1887

Abstract

Understanding the evolution of the SARS-CoV-2 virus in various regions of the world during the Covid-19 pandemic is essential to help mitigate the effects of this devastating disease. We describe the phylogenomic and population genetic patterns of the virus in Mexico during the pre-vaccination stage, including asymptomatic carriers. A real-time quantitative PCR screening and phylogenomic reconstructions directed at sequence/structure analysis of the spike glycoprotein revealed mutation of concern E484K in genomes from central Mexico, in addition to the nationwide prevalence of the imported variant 20C/S:452R (B.1.427/9). Overall, the detected variants in Mexico show spike protein mutations in the N-terminal domain (i.e. R190M), in the receptor-binding motif (i.e. T478K, E484K), within the S1–S2 subdomains (i.e. P681R/H, T732A), and at the basis of the protein, V1176F, raising concerns about the lack of phenotypic and clinical data available for the variants of interest we postulate: 20B/478K.V1 (B.1.1.222 or B.1.1.519) and 20B/P.4 (B.1.1.28.4). Moreover, the population patterns of single nucleotide variants from symptomatic and asymptomatic carriers obtained with a self-sampling scheme confirmed the presence of several fixed variants, and differences in allelic frequencies among localities. We identified the mutation N:S194L of the nucleocapsid protein associated with symptomatic patients. Phylogenetically, this mutation is frequent in Mexican sub-clades. Our results highlight the dual and complementary role of spike and nucleocapsid proteins in adaptive evolution of SARS-CoV-2 to their hosts and provide a baseline for specific follow-up of mutations of concern during the vaccination stage.

Funding
This study was supported by the:
  • Consejo Nacional de Ciencia y Tecnología (Award CATEDRAS)
    • Principle Award Recipient: PlissonFabien
  • Newton Fund (Award 180631)
    • Principle Award Recipient: Barona-GómezFrancisco
  • Consejo Nacional de Ciencia y Tecnología (Award 313075)
    • Principle Award Recipient: Cibrian-JaramilloAngelica
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000684
2021-11-30
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/11/mgen000684.html?itemId=/content/journal/mgen/10.1099/mgen.0.000684&mimeType=html&fmt=ahah

References

  1. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J et al. Tracking changes in sars-cov-2 spike: Evidence that d614g increases infectivity of the COVID-19 virus. Cell 2020; 182:812–827 [View Article] [PubMed]
    [Google Scholar]
  2. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES et al. The d614g mutation in the sars-cov-2 spike protein reduces s1 shedding and increases infectivity. bioRxiv Preprint 2020; 2020.06.12.148726
    [Google Scholar]
  3. Garcia-Beltran WF, Lam EC, Denis KS, Nitido AD, Garcia ZH et al. Multiple sars-cov-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021; 184:2372–2383
    [Google Scholar]
  4. Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E et al. Complete mapping of mutations to the SARS-COV-2 spike receptor-binding domain that escape antibody recognition. Cell Host Microbe 2021; 29:44–57 [View Article]
    [Google Scholar]
  5. Li Q, Nie J, Wu J, Zhang L, Ding R et al. SARS-COV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 2021; 184:2362–2371 [View Article]
    [Google Scholar]
  6. Li Q, Wu J, Nie J, Zhang L, Hao H et al. The impact of mutations in SARS-CoV-2 spike on Viral infectivity and antigenicity. Cell 2020; 182:1284–1294 [View Article] [PubMed]
    [Google Scholar]
  7. Zhou D, Dejnirattisai W, Supasa P, Liu C, Mentzer AJ et al. Evidence of escape of SARS-COV-2 variant b.1.351 from natural and vaccine-induced Sera. Cell 2021; 184:2348–2361 [View Article]
    [Google Scholar]
  8. Davies NG, Jarvis CI. CMMID COVID-19 Working Group John Edmunds W, Jewell NP et al. Increased mortality in community-tested cases of sars-cov-2 lineage b.1.1.7. Nature 2021; 593:270–274 [View Article]
    [Google Scholar]
  9. Scientific Advisory Group for EmergenciesPublic Health England PHE: investigation of novel SARS-CoV-2 variant of concern 202012/01 - technical briefing 3, 6 January 2021. PHE; 2021 https://www.gov.uk/government/publications/phe-investigation-of-novel-sars-cov-2-variant-of-concern-20201201-technical-briefing-3-6-january-2021
  10. Resende PC, Naveca FG, Lins RD, Dezordi FZ, Ferraz MVF et al. The ongoing evolution of variants of concern and interest of sars-cov-2 in brazil revealed by convergent indels in the amino (n)-terminal domain of the spike protein. medRxiv Preprint 2021 [View Article]
    [Google Scholar]
  11. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B et al. Nextstrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics 2018; 34:4121–4123 [View Article] [PubMed]
    [Google Scholar]
  12. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT et al. A Dynamic Nomenclature Proposal for SARS-CoV-2 Lineages to Assist Genomic Epidemiology. Nat Microbiol 2020; 5:1403–1407 [View Article] [PubMed]
    [Google Scholar]
  13. Annavajhala MK, Mohri H, Zucker JE, Sheng Z, Wang P et al. A novel sars-cov-2 variant of concern, b.1.526, identified in new york. medRxiv Preprint 2021; 2021.02.23.21252259
    [Google Scholar]
  14. Lasek-Nesselquist E, Lapierre P, Schneider E, George KS, Pata J. The localized rise of a b.1.526 sars-cov-2 variant containing an e484k mutation in new york state. medRxiv Preprint 2021; 2021.02.26.21251868
    [Google Scholar]
  15. McCormick KD, Jacobs JL, Mellors JW. The Emerging Plasticity of SARS-CoV-2. Science 2021; 371:1306–1308 [View Article] [PubMed]
    [Google Scholar]
  16. Kemp SA, Collier DA, Datir RP, Ferreira IATM, Gayed S et al. SARS-CoV-2 Evolution during Treatment of Chronic Infection. Nature 2021; 592:277–282 [View Article] [PubMed]
    [Google Scholar]
  17. Ma Y, Wu L, Shaw N, Gao Y, Wang J et al. Structural Basis and Functional Analysis of the SARS Coronavirus nsp14-nsp10 Complex. Proc Natl Acad Sci USA 2015; 112:9436–9441 [View Article] [PubMed]
    [Google Scholar]
  18. Rausch JW, Capoferri AA, Katusiime MG, Patro SC, Kearney MF. Low Genetic Diversity May Be an Achilles Heel of SARS-CoV-2. Proc Natl Acad Sci USA 2020; 117:24614–24616
    [Google Scholar]
  19. Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends Microbiol 2017; 25:35–48 [View Article] [PubMed]
    [Google Scholar]
  20. Munnink O, Bas B, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ et al. Transmission of SARS-CoV-2 on Mink Farms between Humans and Mink and back to Humans. Science 2021; 371:172–177 [View Article] [PubMed]
    [Google Scholar]
  21. Liu Q, Zhao S, Shi C-. M, Song S, Zhu S et al. Population Genetics of SARS-CoV-2: Disentangling Effects of Sampling Bias and Infection Clusters. Genom Proteom Bioinform 2020; 18:640–647 [View Article]
    [Google Scholar]
  22. Tang X, Wu C, Li X, Song Y, Yao X et al. On the Origin and Continuing Evolution of SARS-CoV-2. Natl Sci Rev 2020; 7:1012–1023
    [Google Scholar]
  23. Morais IJ, Polveiro RC, Souza GM, Bortolin DI, Sassaki FT et al. The Global Population of SARS-CoV-2 Is Composed of Six Major Subtypes. Sci Rep 2020; 10:18289
    [Google Scholar]
  24. Yang H-C, Chen C-H, Wang J-H, Liao H-C, Yang C-T et al. Analysis of Genomic Distributions of SARS-CoV-2 Reveals a Dominant Strain Type with Strong Allelic Associations. Proc Natl Acad Sci USA 2020; 117:30679–30686 [View Article] [PubMed]
    [Google Scholar]
  25. Wang R, Chen J, Gao K, Hozumi Y, Yin C et al. Analysis of SARS-CoV-2 Mutations in the United States Suggests Presence of Four Substrains and Novel Variants. Commun Biol 2021; 4:228 [View Article] [PubMed]
    [Google Scholar]
  26. Vega-Magaña N, Sánchez-Sánchez R, Hernández-Bello J, Venancio-Landeros AA, Peña-Rodríguez M et al. RT-qPCR Assays for Rapid Detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 Mutations: A Screening Strategy to Identify Variants With Clinical Impact. Front Cell Infect Microbiol 2021; 11:434
    [Google Scholar]
  27. Wickham H, Averick M, Bryan J, Chang W, McGowan L et al. Welcome to the Tidyverse. J Open Source Softw 2019; 4:1686
    [Google Scholar]
  28. Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014; 30:2811–2812 [View Article] [PubMed]
    [Google Scholar]
  29. Harris CR, Jarrod Millman K, van der Walt SJ, Gommers R, Virtanen P et al. Array Programming with NumPy. Nature 2020; 585:357–362 [View Article] [PubMed]
    [Google Scholar]
  30. McKinney, Wes, and Others Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference Vol 445 Austin, TX: 2010 pp 51–56
    [Google Scholar]
  31. Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng 2007; 9:90–95 [View Article]
    [Google Scholar]
  32. Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S et al.Mwaskom/seaborn: v0.8.1 Zenodo 2017 [View Article]
    [Google Scholar]
  33. Ripley BD. The R Project in Statistical Computing. MSOR Connections 2001; 1:23–25
    [Google Scholar]
  34. RStudio Team Rstudio: Integrated Development for R. Rstudio, PBC, Boston, MA; 2020 http://www.rstudio.com/
  35. Van Rossum G, Fred L D, Drake FL. Python 3 Reference Manual: (Python Documentation Manual Part 2) Createspace; 2009
    [Google Scholar]
  36. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M et al. Jupyter Notebooks – a Publishing Format for Reproducible Computational Workflows. In Loizides F, Scmidt B. eds Positioning and Power in Academic Publishing IOS Press; 2016 pp 87–90
    [Google Scholar]
  37. Li Y, Yang X, Wang N, Wang H, Yin B et al. Mutation Profile of over 4500 SARS-CoV-2 Isolations Reveals Prevalent Cytosine-to-Uridine Deamination on Viral RNAs. Future Microbiol 2020; 15:1343–1352 [View Article] [PubMed]
    [Google Scholar]
  38. Zacharioudakis IM, Prasad PJ, Zervou FN, Basu A, Inglima K et al. Association of SARS-CoV-2 Genomic Load with Outcomes in Patients with COVID-19. Ann Am Thorac Soc 2021; 18:900–903 [View Article] [PubMed]
    [Google Scholar]
  39. Lythgoe KA, Hall M, Ferretti L, Cesare M de, MacIntyre-Cockett G et al. SARS-CoV-2 within-Host Diversity and Transmission. Science 2021; 372:6539
    [Google Scholar]
  40. Chen S, Zhou Y, Chen Y, Gu J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018; 34:i884–90 [View Article] [PubMed]
    [Google Scholar]
  41. Li H, Durbin R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  42. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  43. Garrison E, Marth G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv [q-bioGN] arXiv 2012
    [Google Scholar]
  44. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 2014; 15:356
    [Google Scholar]
  45. Wilke CO. Ridgeline Plots in ‘ggplot2’ [R Package Ggridges Version 0.5.3] 2021 https://cran.r-project.org/web/packages/ggridges/index.html
  46. Kassambara A. Pipe-Friendly Framework for Basic Statistical Tests [R Package Rstatix Version 0.7.0]; 2021 https://mran.microsoft.com/web/packages/rstatix/index.html
  47. Benton DJ, Wrobel AG, Xu P, Roustan C, Martin SR et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020; 588:327–330 [View Article] [PubMed]
    [Google Scholar]
  48. Skidmore PT, Kaelin EA, Holland LA, Maqsood R, Wu LI et al. Emergence of a sars-cov-2 e484k variant of interest in arizona. medRxiv Preprint 2021; 2021.03.26.21254367
    [Google Scholar]
  49. Tablizo FA, Kim KM, Lapid CM, Castro MJR, Yangzon MSL et al. Genome sequencing and analysis of an emergentsequencing and analysis of an emergent sars-cov-2 variant characterized by multiple spike protein mutations detected from thevariant characterized by multiple spike protein mutations detected from the central visayas region of the philippines. medRxiv Preprint 2021; 2021.03.03.21252812
    [Google Scholar]
  50. Ferreira I, Datir R, Kemp S, Papa G, Rakshit P et al. SARS-cov-2 b.1.617 emergence and sensitivity to vaccine-elicited antibodies. bioRxiv Preprint 2021
    [Google Scholar]
  51. Sheikh A, Al-Taher A, Al-Nazawi M, Al-Mubarak AI, Kandeel M. Analysis of Preferred Codon Usage in the Coronavirus N Genes and Their Implications for Genome Evolution and Vaccine Design. J Virol Methods 2020; 277:113806
    [Google Scholar]
  52. Singh A, Steinkellner G, Köchl K, Gruber K, Gruber CC. Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2. Sci Rep 2021; 11:4320
    [Google Scholar]
  53. Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N et al. Convergent evolution of sars-cov-2 spike mutations, l452r, e484q and p681r, in the second wave of covid-19 in maharashtra, india. bioRxiv Preprint 2021; 2021.04.22.440932
    [Google Scholar]
  54. Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E et al. Neutralizing and protective human monoclonal antibodies recognizing theProtective Human Monoclonal Antibodies Recognizing the N-terminal domain of theTerminal Domain of the SARS-CoV-2 sSpike pProtein. Cell 2021; 184:2316–2331 [View Article] [PubMed]
    [Google Scholar]
  55. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-Specific Glycan Analysis of the SARS-CoV-2 spike. Science 2020; 369:330–333 [View Article] [PubMed]
    [Google Scholar]
  56. Rodríguez-Maldonado AP, Vázquez-Pérez JA, Cedro-Tanda A, Taboada B, Boukadida C et al. Emergence and spread of the potential variant of interest (voi) b.1.1.519 predominantly present in mexico. medRxiv 20212021.05.18.21255620
    [Google Scholar]
  57. Muecksch F, Weisblum Y, Barnes CO, Schmidt F, Schaefer-Babajew D et al. Development of potency, breadth and resilience to viral escape mutations in sars-cov-2 neutralizing antibodies. bioRxiv Preprint 2021; 2021.03.07.434227: [View Article]
    [Google Scholar]
  58. Wang Y, Wang D, Zhang L, Sun W, Zhang Z et al. Intra-Host Variation and Evolutionary Dynamics of SARS-CoV-2 Populations in COVID-19 Patients. Genome Med 2021; 13:30
    [Google Scholar]
  59. Nielsen R. Molecular signatures of natural selection. Annu Rev Genet 2005; 39:197–218 [View Article] [PubMed]
    [Google Scholar]
  60. Pattabiraman C, Prasad P, George AK, Sreenivas D, Rasheed R et al. Importation, circulation, and emergence of variants of sars-cov-2 in the south indian state of karnataka. medRxiv Preprint 2021; 2021.03.17.21253810
    [Google Scholar]
  61. Kellam P, Barclay W. The Dynamics of Humoral Immune Responses Following SARS-CoV-2 Infection and the Potential for Reinfection. J Gen Virol 2020; 101:791–797 [View Article] [PubMed]
    [Google Scholar]
  62. Lu J, Peng J, Xiong Q, Liu Z, Lin H et al. Clinical, immunological and virological characterization of COVID-19 patients that test re-positive for SARS-COV-2 by RT-PCR. EBioMedicine 2020; 59:102960 [View Article] [PubMed]
    [Google Scholar]
  63. Tomassini S, Kotecha D, Bird PW, Folwell A, Biju S et al. setting the criteria for SARS-CoV-2 reinfection - six possible cases. J Infect 2021; 82:282–327 [View Article]
    [Google Scholar]
  64. Zhang K, Lau JY-N, Yang L, Ma Z-G. SARS-CoV-2 Reinfection in Two Patients Who Have Recovered from COVID-19. Precis Clin Med 2020; 3:292–293
    [Google Scholar]
  65. Comas-García A, Noyola DE, Bernal-Silva S. Reply to Furuse. J Infect Dis 2018; 127:2010–2012 [View Article]
    [Google Scholar]
  66. Muñoz-Escalante JC, Comas-García A, Bernal-Silva S, Robles-Espinoza CD, Gómez-Leal G et al. Respiratory Syncytial Virus A Genotype Classification Based on Systematic Intergenotypic and Intragenotypic Sequence Analysis. Sci Rep 2019; 9:20097
    [Google Scholar]
  67. Franceschi VB, Mayer A de M, Caldana GD, Zimerman RA et al. E484K as an innovative phylogenetic event for viral evolution: genomic analysis of the innovative phylogenetic event for viral evolution: genomic analysis of the e484k spike mutationspike mutation in sars-cov-2 lineages fromlineages from brazil. bioRxiv Preprint 2021; 2021.01.27.426895
    [Google Scholar]
  68. Giacomo D, Simone DM, Rakhimov A, Giorgi FM. Preliminary report on severe acute respiratory syndrome coronavirusrespiratory syndrome coronavirus 2 (sars-cov-2) spike mutation t478k. J Med Virol 2021; 93:5638–5643
    [Google Scholar]
  69. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 2020; 182:1295–1310 [View Article] [PubMed]
    [Google Scholar]
  70. Xia S, Lan Q, Su S, Wang X, Xu W et al. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct Target Ther 2020; 5:92 [View Article] [PubMed]
    [Google Scholar]
  71. Bugembe DL, My V.T P, Ssewanyana I, Semanda P, Nansumba H et al. A sars-cov-2 lineage a variant (a.23.1) with altered spike has emerged and is dominating the current uganda epidemic. medRxiv Preprint 2021; 2021.02.08.21251393
    [Google Scholar]
  72. Mak GCK, Lau AWL, Chan AMY, Chan DYW, Tsang DNC. The D614G substitution in the s gene and clinical information for patients with COVID-19 detected in Hong Kong. J Clin Virol 2020; 130:104550 [View Article]
    [Google Scholar]
  73. Biswas SK, Mudi SR. Spike protein d614g and rdrp p323l: the sars-cov-2 mutations associated with severity of covid-19. Genomics & informatics 2020; 18:e44
    [Google Scholar]
  74. Chang C, Hou M-H, Chang C-F, Hsiao C-D, Huang T. The SARS coronavirus nucleocapsid protein--forms and functions. Antiviral Res 2014; 103:39–50 [View Article] [PubMed]
    [Google Scholar]
  75. Tomaszewski T, DeVries RS, Dong M, Bhatia G, Norsworthy MD et al. New pathways of mutational changepathways of mutational change in sars-cov-2 proteomes involve regions of intrinsic disorder important for virus replication and releaseproteomes involve regions of intrinsic disorder important for virus replication and release. Evol Bioinform Online 2020; 16:1176934320965149
    [Google Scholar]
  76. Barik S. Genus-Specific Pattern of Intrinsically Disordered Central Regions in the nucleocapsid Protein of Coronaviruses. Comput Struct Biotechnol J 2020; 18:1884–1890 [View Article] [PubMed]
    [Google Scholar]
  77. Forsythe HM, Galvan JR, Yu Z, Pinckney S, Reardon P et al. Multivalent binding of the partially disorderedBinding of the Partially Disordered SARS-CoV-2 nucleocapsid phosphoprotein dimerNucleocapsid Phosphoprotein Dimer to RNA. Biophys J 2021; 120:2890–2901
    [Google Scholar]
  78. Joshi M, Puvar A, Kumar D, Ansari A, Pandya M et al. Genomic Variations in SARS-CoV-2 Genomes From Gujarat: Underlying Role of Variants in Disease Epidemiology. Front Genet 2021; 12:586569
    [Google Scholar]
  79. Plante JA, Mitchell BM, Plante KS, Debbink K, Weaver SC et al. The variant gambit: COVID-19’s next move. Cell host & microbe 2021; 29:508–515S1931-3128(21)00099-8 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000684
Loading
/content/journal/mgen/10.1099/mgen.0.000684
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error