1887

Abstract

spp. are frequently enriched in the gut microbiota of preterm neonates, and overgrowth is associated with necrotizing enterocolitis (NEC), nosocomial infections and late-onset sepsis. Little is known about the genomic and phenotypic characteristics of preterm-associated , as previous studies have focused on the recovery of antimicrobial-resistant isolates or culture-independent molecular analyses. The aim of this study was to better characterize preterm-associated populations using phenotypic and genotypic approaches. Faecal samples from a UK cohort of healthy and sick preterm neonates (=109) were screened on MacConkey agar to isolate lactose-positive . Whole-genome sequences were generated for spp., and virulence and antimicrobial resistance genes identified. Antibiotic susceptibility profiling and macrophage and iron assays were undertaken for the strains. Metapangenome analyses with a manually curated genome dataset were undertaken to examine the diversity of and related bacteria in a publicly available shotgun metagenome dataset. Approximately one-tenth of faecal samples harboured spp. (, 7.3 %; , 0.9 %; , 2.8 %; , 1.8 %). Isolates recovered from NEC- and sepsis-affected infants and those showing no signs of clinical infection (i.e. ‘healthy’) encoded multiple β-lactamases. No difference was observed between isolates recovered from healthy and sick infants with respect to siderophore production (all encoded enterobactin in their genomes). All , , and faecal isolates tested were able to reside and persist in macrophages, indicating their immune evasion abilities. Metapangenome analyses of published metagenomic data confirmed our findings regarding the presence of in the preterm gut. There is little difference in the phenotypic and genomic characteristics of isolates recovered from healthy and sick infants. Identification of β-lactamases in all isolates may prove problematic when defining treatment regimens for NEC or sepsis, and suggests that healthy preterm infants contribute to the resistome. Refined analyses with curated sequence databases are required when studying closely related species present in metagenomic data.

Funding
This study was supported by the:
  • Lindsay J Hall , Biotechnology and Biological Sciences Research Council , (Award BBS/E/F/000PR10356)
  • Lindsay J Hall , Biotechnology and Biological Sciences Research Council , (Award BBS/E/F/000PR10353)
  • Lindsay J Hall , Biotechnology and Biological Sciences Research Council , (Award BB/R012490/1)
  • Thomas C. Brook , Microbiology Society , (Award RVG16/3)
  • Lindsay J Hall , Wellcome Trust , (Award 100/974/C/13/Z)
  • Lesley Hoyles , Medical Research Council , (Award MR/L01632X/1)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000377
2020-05-21
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000377/mgen000377.html?itemId=/content/journal/mgen/10.1099/mgen.0.000377&mimeType=html&fmt=ahah

References

  1. Ward DV, Scholz M, Zolfo M, Taft DH, Schibler KR et al. Metagenomic sequencing with strain-level resolution implicates uropathogenic E. coli in necrotizing enterocolitis and mortality in preterm infants. Cell Rep 2016; 14:2912–2924 [CrossRef]
    [Google Scholar]
  2. Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol 2018; 44:70–78 [CrossRef]
    [Google Scholar]
  3. Newburg DS, Walker WA. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res 2007; 61:2–8 [CrossRef]
    [Google Scholar]
  4. Wandro S, Osborne S, Enriquez C, Bixby C, Arrieta A et al. The microbiome and metabolome of preterm infant stool are personalized and not driven by health outcomes, including necrotizing enterocolitis and late-onset sepsis. mSphere 2018; 3: [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 2009; 3:944–954 [CrossRef]
    [Google Scholar]
  6. DiBartolomeo ME, Claud EC. The developing microbiome of the preterm infant. Clin Ther 2016; 38:733–739 [CrossRef]
    [Google Scholar]
  7. Magne F, Abély M, Boyer F, Morville P, Pochart P et al. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol 2006; 57:128–138 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Mai V, Torrazza RM, Ukhanova M, Wang X, Sun Y et al. Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLoS One 2013; 8:e52876 [CrossRef]
    [Google Scholar]
  9. Shaw AG, Sim K, Randell P, Cox MJ, McClure ZE et al. Late-onset bloodstream infection and perturbed maturation of the gastrointestinal microbiota in premature infants. PLoS One 2015; 10:e0132923 [CrossRef]
    [Google Scholar]
  10. Warner BB, Tarr PI. Necrotizing enterocolitis and preterm infant gut bacteria. Semin Fetal Neonatal Med 2016; 21:394–399 [CrossRef]
    [Google Scholar]
  11. Robertson C, Savva GM, Clapuci R, Jones J, Maimouni H et al. Incidence of necrotising enterocolitis before and after introducing routine prophylactic Lactobacillus and Bifidobacterium probiotics. Arch Dis Child Fetal Neonatal Ed 2019fetalneonatal-2019-317346 [CrossRef]
    [Google Scholar]
  12. Lu L, Claud EC. Intrauterine inflammation, epigenetics, and microbiome influences on preterm infant health. Curr Pathobiol Rep 2018; 6:15–21 [CrossRef]
    [Google Scholar]
  13. Adeolu M, Alnajar S, Naushad S, S. Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [CrossRef]
    [Google Scholar]
  14. Pammi M, Cope J, Tarr PI, Warner BB, Morrow AL et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome 2017; 5:31 [CrossRef]
    [Google Scholar]
  15. Olm MR, Bhattacharya N, Crits-Christoph A, Firek BA, Baker R et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella and fimbriae-encoding bacteria that may stimulate TLR4 receptors. bioRxiv 2019; 558676:
    [Google Scholar]
  16. Claud EC, Keegan KP, Brulc JM, Lu L, Bartels D et al. Bacterial community structure and functional contributions to emergence of health or necrotizing enterocolitis in preterm infants. Microbiome 2013; 1:20 [CrossRef]
    [Google Scholar]
  17. Sim K, Shaw AG, Randell P, Cox MJ, McClure ZE et al. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin Infect Dis Off Publ Infect Dis Soc Am 2015; 60:389–397 [CrossRef]
    [Google Scholar]
  18. Torrazza RM, Ukhanova M, Wang X, Sharma R, Hudak ML et al. Intestinal microbial ecology and environmental factors affecting necrotizing enterocolitis. PLoS One 2013; 8:e83304 [CrossRef]
    [Google Scholar]
  19. Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome. bioRxiv 2019; 698092:
    [Google Scholar]
  20. Kiu R, Caim S, Alcon-Giner C, Belteki G, Clarke P et al. Preterm infant-associated Clostridium tertium, Clostridium cadaveris, and Clostridium paraputrificum strains: genomic and evolutionary insights. Genome Biol Evol 2017; 9:2707–2714 [CrossRef]
    [Google Scholar]
  21. Harris SR, Feil EJ, Holden MTG, Quail MA, Nickerson EK et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010; 327:469–474 [CrossRef]
    [Google Scholar]
  22. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012; 9:811–814 [CrossRef]
    [Google Scholar]
  23. Abbott JC. BugBuilder - an automated microbial genome assembly and analysis pipeline. bioRxiv 2017; 148783:
    [Google Scholar]
  24. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [CrossRef]
    [Google Scholar]
  25. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [CrossRef]
    [Google Scholar]
  26. Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun 2018; 9: [CrossRef]
    [Google Scholar]
  27. Wick RR, Heinz E, Holt KE, Wyres KL. Kaptive Web: User-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J Clin Microbiol 2018; 56: [CrossRef]
    [Google Scholar]
  28. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genomics 2016; 2:e000102 [CrossRef]
    [Google Scholar]
  29. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 2016; 44:D694–D697 [CrossRef]
    [Google Scholar]
  30. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [CrossRef]
    [Google Scholar]
  31. Eren AM, Esen Özcan C., Quince C, Vineis JH, Morrison HG et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015; 3:e1319 [CrossRef]
    [Google Scholar]
  32. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [CrossRef]
    [Google Scholar]
  33. van Dongen S, Abreu-Goodger C. Using MCL to extract clusters from networks. Methods Mol Biol Clifton NJ 2012; 804:281–295
    [Google Scholar]
  34. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56 [CrossRef]
    [Google Scholar]
  35. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 2016; 26:1721–1729 [CrossRef]
    [Google Scholar]
  36. Chen Y. Genome Analysis of Gram-Negative Bacteria Isolated from Preterm Baby Faeces and Whole-Genome Analysis Of Klebsiella oxytoca [MSc] Imperial College London; 2018
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  38. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef]
    [Google Scholar]
  39. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef]
    [Google Scholar]
  40. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods 2016; 13:435–438 [CrossRef]
    [Google Scholar]
  41. S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw [Internet] 2008; 25:
    [Google Scholar]
  42. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Mol Cell Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  43. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef]
    [Google Scholar]
  44. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017; 35:725–731 [CrossRef]
    [Google Scholar]
  45. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using diamond. Nat Methods 2015; 12:59–60 [CrossRef]
    [Google Scholar]
  46. Chen Y, Brook TC, Alcon-Giner C, Clarke P, Hall LJ et al. Draft genome sequences of Citrobacter freundii and Citrobacter murliniae strains isolated from the feces of preterm infants. Microbiol Resour Announc 2019; 8:e00494–19 [CrossRef]
    [Google Scholar]
  47. Chen Y, Brook T, Alcon-Giner C, Clarke P, Hall L et al. Draft genome sequence of Raoultella ornithinolytica P079F W, isolates from the feces of a preterm infant. Microbiol Resour Announc 2019; 8:e00493–19
    [Google Scholar]
  48. Dobbler PT, Procianoy RS, Mai V, Silveira RC, Corso AL et al. Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants. Front Microbiol 2017; 8:2243 [CrossRef]
    [Google Scholar]
  49. Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr 2014; 165:23–29 [CrossRef]
    [Google Scholar]
  50. Itani T, Ayoub Moubareck C, Melki I, Rousseau C, Mangin I et al. Preterm infants with necrotising enterocolitis demonstrate an unbalanced gut microbiota. Acta Paediatr 2018; 107:40–47 [CrossRef]
    [Google Scholar]
  51. Vergnano S, Menson E, Kennea N, Embleton N, Russell AB et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed 2011; 96:F9–F14 [CrossRef]
    [Google Scholar]
  52. Rodrigues C, Passet V, Rakotondrasoa A, Diallo TA, Criscuolo A et al. Description of Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and Klebsiella variicola subsp. variicola subsp. nov. Res Microbiol 2019; 170:165–170 [CrossRef]
    [Google Scholar]
  53. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–E3581 [CrossRef]
    [Google Scholar]
  54. Turton JF, Payne Z, Coward A, Hopkins KL, Turton JA et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and ‘non-hypervirulent’ types ST147, ST15 and ST383. J Med Microbiol 2018; 67:118–128 [CrossRef]
    [Google Scholar]
  55. Turton JF, Perry C, Elgohari S, Hampton CV. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol 2010; 59:541–547 [CrossRef]
    [Google Scholar]
  56. Fung CP, Hu BS, Chang FY, Lee SC, Kuo BI et al. A 5-year study of the seroepidemiology of Klebsiella pneumoniae: high prevalence of capsular serotype K1 in Taiwan and implication for vaccine efficacy. J Infect Dis 2000; 181:2075–2079 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  57. Nishino K, Senda Y, Yamaguchi A. CRP regulator modulates multidrug resistance of Escherichia coli by repressing the mdtEF multidrug efflux genes. J Antibiot 2008; 61:120–127 [CrossRef]
    [Google Scholar]
  58. Nagakubo S, Nishino K, Hirata T, Yamaguchi A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 2002; 184:4161–4167 [CrossRef]
    [Google Scholar]
  59. Doménech-Sánchez A, Hernández-Allés S, Martínez-Martínez L, Benedí VJ, Albertí Sebastián, Albertí S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in β-lactam antibiotic resistance. J Bacteriol 1999; 181:2726–2732 [CrossRef]
    [Google Scholar]
  60. Gunn JS, Lim KB, Krueger J, Kim K, Guo L et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid a modification and polymyxin resistance. Mol Microbiol 1998; 27:1171–1182 [CrossRef]
    [Google Scholar]
  61. Bohn C, Bouloc P. The Escherichia coli cmlA gene encodes the multidrug efflux pump Cmr/MdfA and is responsible for isopropyl-β-d-thiogalactopyranoside exclusion and spectinomycin sensitivity. J Bacteriol 1998; 180:6072–6075 [CrossRef]
    [Google Scholar]
  62. Srinivasan VB, Rajamohan G, KpnEF RG. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-Type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013; 57:4449–4462 [CrossRef]
    [Google Scholar]
  63. Srinivasan VB, Singh BB, Priyadarshi N, Chauhan NK, Rajamohan G. Role of novel multidrug efflux pump involved in drug resistance in Klebsiella pneumoniae. PLoS One 2014; 9:e96288 [CrossRef]
    [Google Scholar]
  64. Esterly JS, Richardson CL, Eltoukhy NS, Qi C, Scheetz MH. Genetic mechanisms of antimicrobial resistance of Acinetobacter baumannii. Ann Pharmacother 2011; 45:218–228 [CrossRef]
    [Google Scholar]
  65. Tärnberg M, Nilsson LE, Monstein H-J. Molecular identification of blaSHV, blaLEN and blaOKP β-lactamase genes in Klebsiella pneumoniae by bi-directional sequencing of universal SP6- and T7-sequence-tagged blaSHV-PCR amplicons. Mol Cell Probes 2009; 23:195–200 [CrossRef]
    [Google Scholar]
  66. Regué M, Climent N, Abitiu N, Coderch N, Merino S et al. Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol 2001; 183:3564–3573 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  67. Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microbial Genomics 2016; 2: [CrossRef]
    [Google Scholar]
  68. Beaugerie L, Metz M, Barbut F, Bellaiche G, Bouhnik Y et al. Klebsiella oxytoca as an agent of antibiotic-associated hemorrhagic colitis. Clinical Gastroenterology and Hepatology 2003; 1:370–376 [CrossRef]
    [Google Scholar]
  69. Högenauer C, Langner C, Beubler E, Lippe IT, Schicho R et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med 2006; 355:2418–2426 [CrossRef]
    [Google Scholar]
  70. Raveh-Sadka T, Thomas BC, Singh A, Firek B, Brooks B et al. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. eLife 2015; 4: [CrossRef]
    [Google Scholar]
  71. Brisse S, Verhoef J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 2001; 51:915–924 [CrossRef]
    [Google Scholar]
  72. Herzog KAT, Schneditz G, Leitner E, Feierl G, Hoffmann KM et al. Genotypes of Klebsiella oxytoca isolates from patients with nosocomial pneumonia are distinct from those of isolates from patients with antibiotic-associated hemorrhagic colitis. J Clin Microbiol 2014; 52:1607–1616 [CrossRef]
    [Google Scholar]
  73. Passet V, Brisse S. Description of Klebsiella grimontii sp. nov. Int J Syst Evol Microbiol 2018; 68:377–381 [CrossRef]
    [Google Scholar]
  74. Saha R, Farrance CE, Verghese B, Hong S, Donofrio RS. Klebsiella michiganensis sp. nov., a new bacterium isolated from a tooth brush holder. Curr Microbiol 2013; 66:72–78 [CrossRef]
    [Google Scholar]
  75. Merla C, Rodrigues C, Passet V, Corbella M, Thorpe HA et al. Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov. Front Microbiol 2019; 10:2360 [CrossRef]
    [Google Scholar]
  76. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Population structure of multidrug-resistant Klebsiella oxytoca within hospitals across the United Kingdom and Ireland identifies sharing of virulence and resistance genes with K. pneumoniae. Genome Biol Evol 2017; 9:574–584 [CrossRef]
    [Google Scholar]
  77. Hu Y, Wei L, Feng Y, Xie Y, Zong Z. Klebsiella huaxiensis sp. nov., recovered from human urine. Int J Syst Evol Microbiol 2019; 69:333–336 [CrossRef]
    [Google Scholar]
  78. Shibu P. Investigations of Carbapenem-Resistant Klebsiella Species and Associated Clinical Considerations London: Westminster; 2019
    [Google Scholar]
  79. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef]
    [Google Scholar]
  80. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef]
    [Google Scholar]
  81. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef]
    [Google Scholar]
  82. Zheng B, Xu H, Yu X, Lv T, Jiang X et al. Identification and genomic characterization of a KPC-2-, NDM-1- and NDM-5-producing Klebsiella michiganensis isolate. J Antimicrob Chemother 2018; 73:536–538 [CrossRef]
    [Google Scholar]
  83. Pedersen T, Sekyere JO, Govinden U, Moodley K, Sivertsen A et al. Spread of plasmid-encoded NDM-1 and GES-5 carbapenemases among extensively drug-resistant and pandrug-resistant clinical Enterobacteriaceae in Durban, South Africa. Antimicrob Agents Chemother 2018; 62: [CrossRef]
    [Google Scholar]
  84. Seiffert SN, Wüthrich D, Gerth Y, Egli A, Kohler P et al. First clinical case of KPC-3–producing Klebsiella michiganensis in Europe. New Microbes New Infect 2019; 29:100516 [CrossRef]
    [Google Scholar]
  85. Chou H-C, Lee C-Z, Ma L-C, Fang C-T, Chang S-C et al. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 2004; 72:3783–3792 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  86. Fevre C, Passet V, Weill François-Xavier, Grimont PAD, Brisse S. Variants of the Klebsiella pneumoniae OKP chromosomal beta-lactamase are divided into two main groups, OKP-A and OKP-B. Antimicrob Agents Chemother 2005; 49:5149–5152 [CrossRef]
    [Google Scholar]
  87. Cano V, March C, Insua JL, Aguiló N, Llobet E et al. Klebsiella lebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol 2015; 17:1537–1560 [CrossRef]
    [Google Scholar]
  88. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 2010; 6:e1000949 [CrossRef]
    [Google Scholar]
  89. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432:917–921 [CrossRef]
    [Google Scholar]
  90. Bachman MA, Oyler JE, Burns SH, Caza M, Lépine F et al. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 2011; 79:3309–3316 [CrossRef]
    [Google Scholar]
  91. Lawlor MS, O'Connor C, Miller VL. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect Immun 2007; 75:1463–1472 [CrossRef]
    [Google Scholar]
  92. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41:252–275 [CrossRef]
    [Google Scholar]
  93. Hamzaoui Z, Ocampo-Sosa A, Fernandez Martinez M, Landolsi S, Ferjani S et al. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae. Int J Antimicrob Agents 2018; 52:898–905 [CrossRef]
    [Google Scholar]
  94. Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 2013; 4:87 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000377
Loading
/content/journal/mgen/10.1099/mgen.0.000377
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error