1887

Abstract

Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and pseudogenes. Using NCBI’s PGAP-detected pseudogenes, we analysed 25 837 pseudogenes from 158 MTBC and strains and combined transcriptomics and proteomics of H37Rv to gain insights about pseudogenes' expression. Our results indicate significant variability concerning rate and conservancy of predicted pseudogenes among different ecotypes and lineages of tuberculous mycobacteria and pseudogenization of important virulence factors and genes of the metabolism and antimicrobial resistance/tolerance. We show that predicted pseudogenes contribute considerably to MTBC genetic diversity at the population level. Moreover, the transcription machinery of can fully transcribe most pseudogenes, indicating intact promoters and recent pseudogene evolutionary emergence. Proteomics of and close evaluation of mutational lesions driving pseudogenization suggest that few predicted pseudogenes are likely capable of neofunctionalization, nonsense mutation reversal, or phase variation, contradicting the classical definition of pseudogenes. Such findings indicate that genome annotation should be accompanied by proteomics and protein function assays to improve its accuracy. While indels and insertion sequences are the main drivers of the observed mutational lesions in these species, population bottlenecks and genetic drift are likely the evolutionary processes acting on pseudogenes' emergence over time. Our findings unveil a new perspective on MTBC’s evolution and genetic diversity.

Funding
This study was supported by the:
  • Morris Animal Foundation (Award D17ZO-307)
    • Principle Award Recipient: AnaMarcia Sa Guimaraes
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2016/26108-0)
    • Principle Award Recipient: AnaMarcia Sa Guimaraes
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Award 001)
    • Principle Award Recipient: NotApplicable
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (Award 88887.508739/2020-00)
    • Principle Award Recipient: TaianaTainá Silva-Pereira
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2019/03232-6)
    • Principle Award Recipient: AlexandreH. Aono
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2017/04617-3)
    • Principle Award Recipient: CristinaKraemer Zimpel
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (Award 2017/20147-7)
    • Principle Award Recipient: NailaCristina Soler-Camargo
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000876
2022-10-17
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/10/mgen000876.html?itemId=/content/journal/mgen/10.1099/mgen.0.000876&mimeType=html&fmt=ahah

References

  1. Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB et al. A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis complex. Front Microbiol 2018; 9:2820 [View Article]
    [Google Scholar]
  2. Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun 2020; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  3. Coscolla M, Gagneux S, Menardo F, Loiseau C, Ruiz-Rodriguez P et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microb Genom 2021; 7:1–14 [View Article]
    [Google Scholar]
  4. Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis . Semin Immunol 2014; 26:431–444 [View Article] [PubMed]
    [Google Scholar]
  5. de Jong BC, Adetifa I, Walther B, Hill PC, Antonio M et al. Differences between tuberculosis cases infected with Mycobacterium africanum, West African type 2, relative to Euro-American Mycobacterium tuberculosis: an update. FEMS Immunol Med Microbiol 2010; 58:102–105 [View Article] [PubMed]
    [Google Scholar]
  6. de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum--review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 2010; 4:e744 [View Article]
    [Google Scholar]
  7. de Jong BC, Hill PC, Aiken A, Awine T, Antonio M et al. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in the Gambia. J Infect Dis 2008; 198:1037–1043 [View Article]
    [Google Scholar]
  8. Gagneux S. Strain variation in the Mycobacterium tuberculosis complex: its role in biology, epidemiology and control. 1019; 2017 [View Article]
  9. Prodinger WM, Indra A, Koksalan OK, Kilicaslan Z, Richter E. Mycobacterium caprae infection in humans. Expert Rev Anti Infect Ther 2014; 12:1501–1513 [View Article] [PubMed]
    [Google Scholar]
  10. WHO Global tuberculosis report 2019 WHO; 2019
    [Google Scholar]
  11. Olea-Popelka F, Muwonge A, Perera A, Dean AS, Mumford E et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis-a call for action. Lancet Infect Dis 2017; 17:e21–e25 [View Article]
    [Google Scholar]
  12. Duffy SC, Srinivasan S, Schilling MA, Stuber T, Danchuk SN et al. Reconsidering Mycobacterium bovis as a proxy for zoonotic tuberculosis: a molecular epidemiological surveillance study. Lancet Microbe 2020; 1:e66–e73 [View Article]
    [Google Scholar]
  13. Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris SR et al. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci Adv 2019; 5:eaaw3307 [View Article]
    [Google Scholar]
  14. Boritsch EC, Khanna V, Pawlik A, Honoré N, Navas VH et al. Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci 2016; 113:9876–9881 [View Article]
    [Google Scholar]
  15. Bolotin E, Hershberg R. Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol Evol 2015; 7:2173–2187 [View Article]
    [Google Scholar]
  16. Brosch R, Gordon SV, Billault A, Garnier T, Eiglmeier K et al. Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun 1998; 66:2221–2229 [View Article] [PubMed]
    [Google Scholar]
  17. Philipp WJ, Nair S, Guglielmi G, Lagranderie M, Gicquel B et al. Physical mapping of Mycobacterium bovis BCG pasteur reveals differences from the genome map of Mycobacterium tuberculosis H37Rv and from M. bovis. Microbiology 1996; 142 (Pt 11):3135–3145 [View Article]
    [Google Scholar]
  18. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K et al. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 1999; 32:643–655 [View Article] [PubMed]
    [Google Scholar]
  19. Zimpel CK, Brandão PE, de Souza Filho AF, de Souza RF, Ikuta CY et al. Complete genome sequencing of Mycobacterium bovis SP38 and comparative Genomics of Mycobacterium bovis and M. tuberculosis strains. Front Microbiol 2017; 8:2389 [View Article]
    [Google Scholar]
  20. Silva-Pereira TT, Ikuta CY, Zimpel CK, Camargo NCS, de Souza Filho AF et al. Genome sequencing of Mycobacterium pinnipedii strains: genetic characterization and evidence of superinfection in a South American sea lion (Otaria flavescens). BMC Genomics 2019; 20:1030 [View Article]
    [Google Scholar]
  21. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci 2002; 99:3684–3689 [View Article]
    [Google Scholar]
  22. Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 2007; 7:328–337 [View Article] [PubMed]
    [Google Scholar]
  23. Galagan JE. Genomic insights into tuberculosis. Nat Rev Genet 2014; 15:307–320 [View Article] [PubMed]
    [Google Scholar]
  24. Isaza JP, Duque C, Gomez V, Robledo J, Barrera LF et al. Whole genome shotgun sequencing of one Colombian clinical isolate of Mycobacterium tuberculosis reveals DosR regulon gene deletions. FEMS Microbiol Lett 2012; 330:113–120 [View Article] [PubMed]
    [Google Scholar]
  25. DeJesus MA, Sacchettini JC, Ioerger TR. Reannotation of translational start sites in the genome of Mycobacterium tuberculosis . Tuberculosis 2013; 93:18–25 [View Article]
    [Google Scholar]
  26. Xiong X, Wang R, Deng D, Chen Y, Liu H et al. Comparative genomics of a bovine Mycobacterium tuberculosis isolate and other strains reveals its potential mechanism of bovine adaptation. Front Microbiol 2017; 8:2500 [View Article]
    [Google Scholar]
  27. Jia X, Yang L, Dong M, Chen S, Lv L et al. The bioinformatics analysis of comparative genomics of Mycobacterium tuberculosis complex (MTBC) provides insight into dissimilarities between intraspecific groups differing in host association, virulence, and epitope diversity. Front Cell Infect Microbiol 2017; 7:88 [View Article]
    [Google Scholar]
  28. Yang T, Zhong J, Zhang J, Li C, Yu X et al. Pan-genomic study of Mycobacterium tuberculosis reflecting the primary/secondary genes, generality/individuality, and the interconversion through copy number variations. Front Microbiol 2018; 9:1–12 [View Article]
    [Google Scholar]
  29. Dippenaar A, Parsons SDC, Sampson SL, van der Merwe RG, Drewe JA et al. Whole genome sequence analysis of Mycobacterium suricattae . Tuberculosis 2015; 95:682–688 [View Article]
    [Google Scholar]
  30. Supply P, Marceau M, Mangenot S, Roche D, Rouanet C et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis . Nat Genet 2013; 45:172–179 [View Article] [PubMed]
    [Google Scholar]
  31. Liu F, Hu Y, Wang Q, Li HM, Gao GF et al. Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates. BMC Genomics 2014; 15:469 [View Article] [PubMed]
    [Google Scholar]
  32. Kuo CH, Ochman H. The extinction dynamics of bacterial pseudogenes . PLoS Genet 2010; 6:e1001050 [View Article]
    [Google Scholar]
  33. Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet 2001; 17:589–596 [View Article]
    [Google Scholar]
  34. Lerat E, Ochman H. Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res 2005; 33:3125–3132 [View Article] [PubMed]
    [Google Scholar]
  35. Lerat E, Ochman H. Psi-Phi: exploring the outer limits of bacterial pseudogenes . Genome Res 2004; 14:2273–2278 [View Article] [PubMed]
    [Google Scholar]
  36. Ortega AP, Villagra NA, Urrutia IM, Valenzuela LM, Talamilla-Espinoza A et al. Lose to win: marT pseudogenization in Salmonella enterica serovar Typhi contributed to the surV-dependent survival to H2O2, and inside human macrophage-like cells. Infect Genet Evol 2016; 45:111–121 [View Article]
    [Google Scholar]
  37. Sun Y-C, Jarrett CO, Bosio CF, Hinnebusch BJ. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis . Cell Host Microbe 2014; 15:578–586 [View Article]
    [Google Scholar]
  38. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article]
    [Google Scholar]
  39. Zimpel CK, Patané JSL, Guedes ACP, de Souza RF, Silva-Pereira TT et al. Global distribution and evolution of Mycobacterium bovis lineages. Front Microbiol 2020; 11:843 [View Article]
    [Google Scholar]
  40. Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome: Table 1. Bioinformatics 2015; 31:2877–2878 [View Article]
    [Google Scholar]
  41. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  42. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  43. Moore RM, Harrison AO, McAllister SM, Polson SW, Wommack KE. Iroki: automatic customization and visualization of phylogenetic trees. PeerJ 2020; 8:e8584 [View Article]
    [Google Scholar]
  44. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  45. Kiryutin B, Souvorov A, Tatusova T. ProSplign – protein to genomic alignment tool; 2007
  46. Agarwala R, Barrett T, Beck J, Benson DA, Bollin C. Database resources of the national center for biotechnology information. Nucleic Acids Res 2018; 46:D8–D13 [View Article]
    [Google Scholar]
  47. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 2012; 3:217–223 [View Article]
    [Google Scholar]
  48. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  49. Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S et al. Mwaskom/seaborn: v0.8.1 (september 2017). Epub ahead of print September 2017 2017 [View Article]
    [Google Scholar]
  50. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article]
    [Google Scholar]
  51. Galens K, Orvis J, Daugherty S, Creasy HH, Angiuoli S et al. The IGS standard operating procedure for automated prokaryotic annotation. Stand Genomic Sci 2011; 4:244–251 [View Article]
    [Google Scholar]
  52. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  53. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  54. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47:D607–D613 [View Article]
    [Google Scholar]
  55. DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon Mutagenesis . mBio 2017; 8:e02133-16 [View Article]
    [Google Scholar]
  56. Gibson AJ, Passmore IJ, Faulkner V, Xia D, Nobeli I et al. Probing differences in gene essentiality between the human and animal adapted lineages of the Mycobacterium tuberculosis complex using TnSeq. Front Vet Sci 2021; 8:760717 [View Article]
    [Google Scholar]
  57. Liu BZDJQCLYJ. VFDB 2019: a comparative pathogenomic platform with an interactive web interface | nucleic acids research | oxford academic. Nucleic Acids Res 2019; Vol. 47:D687–D692 [View Article]
    [Google Scholar]
  58. Malone KM, Rue-Albrecht K, Magee DA, Conlon K, Schubert OT et al. Comparative’omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli. Microb Genom 2018; 4: Epub ahead of print 2018 [View Article]
    [Google Scholar]
  59. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37:907–915 [View Article] [PubMed]
    [Google Scholar]
  60. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:W3–W10 [View Article]
    [Google Scholar]
  61. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31:166–169 [View Article] [PubMed]
    [Google Scholar]
  62. Kelkar DS, Kumar D, Kumar P, Balakrishnan L, Muthusamy B et al. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Mol Cell Proteomics 2011; 10:M111 [View Article] [PubMed]
    [Google Scholar]
  63. Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 2014; 32:223–226 [View Article] [PubMed]
    [Google Scholar]
  64. Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z et al. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. PROTEOMICS Clin Appl 2015; 9:745–754 [View Article] [PubMed]
    [Google Scholar]
  65. Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. Proteomics 2013; 13:22–24 [View Article] [PubMed]
    [Google Scholar]
  66. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004; 20:1466–1467 [View Article] [PubMed]
    [Google Scholar]
  67. Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z et al. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 2011; 10:M111 [View Article] [PubMed]
    [Google Scholar]
  68. GraphPad USA LJC GraphPad Prism version 6 for Windows
  69. Stojković V, Noda-Garcia L, Tawfik DS, Fujimori DG. Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme. Nucleic Acids Res 2016; 44:8897–8907 [View Article] [PubMed]
    [Google Scholar]
  70. Safi H, Gopal P, Lingaraju S, Ma S, Levine C et al. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc Natl Acad Sci 2019; 116:19665–19674 [View Article]
    [Google Scholar]
  71. Zumárraga M, Bigi F, Alito A, Romano MI, Cataldi A. A 12.7 kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis . Microbiology 1999; 145 (Pt 4):893–897 [View Article]
    [Google Scholar]
  72. Gordon SV, Eiglmeier K, Garnier T, Brosch R, Parkhill J et al. Genomics of Mycobacterium bovis . Tuberculosis 2001; 81:157–163 [View Article]
    [Google Scholar]
  73. Viana-Niero C, Rodriguez CAR, Bigi F, Zanini MS, Ferreira-Neto JS et al. Identification of an IS6110 insertion site in plcD, the unique phospholipase C gene of Mycobacterium bovis . J Med Microbiol 2006; 55:451–457 [View Article] [PubMed]
    [Google Scholar]
  74. Mehta M, Singh A. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis and survival in response to reactive oxygen and nitrogen species. Free Radic Biol Med 2019; 131:50–58 [View Article] [PubMed]
    [Google Scholar]
  75. Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE et al. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 2013; 9:e1003543 [View Article]
    [Google Scholar]
  76. Gagneux S. Ecology and evolution of Mycobacterium tuberculosis . Nat Rev Microbiol 2018; 16:202–213 [View Article] [PubMed]
    [Google Scholar]
  77. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV. Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis . Nat Rev Microbiol 2009; 7:537–544 [View Article] [PubMed]
    [Google Scholar]
  78. Namouchi A, Didelot X, Schöck U, Gicquel B, Rocha EPC. After the bottleneck: genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res 2012; 22:721–734 [View Article]
    [Google Scholar]
  79. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 2008; 6:e311 [View Article]
    [Google Scholar]
  80. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 2014; 20:75–79 [View Article] [PubMed]
    [Google Scholar]
  81. Dean GS, Rhodes SG, Coad M, Whelan AO, Cockle PJ et al. Minimum infective dose of Mycobacterium bovis in cattle. Infect Immun 2005; 73:6467–6471 [View Article] [PubMed]
    [Google Scholar]
  82. Pepperell C, Hoeppner VH, Lipatov M, Wobeser W, Schoolnik GK et al. Bacterial genetic signatures of human social phenomena among M.tuberculosis from an aboriginal canadian population. Mol Biol Evol 2010; 27:427–440 [View Article]
    [Google Scholar]
  83. Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis . Nat Rev Microbiol 2006; 4:670–681 [View Article] [PubMed]
    [Google Scholar]
  84. Bentley SD, Comas I, Bryant JM, Walker D, Smith NH et al. The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis 2012; 6:e1552 [View Article]
    [Google Scholar]
  85. Glynn JR, Kremer K, Borgdorff MW, Rodriguez MP, Van Soolingen D. Beijing/W genotype Mycobacterium tuberculosis and drug resistance: European concerted action on new generation genetic markers and techniques for the epidemiology and control of tuberculosis. Emerg Infect Dis 2006; 12:736–743 [View Article]
    [Google Scholar]
  86. Parwati I, van Crevel R, van Soolingen D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis 2010; 10:103–111 [View Article] [PubMed]
    [Google Scholar]
  87. van der Spuy GD, Kremer K, Ndabambi SL, Beyers N, Dunbar R et al. Changing Mycobacterium tuberculosis population highlights clade-specific pathogenic characteristics. Tuberculosis 2009; 89:120–125 [View Article]
    [Google Scholar]
  88. Karmakar M, Trauer JM, Ascher DB, Denholm JT. Hyper transmission of Beijing lineage Mycobacterium tuberculosis: systematic review and meta-analysis. J Infect 2019; 79:572–581 [View Article]
    [Google Scholar]
  89. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 2002; 8:843–849 [View Article]
    [Google Scholar]
  90. Hanekom M, Gey van Pittius NC, McEvoy C, Victor TC, Van Helden PD et al. Mycobacterium tuberculosis Beijing genotype: a template for success. Tuberculosis 2011; 91:510–523 [View Article]
    [Google Scholar]
  91. Brosch R, Gordon SV, Pym A, Eiglmeier K, Garnier T et al. Comparative genomics of the mycobacteria. Int J Med Microbiol 2000; 290:143–152 [View Article]
    [Google Scholar]
  92. Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N et al. Patterns of genome evolution that have accompanied host adaptation in Salmonella . Proc Natl Acad Sci 2015; 112:863–868 [View Article]
    [Google Scholar]
  93. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica . Nat Genet 2003; 35:32–40 [View Article]
    [Google Scholar]
  94. Bellerose MM, Baek S-H, Huang C-C, Moss CE, Koh E-I et al. Common variants in the glycerol kinase gene reduce tuberculosis drug efficacy. mBio 2019; 10:1–15 [View Article]
    [Google Scholar]
  95. Gupta A, Alland D. Reversible gene silencing through frameshift indels and frameshift scars provide adaptive plasticity for Mycobacterium tuberculosis . Nat Commun 2021; 12:1–11 [View Article] [PubMed]
    [Google Scholar]
  96. Gonzalo-Asensio J, Pérez I, Aguiló N, Uranga S, Picó A et al. New insights into the transposition mechanisms of IS6110 and its dynamic distribution between Mycobacterium tuberculosis Complex lineages. PLoS Genet 2018; 14:1–23 [View Article] [PubMed]
    [Google Scholar]
  97. Rosenberg SM. Reverse mutation. In In: Brenner’s Encyclopedia of Genetics, Second edition. Elsevier Inc; 2013 pp 220–221
    [Google Scholar]
  98. Mould DL, Stevanovic M, Ashare A, Schultz D, Hogan DA. Metabolic basis for the evolution of a common pathogenic Pseudomonas aeruginosa variant. Elife 2022; 11:e76555 [View Article]
    [Google Scholar]
  99. Mehaffy C, Belisle JT, Dobos KM. Mycobacteria and their sweet proteins: an overview of protein glycosylation and lipoglycosylation in M. tuberculosis . Tuberculosis 2019; 115:1–13 [View Article]
    [Google Scholar]
  100. Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 2016; 14:677–691 [View Article] [PubMed]
    [Google Scholar]
  101. Mishra SK, Shankar U, Jain N, Sikri K, Tyagi JS et al. Characterization of G-quadruplex motifs in espB, espK, and cyp51 genes of Mycobacterium tuberculosis as potential drug targets. Mol Ther Nucleic Acids 2019; 16:698–706 [View Article] [PubMed]
    [Google Scholar]
  102. Marjanovic O, Iavarone AT, Riley LW. Sulfolipid accumulation in Mycobacterium tuberculosis disrupted in the mce2 operon. J Microbiol 2011; 49:441–447 [View Article] [PubMed]
    [Google Scholar]
  103. Sirakova TD, Thirumala AK, Dubey VS, Sprecher H, Kolattukudy PE. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl-branched fatty acids required for sulfolipid synthesis. J Biol Chem 2001; 276:16833–16839 [View Article] [PubMed]
    [Google Scholar]
  104. Gonzalo Asensio J, Maia C, Ferrer NL, Barilone N, Laval F et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis . J Biol Chem 2006; 281:1313–1316 [View Article] [PubMed]
    [Google Scholar]
  105. Chesne-Seck M-L, Barilone N, Boudou F, Gonzalo Asensio J, Kolattukudy PE et al. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bacteriol 2008; 190:1329–1334 [View Article] [PubMed]
    [Google Scholar]
  106. Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci 2014; 111:11491–11496 [View Article]
    [Google Scholar]
  107. Srinivas M, Rajakumari S, Narayana Y, Joshi B, Katoch VM et al. Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis . J Biosci 2008; 33:221–230 [View Article] [PubMed]
    [Google Scholar]
  108. Broset E, Martín C, Gonzalo-Asensio J. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio 2015; 6:e01289-15 [View Article]
    [Google Scholar]
  109. Lee CE, Goodfellow C, Javid-Majd F, Baker EN, Shaun Lott J. The crystal structure of TrpD, a metabolic enzyme essential for lung colonization by Mycobacterium tuberculosis, in complex with its substrate phosphoribosylpyrophosphate. J Mol Biol 2006; 355:784–797 [View Article] [PubMed]
    [Google Scholar]
  110. Riley R, Pellegrini M, Eisenberg D. Identifying cognate binding pairs among a large set of paralogs: the case of PE/PPE proteins of Mycobacterium tuberculosis . PLoS Comput Biol 2008; 4:e1000174 [View Article]
    [Google Scholar]
  111. Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Brief Bioinform 2016; 17:154–179 [View Article]
    [Google Scholar]
  112. Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics 2016; 17:125 [View Article] [PubMed]
    [Google Scholar]
  113. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 2011; 13:36–46 [View Article] [PubMed]
    [Google Scholar]
  114. Nuccio S-P, Bäumler AJ, Finlay BB. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio 2014; 5:e00929–14 [View Article]
    [Google Scholar]
  115. Goodhead I, Darby AC. Taking the pseudo out of pseudogenes . Curr Opin Microbiol 2015; 23:102–109 [View Article] [PubMed]
    [Google Scholar]
  116. Rambaut A. FigTree v1.4.3 2012 http://tree.bio.ed.ac.uk/software
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000876
Loading
/content/journal/mgen/10.1099/mgen.0.000876
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error