1887

Abstract

The quantification of the total microbial content in metagenomic samples is critical for investigating the interplay between the microbiome and its host, as well as for assessing the accuracy and precision of the relative microbial composition which can be strongly biased in low microbial biomass samples. In the present study, we demonstrate that digital droplet PCR (ddPCR) can provide accurate quantification of the total copy number of the 16S rRNA gene, the gene usually exploited for assessing total bacterial abundance in metagenomic DNA samples. Notably, using DNA templates with different integrity levels, as measured by the DNA integrity number (DIN), we demonstrated that 16S rRNA copy number quantification is strongly affected by DNA quality and determined a precise correlation between quantification underestimation and DNA degradation levels. Therefore, we propose an input DNA mass correction, according to the observed DIN value, which could prevent inaccurate quantification of 16S copy number in degraded metagenomic DNAs. Our results highlight that a preliminary evaluation of the metagenomic DNA integrity should be considered before performing metagenomic analyses of different samples, both for the assessment of the reliability of observed differential abundances in different conditions and to obtain significant functional insights.

Funding
This study was supported by the:
  • Anna Maria D’Erchia , Ministero dell’Istruzione, dell’Università e della Ricerca , (Award PRIN 2017)
  • Graziano Pesole , Ministero dell’Istruzione, dell’Università e della Ricerca , (Award PRIN 2017)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000417
2020-08-04
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000417/mgen000417.html?itemId=/content/journal/mgen/10.1099/mgen.0.000417&mimeType=html&fmt=ahah

References

  1. Noecker C, McNally CP, Eng A, Borenstein E. High-resolution characterization of the human microbiome. Translational Research 2017; 179: 7 23 [CrossRef]
    [Google Scholar]
  2. Props R, Kerckhof F-M, Rubbens P, De Vrieze J, Hernandez Sanabria E et al. Absolute quantification of microbial taxon abundances. ISME J 2017; 11: 584 587 [CrossRef]
    [Google Scholar]
  3. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One 2020; 15: e0227285 [CrossRef]
    [Google Scholar]
  4. Abasıyanık MF, Wolfe K, Van Phan H, Lin J, Laxman B et al. Ultrasensitive digital quantification of cytokines and bacteria predicts septic shock outcomes. Nat Commun 2020; 11: 2607 [CrossRef]
    [Google Scholar]
  5. Ricchi M, Bertasio C, Boniotti MB, Vicari N, Russo S et al. Comparison among the quantification of bacterial pathogens by qPCR, dPCR, and cultural methods. Front Microbiol 2017; 8: 1174 [CrossRef]
    [Google Scholar]
  6. Wang Y, Qian P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 2009; 4: e7401 [CrossRef]
    [Google Scholar]
  7. Tkacz A, Hortala M, Poole PS. Absolute quantitation of microbiota abundance in environmental samples. Microbiome 2018; 6: 110 [CrossRef]
    [Google Scholar]
  8. Fiedorová K, Radvanský M, Němcová E, Grombiříková H, Bosák J et al. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Front Microbiol 2019; 10: 821 [CrossRef]
    [Google Scholar]
  9. Brooks JP, Edwards DJ, Harwich MD, Rivera MC, Fettweis JM et al. The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol 2015; 15: 66 [CrossRef]
    [Google Scholar]
  10. Sinha R, Abnet CC, White O, Knight R, Huttenhower C. The microbiome quality control project: baseline study design and future directions. Genome Biol 2015; 16: 276 [CrossRef]
    [Google Scholar]
  11. Brukner I, Longtin Y, Oughton M, Forgetta V, Dascal A. Assay for estimating total bacterial load: relative qPCR normalisation of bacterial load with associated clinical implications. Diagn Microbiol Infect Dis 2015; 83: 1 6 [CrossRef]
    [Google Scholar]
  12. Cavé L, Brothier E, Abrouk D, Bouda PS, Hien E et al. Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues. Appl Microbiol Biotechnol 2016; 100: 10597 10608 [CrossRef]
    [Google Scholar]
  13. Wang M, Yang J, Gai Z, Huo S, Zhu J et al. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk. Int J Food Microbiol 2018; 266: 251 256 [CrossRef]
    [Google Scholar]
  14. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 2013; 10: 1003 1005 [CrossRef]
    [Google Scholar]
  15. Elmahalawy ST, Halvarsson P, Skarin M, Höglund J. Droplet digital polymerase chain reaction (ddPCR) as a novel method for absolute quantification of major gastrointestinal nematodes in sheep. Vet Parasitol 2018; 261: 1 8 [CrossRef]
    [Google Scholar]
  16. Gobert G, Cotillard A, Fourmestraux C, Pruvost L, Miguet J et al. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples. J Microbiol Methods 2018; 148: 64 73 [CrossRef]
    [Google Scholar]
  17. Kanagal-Shamanna R. Digital PCR: principles and applications. Methods Mol Biol 2016; 1392: 43 50
    [Google Scholar]
  18. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 2012; 84: 1003 1011 [CrossRef]
    [Google Scholar]
  19. Sze MA, Abbasi M, Hogg JC, Sin DD. A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissue samples from control and COPD gold 2. PLoS One 2014; 9: e110351 [CrossRef]
    [Google Scholar]
  20. Ziegler I, Lindström S, Källgren M, Strålin K, Mölling P. 16S rDNA droplet digital PCR for monitoring bacterial DNAemia in bloodstream infections. PLoS One 2019; 14: e0224656 [CrossRef]
    [Google Scholar]
  21. Dreo T, Pirc M, Ramšak Živa, Pavšič J, Milavec M et al. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: a case study of fire blight and potato brown rot. Anal Bioanal Chem 2014; 406: 6513 6528 [CrossRef]
    [Google Scholar]
  22. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013; 41: e1 [CrossRef] [PubMed]
    [Google Scholar]
  23. Sambo F, Finotello F, Lavezzo E, Baruzzo G, Masi G et al. Optimizing PCR primers targeting the bacterial 16S ribosomal RNA gene. BMC Bioinformatics 2018; 19: 343 [CrossRef]
    [Google Scholar]
  24. Ghyselinck J, Pfeiffer S, Heylen K, Sessitsch A, De Vos P. The effect of primer choice and short read sequences on the outcome of 16S rRNA gene based diversity studies. PLoS One 2013; 8: e71360 [CrossRef]
    [Google Scholar]
  25. Bag S, Saha B, Mehta O, Anbumani D, Kumar N et al. An improved method for high quality Metagenomics DNA extraction from human and environmental samples. Sci Rep 2016; 6: 26775 [CrossRef]
    [Google Scholar]
  26. Kumar J, Kumar M, Gupta S, Ahmed V, Bhambi M et al. An improved methodology to overcome key issues in human fecal metagenomic DNA extraction. Genomics Proteomics Bioinformatics 2016; 14: 371 378 [CrossRef] [PubMed]
    [Google Scholar]
  27. Videnska P, Smerkova K, Zwinsova B, Popovici V, Micenkova L et al. Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq Illumina platform. Sci Rep 2019; 9: 13837 [CrossRef]
    [Google Scholar]
  28. Krehenwinkel H, Fong M, Kennedy S, Huang EG, Noriyuki S et al. The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota. PLoS One 2018; 13: e0189188 [CrossRef]
    [Google Scholar]
  29. Jahne MA, Brinkman NE, Keely SP, Zimmerman BD, Wheaton EA et al. Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: Implications for onsite reuse. Water Res 2020; 169: 115213 [CrossRef]
    [Google Scholar]
  30. Martinez-Hernandez F, Garcia-Heredia I, Lluesma Gomez M, Maestre-Carballa L, Martínez Martínez J et al. Droplet digital PCR for estimating absolute abundances of widespread Pelagibacter viruses. Front Microbiol 2019; 10: 1226 [CrossRef]
    [Google Scholar]
  31. Stecher B, Chaffron S, Käppeli R, Hapfelmeier S, Freedrich S et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 2010; 6: e1000711 [CrossRef]
    [Google Scholar]
  32. Manzari C, Fosso B, Marzano M, Annese A, Caprioli R et al. The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, Se Italy) detected by an Illumina-based deep sequencing strategy. Biol Invasions 2015; 17: 923 940 [CrossRef]
    [Google Scholar]
  33. Leoni C, Ceci O, Manzari C, Fosso B, Volpicella M et al. Human endometrial microbiota at term of normal pregnancies. Genes 2019; 10: 971 [CrossRef]
    [Google Scholar]
  34. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 2007; 73: 7767 7770 [CrossRef]
    [Google Scholar]
  35. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13: 581 583 [CrossRef]
    [Google Scholar]
  36. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37: D141 D145 [CrossRef]
    [Google Scholar]
  37. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42: D633 D642 [CrossRef]
    [Google Scholar]
  38. Fosso B, Santamaria M, Marzano M, Alonso-Alemany D, Valiente G et al. BioMaS: a modular pipeline for bioinformatic analysis of metagenomic amplicons. BMC Bioinformatics 2015; 16: 203 [CrossRef]
    [Google Scholar]
  39. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357 359 [CrossRef]
    [Google Scholar]
  40. Alonso-Alemany D, Barré A, Beretta S, Bonizzoni P, Nikolski M et al. Further steps in TANGO: improved taxonomic assignment in metagenomics. Bioinformatics 2014; 30: 17 23 [CrossRef]
    [Google Scholar]
  41. Fosso B, Pesole G, Rosselló F, Valiente G. Unbiased taxonomic annotation of metagenomic samples. J Comput Biol 2018; 25: 348 360 [CrossRef] [PubMed]
    [Google Scholar]
  42. Fidler G, Tolnai E, Stagel A, Remenyik J, Stundl L et al. Tendentious effects of automated and manual metagenomic DNA purification protocols on broiler gut microbiome taxonomic profiling. Sci Rep 2020; 10: 3419 [CrossRef]
    [Google Scholar]
  43. Padmanaban A. Dna integrity number (DIN) for the assessment of genomic DNA samples in real-time quantitative PCR (qPCR) experiments.. 2015
  44. Zhang T, Li Q, Cheng L, Buch H, Zhang F. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol 2019; 12: 1109 1125 [CrossRef]
    [Google Scholar]
  45. Karstens L, Asquith M, Davin S, Fair D, Gregory WT et al. Controlling for contaminants in Low-Biomass 16S rRNA gene sequencing experiments. mSystems 4: [CrossRef]
    [Google Scholar]
  46. Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017; 551: 507 511 [CrossRef]
    [Google Scholar]
  47. Wouters Y, Dalloyaux D, Christenhusz A, Roelofs HMJ, Wertheim HF et al. Droplet digital polymerase chain reaction for rapid broad‐spectrum detection of bloodstream infections. Microb Biotechnol 2020; 13: 657 668 [CrossRef]
    [Google Scholar]
  48. Verhaegen B, De Reu K, De Zutter L, Verstraete K, Heyndrickx M et al. Comparison of droplet digital PCR and qPCR for the quantification of Shiga toxin-producing Escherichia coli in bovine feces. Toxins 2016; 8: 157 [CrossRef]
    [Google Scholar]
  49. Rigoni R, Fontana E, Guglielmetti S, Fosso B, D'Erchia AM et al. Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects. J Exp Med 2016; 213: 355 375 [CrossRef] [PubMed]
    [Google Scholar]
  50. Perruzza L, Gargari G, Proietti M, Fosso B, D’Erchia AM et al. T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing Microbiota-Derived extracellular ATP. Cell Rep 2017; 18: 2566 2575 [CrossRef]
    [Google Scholar]
  51. Perruzza L, Strati F, Gargari G, D’Erchia AM, Fosso B et al. Enrichment of intestinal Lactobacillus by enhanced secretory IgA coating alters glucose homeostasis in P2rx7−/− mice. Sci Rep 2019; 9: 9315 [CrossRef]
    [Google Scholar]
  52. Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C et al. Balb/C and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 2015; 43: 527 540 [CrossRef]
    [Google Scholar]
  53. Pinto-Ribeiro I, Ferreira RM, Pereira-Marques J, Pinto V, Macedo G et al. Evaluation of the use of formalin-fixed and paraffin-embedded archive gastric tissues for microbiota characterization using next-generation sequencing. Int J Mol Sci 2020; 21: 1096 [CrossRef]
    [Google Scholar]
  54. Thorsen J, Brejnrod A, Mortensen M, Rasmussen MA, Stokholm J et al. Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Microbiome 2016; 4: 62 [CrossRef]
    [Google Scholar]
  55. Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015; 350: 830 834 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000417
Loading
/content/journal/mgen/10.1099/mgen.0.000417
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error