1887

Abstract

is a human pathogen, which is transmitted by the consumption of contaminated food or water. strains belonging to the serogroups O1 and O139 can cause cholera outbreaks and epidemics, a severe life-threatening diarrheal disease. In contrast, serogroups other than O1 and O139, denominated as non-O1/non-O139, have been mainly associated with sporadic cases of moderate or mild diarrhea, bacteremia and wound infections. Here we investigated the virulence determinants and phylogenetic origin of a non-O1/non-O139 strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018. We found that this outbreak strain lacks the classical virulence genes harboured by O1 and O139 strains, including the cholera toxin (CT) and the toxin-coregulated pilus (TCP). However, this strain carries genomic islands (GIs) encoding Type III and Type VI secretion systems (T3SS/T6SS) and antibiotic resistance genes. Moreover, we found these GIs are wide distributed among several lineages of non-O1/non-O139 strains. Our results suggest that the acquisition of these GIs may enhance the virulence of non-O1/non-O139 strains that lack the CT and TCP-encoding genes. Our results highlight the pathogenic potential of these strains.

Funding
This study was supported by the:
  • David A. Montero , FONDECYT , (Award 3190524)
  • Roberto Vidal , FONDECYT , (Award 1161161)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000340
2020-02-20
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/3/mgen000340.html?itemId=/content/journal/mgen/10.1099/mgen.0.000340&mimeType=html&fmt=ahah

References

  1. Dutta D, Chowdhury G, Pazhani GP, Guin S, Dutta S et al. Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerg Infect Dis 2013; 19:464–467 [CrossRef]
    [Google Scholar]
  2. Octavia S, Salim A, Kurniawan J, Lam C, Leung Q et al. Population structure and evolution of Non-O1/Non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One 2013; 8:e65342 [CrossRef]
    [Google Scholar]
  3. Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK et al. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 2009; 47:1087–1095 [CrossRef]
    [Google Scholar]
  4. Deshayes S, Daurel C, Cattoir V, Parienti J-J, Quilici M-L et al. Non-O1, non-O139 Vibrio cholerae bacteraemia: case report and literature review. Springerplus 2015; 4:575 [CrossRef]
    [Google Scholar]
  5. Domman D, Quilici M-L, Dorman MJ, Njamkepo E, Mutreja A et al. Integrated view of Vibrio cholerae in the Americas. Science 2017; 358:789–793 [CrossRef]
    [Google Scholar]
  6. Olivares F, Domínguez I, Dabanch J, Porte L, Ulloa MT et al. Bacteriemia POR Vibrio cholerae no-O1/no-O139 que porta una región homóloga a la isla de patogenicidad VpaI-7. Rev Chil infectología 2019; 36:392–395 [CrossRef]
    [Google Scholar]
  7. Montero D, Vidal M, Pardo M, Torres A, Kruger E et al. Characterization of enterotoxigenic Escherichia coli strains isolated from the massive multi-pathogen gastroenteritis outbreak in the Antofagasta region following the Chilean earthquake, 2010. Infect Genet Evol 2017; 52:26–29 [CrossRef]
    [Google Scholar]
  8. Ministerio de Salud de Chile Departamento de Epidemiología. Minuta: Situación epidemiológica de brote de diarrea aguda por Vibrio cholerae no toxigénico . Chile, año 2018-2019 2019 (Not published)
    [Google Scholar]
  9. Clinical and Laboratory Standards Institute - CLSI Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. M45, 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2015
    [Google Scholar]
  10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  11. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef]
    [Google Scholar]
  12. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 2014; 9:e104984 [CrossRef]
    [Google Scholar]
  13. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [CrossRef]
    [Google Scholar]
  14. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: an R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res 2018; 3:93 [CrossRef]
    [Google Scholar]
  15. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012; 50:1355–1361 [CrossRef]
    [Google Scholar]
  16. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W. R Package 'gplots'; 2016
  17. R Core Team R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2014
    [Google Scholar]
  18. Kurtz S et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 2001; 29:4633–4642 [CrossRef]
    [Google Scholar]
  19. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [CrossRef]
    [Google Scholar]
  20. Lowe TM, Eddy SR. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [CrossRef]
    [Google Scholar]
  21. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–15 [CrossRef]
    [Google Scholar]
  22. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [CrossRef]
    [Google Scholar]
  23. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [CrossRef]
    [Google Scholar]
  24. Chaand M, Miller KA, Sofia MK, Schlesener C, Weaver JWA et al. Type three secretion system island-encoded proteins required for colonization by Non-O1/Non-O139 serogroup Vibrio cholerae. Infect Immun 2015; 83:2862–2869 [CrossRef]
    [Google Scholar]
  25. Almagro-Moreno S, Boyd EF. Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect Immun 2009; 77:3807–3816 [CrossRef]
    [Google Scholar]
  26. Zheng J, Ho B, Mekalanos JJ. Genetic analysis of Anti-Amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 2011; 6:e23876 [CrossRef]
    [Google Scholar]
  27. Labbate M, Orata FD, Petty NK, Jayatilleke ND, King WL et al. A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Sci Rep 2016; 6:36891 [CrossRef]
    [Google Scholar]
  28. Carraro N, Rivard N, Ceccarelli D, Colwell RR, Burrus V. IncA/C Conjugative plasmids mobilize a new family of multidrug resistance islands in clinical Vibrio cholerae non-O1/non-O139 isolates from Haiti. MBio 2016; 7: [CrossRef]
    [Google Scholar]
  29. Zhou Y, Yu L, Li J, Zhang L, Tong Y et al. Accumulation of mutations in DNA gyrase and topoisomerase IV genes contributes to fluoroquinolone resistance in Vibrio cholerae O139 strains. Int J Antimicrob Agents 2013; 42:72–75 [CrossRef]
    [Google Scholar]
  30. Deen J, Mengel MA, Clemens JD. Epidemiology of cholera. Vaccine 2019 [CrossRef]
    [Google Scholar]
  31. O’Ryan M, Vidal R, del Canto F, Salazar JC, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae . Hum Vaccin Immunother 2015; 11:584–600 [CrossRef]
    [Google Scholar]
  32. Fraga SG, De Trejo AV, Pichel M, Figueroa S, Merletti G et al. Caracterización de aislamientos de Vibrio cholerae no-O1, no-O139 asociados a cuadros de diarrea. Rev Argent Microbiol 2009; 41:11–19
    [Google Scholar]
  33. Montero DA, Canto FD, Velasco J, Colello R, Padola NL et al. Cumulative acquisition of pathogenicity islands has shaped virulence potential and contributed to the emergence of LEE-negative Shiga toxin-producing Escherichia coli strains. Emerg Microbes Infect 2019; 8:486–502 [CrossRef]
    [Google Scholar]
  34. Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 2011; 13:992–1001 [CrossRef]
    [Google Scholar]
  35. Zhao Z, Liu J, Deng Y, Huang W, Ren C et al. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells. Virulence 2018; 9:318–330 [CrossRef]
    [Google Scholar]
  36. Tam VC, Serruto D, Dziejman M, Brieher W, Mekalanos JJ. A type III secretion system in Vibrio cholerae translocates a Formin/Spire Hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe 2007; 1:95–107 [CrossRef]
    [Google Scholar]
  37. Shin OS, Tam VC, Suzuki M, Ritchie JM, Bronson RT et al. Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. MBio 2011; 2:1–11 [CrossRef]
    [Google Scholar]
  38. Cascales E, Cambillau C. Structural biology of type VI secretion systems. Phil Trans R Soc B 2012; 367:1102–1111 [CrossRef]
    [Google Scholar]
  39. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 2007; 104:15508–15513 [CrossRef]
    [Google Scholar]
  40. Brooks TM, Unterweger D, Bachmann V, Kostiuk B, Pukatzki S. Lytic Activity of the Vibrio cholerae Type VI Secretion Toxin VgrG-3 Is Inhibited by the Antitoxin TsaB. J Biol Chem 2013; 288:7618–7625 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000340
Loading
/content/journal/mgen/10.1099/mgen.0.000340
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error