e06490 [View Article]
    [Google Scholar]
  20. Le Hello S, Bekhit A, Granier SA, Barua H, Beutlich J et al. The global establishment of a highly-fluoroquinolone resistant Salmonella enterica serotype Kentucky ST198 strain. Front Microbiol 2013; 4:1–10 [View Article]
    [Google Scholar]
  21. Collard J-M, Place S, Denis O, Rodriguez-Villalobos H, Vrints M et al. Travel-acquired salmonellosis due to Salmonella Kentucky resistant to ciprofloxacin, ceftriaxone and co-trimoxazole and associated with treatment failure. J Antimicrob Chemother 2007; 60:190–192 [View Article]
    [Google Scholar]
  22. Weill F-X, Bertrand S, Guesnier F, Baucheron S, Cloeckaert A et al. Ciprofloxacin-resistant Salmonella Kentucky in travelers. Emerg Infect Dis 2006; 12:1611–1612 [View Article]
    [Google Scholar]
  23. Vázquez X, Fernández J, Bances M, Lumbreras P, Alkorta M et al. Genomic analysis of ciprofloxacin-resistant Salmonella enterica serovar Kentucky ST198 from Spanish hospitals. Front Microbiol 2021; 12:1–10 [View Article]
    [Google Scholar]
  24. Westrell T, Monnet DL, Gossner C, Heuer O, Takkinen J. Drug-resistant Salmonella enterica serotype Kentucky in Europe. Lancet Infect Dis 2014; 14:270–271 [View Article]
    [Google Scholar]
  25. Coipan CE, Westrell T, van Hoek A, Alm E, Kotila S et al. Genomic epidemiology of emerging ESBL-producing Salmonella Kentucky blactx-M-14b in Europe. Emerg Microbes Infect 2020; 9:2124–2135 [View Article]
    [Google Scholar]
  26. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S et al. Salmonella control in poultry flocks and its public health impact. EFSA J 2019; 17(2):e05596 [View Article]
    [Google Scholar]
  27. Marzel A, Desai PT, Goren A, Schorr YI, Nissan I et al. Persistent infections by nontyphoidal Salmonella in humans: epidemiology and genetics. Clin Infect Dis 2016; 62:879–886 [View Article]
    [Google Scholar]
  28. Okoro CK, Kingsley RA, Quail MA, Kankwatira AM, Feasey NA et al. High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella typhimurium disease. Clin Infect Dis 2012; 54:955–963 [View Article]
    [Google Scholar]
  29. Octavia S, Wang Q, Tanaka MM, Sintchenko V, Lan R. Genomic variability of serial human isolates of Salmonella enterica serovar Typhimurium associated with prolonged carriage. J Clin Microbiol 2015; 53:3507–3514 [View Article]
    [Google Scholar]
  30. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol 2017; 15:453–464 [View Article]
    [Google Scholar]
  31. CLSI Performance standards for antimicrobial susceptibility testing. In CLSI Supplement M100, 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  33. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  34. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article]
    [Google Scholar]
  35. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLOS Comput Biol 2022; 18:e1009802 [View Article]
    [Google Scholar]
  36. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article]
    [Google Scholar]
  37. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  38. Zhang S, den Bakker HC, Li S, Chen J, Dinsmore BA et al. SeqSero2: rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl Environ Microbiol 2019; 85:e01746-19 [View Article]
    [Google Scholar]
  39. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  40. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  41. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article]
    [Google Scholar]
  42. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article]
    [Google Scholar]
  43. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 2021; 11:12728 [View Article]
    [Google Scholar]
  44. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article]
    [Google Scholar]
  45. Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 2017; 33:3340–3347 [View Article]
    [Google Scholar]
  46. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLOS Comput Biol 2018; 14:e1005944 [View Article]
    [Google Scholar]
  47. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article]
    [Google Scholar]
  48. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  49. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article]
    [Google Scholar]
  50. Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A et al. CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Comput Sci 2015; 1:e20 [View Article]
    [Google Scholar]
  51. Alikhan N-F, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLOS Genet 2018; 14:e1007261 [View Article]
    [Google Scholar]
  52. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article]
    [Google Scholar]
  53. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom 2018; 4: [View Article]
    [Google Scholar]
  54. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article]
    [Google Scholar]
  55. R Core Team R: A language and environment for statistical computing. Internet] 2020 https://www.r-project.org/
    [Google Scholar]
  56. Pebesma E. Simple features for R: standardized support for spatial vector data. R Journal 2018; 10:439 [View Article]
    [Google Scholar]
  57. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016 https://cran.r-project.org/web/packages/ggplot2/citation.html accessed 28 April 2021
  58. Chattaway MA, Gentle A, Nair S, Tingley L, Day M et al. Phylogenomics and antimicrobial resistance of Salmonella Typhi and Paratyphi A, B and C in England, 2016-2019. Microb Genom 2021; 7: [View Article]
    [Google Scholar]
  59. Hamidian M, Holt KE, Hall RM. The complete sequence of Salmonella genomic island SGI1-K. J Antimicrob Chemother 2015; 70:305–306 [View Article]
    [Google Scholar]
  60. de Curraize C, Siebor E, Neuwirth C. Genomic islands related to Salmonella genomic island 1; integrative mobilisable elements in trmE mobilised in trans by A/C plasmids. Plasmid 2021; 114:102565 [View Article]
    [Google Scholar]
  61. Magnet S, Courvalin P, Lambert T. Activation of the cryptic aac(6’)-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol 1999; 181:6650–6655 [View Article]
    [Google Scholar]
  62. Salipante SJ, Barlow M, Hall BG. GeneHunter, a transposon tool for identification and isolation of cryptic antibiotic resistance genes. Antimicrob Agents Chemother 2003; 47:3840–3845 [View Article]
    [Google Scholar]
  63. Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci 2016; 113:E5044–51 [View Article]
    [Google Scholar]
  64. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012; 56:559–562 [View Article]
    [Google Scholar]
  65. Seiffert SN, Perreten V, Johannes S, Droz S, Bodmer T et al. OXA-48 carbapenemase-producing Salmonella enterica serovar Kentucky isolate of sequence type 198 in a patient transferred from Libya to Switzerland. Antimicrob Agents Chemother 2014; 58:2446–2449 [View Article]
    [Google Scholar]
  66. Hawkey J, Edwards DJ, Dimovski K, Hiley L, Billman-Jacobe H et al. Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a single chicken farm. BMC Genomics 2013; 14:800 [View Article]
    [Google Scholar]
  67. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet 2012; 44:1215–1221 [View Article]
    [Google Scholar]
  68. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC et al. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 2013; 341:1514–1517 [View Article]
    [Google Scholar]
  69. Wang Y-T, Lei C-W, Liu S-Y, Chen X, Gao Y-F et al. Tracking Salmonella enterica by whole genome sequencing of isolates recovered from broiler chickens in a poultry production system. Int J Food Microbiol 2021; 350:109246 [View Article]
    [Google Scholar]
  70. Xiong Z, Wang S, Huang Y, Gao Y, Shen H et al. Ciprofloxacin-resistant Salmonella enterica serovar kentucky ST198 in broiler chicken supply chain and patients, China, 2010-2016. Microorganisms 2020; 8:E140 [View Article]
    [Google Scholar]
  71. Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM et al. International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J Infect Dis 2011; 204:675–684 [View Article]
    [Google Scholar]
  72. Pijnacker R, Dallman TJ, Tijsma ASL, Hawkins G, Larkin L et al. An international outbreak of Salmonella enterica serotype Enteritidis linked to eggs from Poland: a microbiological and epidemiological study. Lancet Infect Dis 2019; 19:778–786 [View Article]
    [Google Scholar]
  73. Haley BJ, Kim SW, Haendiges J, Keller E, Torpey D et al. Salmonella enterica serovar Kentucky recovered from human clinical cases in Maryland, USA (2011–2015). Zoonoses Public Health 2019; 66:382–392 [View Article]
    [Google Scholar]
  74. Wołkowicz T, Zacharczuk K, Gierczyński R, Nowakowska M, Piekarska K. Antimicrobial resistance and whole-genome characterisation of high-level ciprofloxacin-resistant Salmonella Enterica serovar kentucky ST 198 strains isolated from human in Poland. Int J Mol Sci 2021; 22:9381 [View Article]
    [Google Scholar]
  75. Gal-Mor O. Persistent infection and long-term carriage of typhoidal and nontyphoidal Salmonella. Clin Microbiol Rev 2019; 32:e00088-18 [View Article]
    [Google Scholar]
  76. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 2014; 343:204–208 [View Article]
    [Google Scholar]
  77. Prouty AM, Schwesinger WH, Gunn JS. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 2002; 70:2640–2649 [View Article]
    [Google Scholar]
  78. Baucheron S, Le Hello S, Doublet B, Giraud E, Weill F-X et al. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Front Microbiol 2013; 4:1–6 [View Article]
    [Google Scholar]
  79. Abouzeed YM, Baucheron S, Cloeckaert A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2008; 52:2428–2434 [View Article]
    [Google Scholar]
  80. Kehrenberg C, Cloeckaert A, Klein G, Schwarz S. Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium: detection of novel mutations involved in modulated expression of ramA and soxS. J Antimicrob Chemother 2009; 64:1175–1180 [View Article]
    [Google Scholar]
  81. Grimsey EM, Weston N, Ricci V, Stone JW, Piddock LJV. Overexpression of RamA, which regulates production of the multidrug resistance efflux pump AcrAB-TolC, increases mutation rate and influences drug resistance phenotype. Antimicrob Agents Chemother 2020; 64:e02460-19 [View Article]
    [Google Scholar]
  82. Viveiros M, Jesus A, Brito M, Leandro C, Martins M et al. Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob Agents Chemother 2005; 49:3578–3582 [View Article]
    [Google Scholar]
  83. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article]
    [Google Scholar]
  84. Folkesson A, Löfdahl S, Normark S. The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 2002; 153:537–545 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000877
Loading
/content/journal/mgen/10.1099/mgen.0.000877
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error