1887

Abstract

Understanding host and pathogen factors that influence tuberculosis (TB) transmission can inform strategies to eliminate the spread of ). Determining transmission links between cases of TB is complicated by a long and variable latency period and undiagnosed cases, although methods are improving through the application of probabilistic modelling and whole-genome sequence analysis. Using a large dataset of 1857 whole-genome sequences and comprehensive metadata from Karonga District, Malawi, over 19 years, we reconstructed transmission networks using a two-step Bayesian approach that identified likely infector and recipient cases, whilst robustly allowing for incomplete case sampling. We investigated demographic and pathogen genomic variation associated with transmission and clustering in our networks. We found that whilst there was a significant decrease in the proportion of infectors over time, we found higher transmissibility and large transmission clusters for lineage 2 (Beijing) strains. By performing evolutionary convergence testing (phyC) and genome-wide association analysis (GWAS) on transmitting versus non-transmitting cases, we identified six loci, , , , , and , that were associated with transmission. This study provides a framework for reconstructing large-scale transmission networks. We have highlighted potential host and pathogen characteristics that were linked to increased transmission in a high-burden setting and identified genomic variants that, with validation, could inform further studies into transmissibility and TB eradication.

Funding
This study was supported by the:
  • Taane G Clark , Wellcome Trust , (Award 096249/Z/11/B)
  • Taane G Clark , Medical Research Council , (Award MR/M01360X/1)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000361
2020-04-01
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/4/mgen000361.html?itemId=/content/journal/mgen/10.1099/mgen.0.000361&mimeType=html&fmt=ahah

References

  1. WHO Global tuberculosis report. global tuberculosis report 2016; 20165–130
  2. Eldholm V, Rieux A, Monteserin J, Lopez JM, Palmero D et al. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. eLife 2016; 5:1–19 [CrossRef]
    [Google Scholar]
  3. Didelot X, Fraser C, Gardy J, Colijn C, Malik H. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol Biol Evol 2017; 34:997–1007
    [Google Scholar]
  4. Luo T, Yang C, Peng Y, Lu L, Sun G et al. Whole-Genome sequencing to detect recent transmission of Mycobacterium tuberculosis in settings with a high burden of tuberculosis. Tuberculosis 2014; 94:434–440 [CrossRef]
    [Google Scholar]
  5. Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 2014; 46:279–286 [CrossRef]
    [Google Scholar]
  6. Guerra-Assunção JA, Fine PEM, Crampin AC, Houben R, Mzembe T et al. Large-Scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife 2015; 2015:1–17
    [Google Scholar]
  7. Campos LC, Rocha MVV, Willers DMC, Silva DR, Vieira Rocha MV. Characteristics of patients with smear-negative pulmonary tuberculosis (TB) in a region with high TB and HIV prevalence. PLoS One 2016; 11:e0147933–0147938 [CrossRef][PubMed]
    [Google Scholar]
  8. Glynn JR, Guerra-Assunção JA, Houben RMGJ, Sichali L, Mzembe T et al. Whole genome sequencing shows a low proportion of tuberculosis disease is attributable to known close contacts in rural Malawi. PLoS One 2015; 10:e0132840–12 [CrossRef]
    [Google Scholar]
  9. Mboma SM, Houben RMGJ, Glynn JR, Sichali L, Drobniewski F et al. Control of (Multi)drug resistance and tuberculosis incidence over 23 Years in the context of a well-supported tuberculosis programme in rural Malawi. PLoS One 2013; 8:e58192 [CrossRef]
    [Google Scholar]
  10. Crampin AC, Glynn JR, Fine PEM. What has Karonga taught us? tuberculosis studied over three decades. Int J Tuberc Lung Dis 2009; 13:153–164
    [Google Scholar]
  11. Guerra-Assunção JA, Houben RMGJ, Crampin AC, Mzembe T, Mallard K et al. Recurrence due to relapse or reinfection With Mycobacterium tuberculosis : A whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J Infect Dis. 2015; 211:1154–1163 [CrossRef]
    [Google Scholar]
  12. Sobkowiak B, Glynn JR, Houben RMGJ, Mallard K, Phelan JE et al. Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics 2018; 19:613 [CrossRef]
    [Google Scholar]
  13. Jombart T, Eggo RM, Dodd PJ, Balloux F. Reconstructing disease outbreaks from genetic data: a graph approach. Heredity 2011; 106:383–390 [CrossRef]
    [Google Scholar]
  14. Didelot X, Gardy J, Colijn C. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol Biol Evol 2014; 31:1869–1879 [CrossRef]
    [Google Scholar]
  15. Walker TM, Ip CLC, Harrell RH, Evans JT, Kapatai G et al. Whole-Genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 2013; 13:137–146 [CrossRef]
    [Google Scholar]
  16. Lee RS, Radomski N, Proulx J-F, Manry J, McIntosh F et al. Reemergence and amplification of tuberculosis in the Canadian Arctic. J Infect Dis. 2015; 211:1905–1914 [CrossRef]
    [Google Scholar]
  17. Yang C, Luo T, Shen X, Wu J, Gan M et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis 2017; 17:275–284 [CrossRef]
    [Google Scholar]
  18. Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 2013; 10:e1001387 [CrossRef]
    [Google Scholar]
  19. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [CrossRef]
    [Google Scholar]
  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [CrossRef]
    [Google Scholar]
  21. Phelan JE, Coll F, Bergval I, Anthony RM, Warren R et al. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics 2016; 17:151 [CrossRef]
    [Google Scholar]
  22. Zerbino DR. Using the velvet de novo assembler for short-read sequencing technologies. In Bateman A, Pearson WR, Stein LD, Stormo GD, Yates JR. (editors) Current Protocols in Bioinformatics [Internet] 31 Hoboken, NJ, USA: John Wiley & Sons, Inc; 2010 pp 1–13 [CrossRef]
    [Google Scholar]
  23. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [CrossRef]
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  25. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Reu- S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef]
    [Google Scholar]
  26. Jajou R, de Neeling A, van Hunen R, de Vries G, Schimmel H et al. Epidemiological links between tuberculosis cases identified twice as efficiently by whole genome sequencing than conventional molecular typing: a population-based study. PLoS One 2018; 13:1–11
    [Google Scholar]
  27. Lieberman TD, Wilson D, Misra R, Xiong LL, Moodley P et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis . Nat Med 2016; 22:1470–1474 [CrossRef]
    [Google Scholar]
  28. Drummond AJ, Suchard MA, Xie D, Rambaut A, Bouckaert RR, Dong X. Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol 2012; 29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  29. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef]
    [Google Scholar]
  30. Glynn JR, Vyonycky E, Fine PEM. Influence of sampling on estimates of clustering and recent transmission of Mycobacterium tuberculosis derived from DNA fingerprinting techniques. Am J Epidemiol 1999; 149:366–371 [CrossRef]
    [Google Scholar]
  31. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis . Nat Genet 2013; 45:1183–1189 [CrossRef]
    [Google Scholar]
  32. Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K et al. Genome-Wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet 2018; 50:307–316 [CrossRef]
    [Google Scholar]
  33. Van SC, Cule M, Welte A, Van HP, Der SGV et al. Towards eliminating bias in cluster analysis of TB genotyped data. PLoS One 2012; 7:1–7
    [Google Scholar]
  34. Cui Z-J, Yang Q-Y, Zhang H-Y, Zhu Q, Zhang Q-Y. Bioinformatics identification of drug resistance-associated gene pairs in Mycobacterium tuberculosis . Int J Mol Sci 2016; 17:1417–1419 [CrossRef]
    [Google Scholar]
  35. Chiliza TE, Pillay M, Pillay B. Identification of unique essential proteins from a Mycobacterium tuberculosis F15 / Lam4 / KZN phage secretome library. Pathog Dis 2017; 75:1–10
    [Google Scholar]
  36. Nebenzahl-Guimaraes H, van Laarhoven A, Farhat MR, Koeken VACM, Mandemakers JJ et al. Transmissible Mycobacterium tuberculosis strains share genetic markers and immune phenotypes. Am J Respir Crit Care Med 2017; 195:1519–1527 [CrossRef]
    [Google Scholar]
  37. Parwati I, van Crevel R, van Soolingen D, Van CR, Van SD. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis 2010; 10:103–111 [CrossRef]
    [Google Scholar]
  38. Niemann S, Diel R, Khechinashvili G, Gegia M, Mdivani N et al. Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the Republic of Georgia. J Clin Microbiol 2010; 48:3544–3550 [CrossRef]
    [Google Scholar]
  39. Holt KE, McAdam P, Thai PVK, Thuong NTT, Ha DTM et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet 2018; 50:849–856 [CrossRef]
    [Google Scholar]
  40. Reiling N, Homolka S, Walter K, Brandenburg J, Niwinski L et al. Clade-Specific virulence patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice. MBio 2013; 4:e00250–13 [CrossRef]
    [Google Scholar]
  41. Byng-Maddick R, Noursadeghi M. Does tuberculosis threaten our ageing populations?. BMC Infect Dis 2016; 16:119 [CrossRef]
    [Google Scholar]
  42. Glynn JR, Crampin AC, Traore H, Chaguluka S, Mwafulirwa DT, Drobniewski FD et al. Determinants of cluster size in large, population-based molecular epidemiology study of tuberculosis, Northern Malawi. Emerg Infect Dis 2008; 14:1060–1066 [CrossRef]
    [Google Scholar]
  43. Mzembe T, Mclean E, Khan PY, Koole O, Sichali L et al. Risk of Mycobacterium tuberculosis transmission in an antiretroviral therapy clinic. AIDS 2018; 32:1–2421 [CrossRef]
    [Google Scholar]
  44. Gande R, Gibson KJC, Brown AK, Krumbach K, Dover LG et al. Acyl-CoA Carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis . J Biol Chem 2004; 279:44847–44857 [CrossRef]
    [Google Scholar]
  45. Vani J, Shaila MS, Trinath J, Balaji KN, Kaveri S V et al. Mycobacterium tuberculosis cell Wall–Associated Rv3812 protein induces strong dendritic Cell–Mediated interferon γ responses and exhibits vaccine potential.. J Infect Dis 2013; 208:1034–1036
    [Google Scholar]
  46. Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Michael R et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol 2017; 2: [CrossRef]
    [Google Scholar]
  47. Gagneux S. Fitness cost of drug resistance in Mycobacterium tuberculosis . Clin Microbiol Infect 2009; 15:66–68 [CrossRef]
    [Google Scholar]
  48. Gagneux S, Burgos MV, DeRiemer K, Enciso A, Muñoz S et al. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis . PLoS Pathog 2006; 2:e61 [CrossRef]
    [Google Scholar]
  49. Hu Y, Hoffner S, Jiang W, Wang W, Xu B. Extensive transmission of isoniazid resistant M. tuberculosis and its association with increased multidrug-resistant TB in two rural counties of eastern China: a molecular epidemiological study. BMC Infect Dis 2010; 10:1–8 [CrossRef]
    [Google Scholar]
  50. Nieto R LM, Mehaffy C, Creissen E, Troudt J, Troy A, Bielefeldt-ohmann H et al. Virulence of Mycobacterium tuberculosis after acquisition of isoniazid resistance: individual nature of katG mutants and the possible role of AhpC. PLoS One 2016; 11:1–15 [CrossRef][PubMed]
    [Google Scholar]
  51. Gagneux S. Host–pathogen coevolution in human tuberculosis. Phil. Trans. R. Soc. B 2012; 367:850–859 [CrossRef]
    [Google Scholar]
  52. Palittapongarnpim P, Ajawatanawong P, Viratyosin W, Smittipat N, Disratthakit A et al. Evidence for host-bacterial co-evolution via genome sequence analysis of 480 Thai Mycobacterium tuberculosis lineage 1 isolates. Sci Rep 2018; 8:11597 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000361
Loading
/content/journal/mgen/10.1099/mgen.0.000361
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error