1887

Abstract

subspecies is frequently associated with animal reservoirs, particularly reptiles, and can cause illness in some mammals, including humans. Using whole-genome sequencing data, core genome phylogenetic analyses were performed using 112 . subsp. isolates, representing 46 of 102 described serovars. Nearly one-third of these are polyphyletic, including two serovars that appear in four and five distinct evolutionary lineages. Subspecies has a monophasic H antigen. Among the 46 serovars investigated, only 8 phase 1 H antigens were identified, demonstrating high conservation for this antigen. Prophages and plasmids were found throughout this subspecies including five novel prophages. Polyphyly was also reflected in prophage content, although some clade-specific enrichment for some phages was observed. IncFII(S) was the most frequent plasmid replicon identified and was found in a quarter of subsp. genomes. pathogenicity islands (SPIs) 1 and 2 are present across all , including this subspecies, although effectors , and in SPI-1 and and in SPI-2 appear to be lost in this lineage. SPI-20, encoding a type VI secretion system, is exclusive to this subspecies and is well maintained in all genomes sampled. A number of fimbral operons were identified, including the operon that appears to be a synapomorphy for this subspecies, while others exhibited more clade-specific patterns. This work reveals evolutionary patterns in subsp. that make this subspecies a unique lineage within this very diverse species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000522
2021-02-04
2021-02-26
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000522/mgen000522.html?itemId=/content/journal/mgen/10.1099/mgen.0.000522&mimeType=html&fmt=ahah

References

  1. Grimont P, Weill F. Antigenic formulae of the Salmonella serovars. WHO Collab Cent Ref Res Salmonella , 9th ed. 2007
    [Google Scholar]
  2. Ewing W, Edwards P. Edwards and Ewing’s Identification of Enterobacteriaceae , 4th ed. New York: Elsevier; 1986
    [Google Scholar]
  3. Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E et al. Supplement 2008-2010 (NO. 48) to the White-Kauffmann-Le minor scheme. Res Microbiol 2014; 165: 526 530 [CrossRef] [PubMed]
    [Google Scholar]
  4. Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM et al. A comprehensive review of non-enterica subspecies of Salmonella enterica . Microbiol Res 2018; 206: 60 73 [CrossRef] [PubMed]
    [Google Scholar]
  5. Alikhan N-F, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella . PLoS Genet 2018; 14: e1007261 [CrossRef] [PubMed]
    [Google Scholar]
  6. Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemühl J et al. Supplement 2003-2007 (NO. 47) to the White-Kauffmann-Le minor scheme. Res Microbiol 2010; 161: 26 29 [CrossRef] [PubMed]
    [Google Scholar]
  7. Le Minor L, Véron M, Popoff M. [A proposal for Salmonella nomenclature]. Ann Microbiol 1982; 133: 245 254 [PubMed]
    [Google Scholar]
  8. Tracy LM, Hicks JA, Grogan KB, Nicholds JA, Morningstar-Shaw BR et al. Molecular detection of Salmonella enterica subsp. arizonae by quantitative PCR. Avian Dis 64: [CrossRef]
    [Google Scholar]
  9. Mitchell MA, Shane SM. Salmonella in reptiles. Semin Avian Exot Pet Med 2001; 10: 25 35 [CrossRef]
    [Google Scholar]
  10. Orós J, Rodríguez JL, Herráez P, Santana P, Fernández A. Respiratory and digestive lesions caused by Salmonella arizonae in two snakes. J Comp Pathol 1996; 115: 185 189 [CrossRef] [PubMed]
    [Google Scholar]
  11. Orós J, Rodríguez JL, Espinosa de los Monteros A, Rodríguez F, Herráez P et al. Tracheal malformation in a bicephalic Honduran milk snake (Lampropeltis hondurensis) and subsequent fatal Salmonella arizonae infection. J Zoo Wildl Med 1997; 28: 331 335 [PubMed]
    [Google Scholar]
  12. Boever WJ, Williams J. Arizona septicemia in three boa constrictors. Vet Med Small Anim Clin 1975; 70: 1357 1359 [PubMed]
    [Google Scholar]
  13. Krum SH, Stevens DR, Hirsh DC. Salmonella arizonae bacteremia in a cat. J Am Vet Med Assoc 1977; 170: 42 44 [PubMed]
    [Google Scholar]
  14. Macri NP, Stevenson GW, Wu CC. Salmonella arizonae sepsis in a Lynx. J Wildl Dis 1997; 33: 908 911 [CrossRef] [PubMed]
    [Google Scholar]
  15. Meehan JT, Brogden KA, Courtney C, Cutlip RC, Lehmkuhl HD. Chronic proliferative rhinitis associated with Salmonella arizonae in sheep. Vet Pathol 1992; 29: 556 559 [CrossRef] [PubMed]
    [Google Scholar]
  16. Shivaprasad HL. Arizonosis. In Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL. (editors) Diseases of Poultry Ames, IA: Wiley-Blackwell; 2013 pp 706 713
    [Google Scholar]
  17. Hall ML, Rowe B. Salmonella arizonae in the United Kingdom from 1966 to 1990. Epidemiol Infect 1992; 108: 59 65 [CrossRef] [PubMed]
    [Google Scholar]
  18. Abbott SL, Ni FCY, Janda JM. Increase in extraintestinal infections caused by Salmonella enterica subspecies II-IV. Emerg Infect Dis 2012; 18: 637 639 [CrossRef] [PubMed]
    [Google Scholar]
  19. CDC National enteric disease surveillance: Salmonella annual report. 2016
  20. Lan R, Reeves PR, Octavia S. Population structure, origins and evolution of major Salmonella enterica clones. Infect Genet Evol 2009; 9: 996 1005 [CrossRef] [PubMed]
    [Google Scholar]
  21. Nguyen SV, Harhay DM, Bono JL, Smith TPL, Fields PI et al. Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association. Microb Genom 2018; 4: 19 21 [CrossRef] [PubMed]
    [Google Scholar]
  22. den Bakker HC, Moreno Switt AI, Govoni G, Cummings CA, Ranieri ML et al. Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica . BMC Genomics 2011; 12: 425 [CrossRef] [PubMed]
    [Google Scholar]
  23. Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R et al. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol Evol 2013; 5: 2109 2123 [CrossRef] [PubMed]
    [Google Scholar]
  24. Worley J, Meng J, Allard MW, Brown EW, Timme RE. Salmonella enterica phylogeny based on whole-genome sequencing reveals two new clades and novel patterns of horizontally acquired genetic elements. mBio 2018; 9: e02303 02318 [CrossRef] [PubMed]
    [Google Scholar]
  25. Boyd EF, Wang FS, Whittam TS, Selander RK. Molecular genetic relationships of the salmonellae . Appl Environ Microbiol 1996; 62: 804 808 [CrossRef] [PubMed]
    [Google Scholar]
  26. Desai PT, Porwollik S, Long F, Cheng P, Wollam A et al. Evolutionary genomics of Salmonella enterica subspecies. mBio 2013; 4: e00198 13 [CrossRef] [PubMed]
    [Google Scholar]
  27. Criscuolo A, Issenhuth-Jeanjean S, Didelot X, Thorell K, Hale J et al. The speciation and hybridization history of the genus Salmonella . Microb Genom 2019; 5: [CrossRef] [PubMed]
    [Google Scholar]
  28. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ. Clonal nature of Salmonella Typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 1989; 27: 313 320 [CrossRef] [PubMed]
    [Google Scholar]
  29. Chan K, Baker S, Kim CC, Detweiler CS, Dougan G et al. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J Bacteriol 2003; 185: 553 563 [CrossRef] [PubMed]
    [Google Scholar]
  30. Blondel CJ, Jiménez JC, Contreras I, Santiviago CA. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics 2009; 10: 354 [CrossRef] [PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455 477 [CrossRef] [PubMed]
    [Google Scholar]
  32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30: 2068 2069 [CrossRef] [PubMed]
    [Google Scholar]
  33. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29: 1072 1075 [CrossRef] [PubMed]
    [Google Scholar]
  34. Zhang S, den Bakker HC, Li S, Chen J, Dinsmore BA et al. SeqSero2: rapid and improved Salmonella serotype determination using Whole-Genome sequencing data. Appl Environ Microbiol 2019; 85: e01746 19 [CrossRef] [PubMed]
    [Google Scholar]
  35. Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ et al. The Salmonella In Silico Typing Resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One 2016; 11: e0147101 [CrossRef] [PubMed]
    [Google Scholar]
  36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31: 3691 3693 [CrossRef] [PubMed]
    [Google Scholar]
  37. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5: e9490 [CrossRef] [PubMed]
    [Google Scholar]
  38. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2: e000056 [CrossRef] [PubMed]
    [Google Scholar]
  39. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312 1313 [CrossRef] [PubMed]
    [Google Scholar]
  40. Torpdahl M, Skov MN, Sandvang D, Baggesen DL. Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. J Microbiol Methods 2005; 63: 173 184 [CrossRef] [PubMed]
    [Google Scholar]
  41. Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007; 8: 172 [CrossRef] [PubMed]
    [Google Scholar]
  42. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46: W246 W251 [CrossRef] [PubMed]
    [Google Scholar]
  43. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44: W16 W21 [CrossRef] [PubMed]
    [Google Scholar]
  44. Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 2005; 33: W451 W454 [CrossRef] [PubMed]
    [Google Scholar]
  45. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403 410 [CrossRef] [PubMed]
    [Google Scholar]
  46. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58: 3895 3903 [CrossRef] [PubMed]
    [Google Scholar]
  47. Libby SJ, Lesnick M, Hasegawa P, Kurth M, Belcher C et al. Characterization of the spv locus in Salmonella enterica serovar Arizona. Infect Immun 2002; 70: 3290 3294 [CrossRef] [PubMed]
    [Google Scholar]
  48. Cambre RC, Green DE, Smith EE, Montali RJ, Bush M. Salmonellosis and arizonosis in the reptile collection at the National zoological Park. J Am Vet Med Assoc 1980; 177: 800 883 [PubMed]
    [Google Scholar]
  49. Lock BA, Wellehan J. Chapter 8 - Ophidia (Snakes). In Miller RE Fowler. editor MEBT-FZ and WAM 8 St. Louis: W.B. Saunders; pp 60 74
    [Google Scholar]
  50. Sukhnanand S, Alcaine S, Warnick LD, Su W-L, Hof J et al. DNA sequence-based subtyping and evolutionary analysis of selected Salmonella enterica serotypes. J Clin Microbiol 2005; 43: 3688 3698 [CrossRef] [PubMed]
    [Google Scholar]
  51. Octavia S, Lan R. Frequent recombination and low level of clonality within Salmonella enterica subspecies I. Microbiology 2006; 152: 1099 1108 [CrossRef] [PubMed]
    [Google Scholar]
  52. Sangal V, Harbottle H, Mazzoni CJ, Helmuth R, Guerra B et al. Evolution and population structure of Salmonella enterica serovar Newport. J Bacteriol 2010; 192: 6465 6476 [CrossRef] [PubMed]
    [Google Scholar]
  53. Vosik D, Tewari D, Dettinger L, M'ikanatha NM, Shariat NW. CRISPR typing and antibiotic resistance correlates with polyphyletic distribution in human isolates of Salmonella kentucky. Foodborne Pathog Dis 2018; 15: 101 108 [CrossRef] [PubMed]
    [Google Scholar]
  54. Haley BJ, Kim SW, Pettengill J, Luo Y, Karns JS et al. Genomic and evolutionary analysis of two Salmonella enterica serovar Kentucky sequence types isolated from bovine and poultry sources in North America. PLoS One 2016; 11: e0161225 [CrossRef] [PubMed]
    [Google Scholar]
  55. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica . PLoS Pathog 2012; 8: e1002776 [CrossRef] [PubMed]
    [Google Scholar]
  56. Brown EW, Mammel MK, LeClerc JE, Cebula TA. Limited boundaries for extensive horizontal gene transfer among Salmonella pathogens. Proc Natl Acad Sci U S A 2003; 100: 15676 15681 [CrossRef] [PubMed]
    [Google Scholar]
  57. Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D. A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination?. Genome Res 2007; 17: 61 68 [CrossRef] [PubMed]
    [Google Scholar]
  58. Didelot X, Bowden R, Street T, Golubchik T, Spencer C et al. Recombination and population structure in Salmonella enterica . PLoS Genet 2011; 7: e1002191 [CrossRef] [PubMed]
    [Google Scholar]
  59. Soyer Y, Moreno Switt A, Davis MA, Maurer J, McDonough PL et al. Salmonella enterica serotype 4,5,12:i:-, an emerging Salmonella serotype that represents multiple distinct clones. J Clin Microbiol 2009; 47: 3546 3556 [CrossRef] [PubMed]
    [Google Scholar]
  60. Centers for Disease Control and Prevention https://www.cdc.gov/salmonella/pdf/salmonella-atlas-508c.pdf . 2013
  61. Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella . Mol Microbiol 2001; 39: 260 272 [CrossRef] [PubMed]
    [Google Scholar]
  62. Switt AIM, Sulakvelidze A, Wiedmann M, Kropinski AM, Wishart DS et al. Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 2015; 1225: 237 287 [CrossRef] [PubMed]
    [Google Scholar]
  63. Colavecchio A, D'Souza Y, Tompkins E, Jeukens J, Freschi L et al. Prophage integrase typing is a useful indicator of genomic diversity in Salmonella enterica . Front Microbiol 2017; 8: 1283 [CrossRef] [PubMed]
    [Google Scholar]
  64. Bruno VM, Hannemann S, Lara-Tejero M, Flavell RA, Kleinstein SH et al. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. PLoS Pathog 2009; 5: e1000538 [CrossRef] [PubMed]
    [Google Scholar]
  65. Patel JC, Galán JE. Manipulation of the host actin cytoskeleton by Salmonella-all in the name of entry. Curr Opin Microbiol 2005; 8: 10 15 [CrossRef] [PubMed]
    [Google Scholar]
  66. Hapfelmeier S, Stecher B, Barthel M, Kremer M, Müller AJ et al. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar Typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol 2005; 174: 1675 1685 [CrossRef] [PubMed]
    [Google Scholar]
  67. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 1995; 269: 400 403 [CrossRef] [PubMed]
    [Google Scholar]
  68. Ochman H, Groisman EA. Distribution of pathogenicity islands in Salmonella spp. Infect Immun 1996; 64: 5410 5412 [CrossRef] [PubMed]
    [Google Scholar]
  69. Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 2017; 22: 217 231 [CrossRef] [PubMed]
    [Google Scholar]
  70. Salcedo SP, Holden DW. Sseg, a virulence protein that targets Salmonella to the Golgi network. Embo J 2003; 22: 5003 5014 [CrossRef] [PubMed]
    [Google Scholar]
  71. Grabe GJ, Zhang Y, Przydacz M, Rolhion N, Yang Y. The Salmonella effector SpvD is a cysteine hydrolase with a serovar-specific polymorphism influencing catalytic activity, suppression of immune responses, and bacterial virulence. J Biol Chem 2016; 291: 25853 [CrossRef] [PubMed]
    [Google Scholar]
  72. Guiney DG, Fierer J. The role of the spv genes in Salmonella pathogenesis. Front Microbiol 2011; 2: 129 [CrossRef] [PubMed]
    [Google Scholar]
  73. Boyd EF, Hartl DL. Salmonella virulence plasmid. modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics 1998; 149: 1183 LP 1190 [PubMed]
    [Google Scholar]
  74. Bäumler AJ, Tsolis RM, Heffron F. Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella Typhimurium. Infect Immun 1996; 64: 1862 1865 [CrossRef] [PubMed]
    [Google Scholar]
  75. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C et al. Salmonella bongori provides insights into the evolution of the salmonellae. PLoS Pathog 2011; 7: e1002191 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000522
Loading
/content/journal/mgen/10.1099/mgen.0.000522
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error