1887

Abstract

Resistance to meticillin and vancomycin in significantly complicates the management of severe infections like bacteraemia, endocarditis or osteomyelitis. Here, we review the molecular mechanisms and genomic epidemiology of resistance to these agents, with a focus on how genomics has provided insights into the emergence and evolution of major meticillin-resistant clones. We also provide insights on the use of bacterial whole-genome sequencing to inform management of infections and for control of transmission at the hospital and in the community.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000324
2020-01-08
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000324/mgen000324.html?itemId=/content/journal/mgen/10.1099/mgen.0.000324&mimeType=html&fmt=ahah

References

  1. Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 2005;5:751–762 [CrossRef]
    [Google Scholar]
  2. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603–661 [CrossRef]
    [Google Scholar]
  3. Miro JM, Anguera I, Cabell CH, Chen AY, Stafford JA et al. Staphylococcus aureus native valve infective endocarditis: report of 566 episodes from the International Collaboration on Endocarditis Merged Database. Clin Infect Dis 2005;41:507–514 [CrossRef]
    [Google Scholar]
  4. Fowler VG, Miro JM, Hoen B, Cabell CH, Abrutyn E et al. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA 2005;293:3012–3021 [CrossRef]
    [Google Scholar]
  5. Self WH, Wunderink RG, Williams DJ, Zhu Y, Anderson EJ et al. Staphylococcus aureus community-acquired pneumonia: prevalence, clinical characteristics, and outcomes. Clin Infect Dis 2016;63:300–309
    [Google Scholar]
  6. Holmes NE, Robinson JO, van Hal SJ, Munckhof WJ, Athan E et al. Morbidity from in-hospital complications is greater than treatment failure in patients with Staphylococcus aureus bacteraemia. BMC Infect Dis 2018;18:107 [CrossRef]
    [Google Scholar]
  7. Barber M, Rozwadowska-Dowzenko M. Infection by penicillin-resistant staphylococci. The Lancet 1948;252:641–644 [CrossRef]
    [Google Scholar]
  8. Jessen O, Rosendal K, Bülow P, Faber V, Eriksen KR. Changing staphylococci and staphylococcal infections. A ten-year study of bacteria and cases of bacteremia. N Engl J Med 1969;281:627–635 [CrossRef]
    [Google Scholar]
  9. Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009;7:629–641 [CrossRef]
    [Google Scholar]
  10. Barber M. Methicillin-resistant staphylococci. J Clin Pathol 1961;14:385–393 [CrossRef]
    [Google Scholar]
  11. Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 2017;18:130 [CrossRef]
    [Google Scholar]
  12. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 1997;40:135–136 [CrossRef]
    [Google Scholar]
  13. Moellering RC. Vancomycin: a 50-year reassessment. Clin Infect Dis 2006;42 (Suppl. 1):S3–S4 [CrossRef]
    [Google Scholar]
  14. Fowler VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 2006;355:653–665 [CrossRef]
    [Google Scholar]
  15. Mendes RE, Hogan PA, Jones RN, Sader HS, Flamm RK. Surveillance for linezolid resistance via the Zyvox® annual appraisal of potency and spectrum (ZAAPS) programme (2014): evolving resistance mechanisms with stable susceptibility rates. J Antimicrob Chemother 2016;71:1860–1865 [CrossRef]
    [Google Scholar]
  16. Hartman BJ, Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 1984;158:513–516
    [Google Scholar]
  17. Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF. A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci. Science 2001;291:1962–1965 [CrossRef]
    [Google Scholar]
  18. Matthews PR, Stewart PR. Resistance heterogeneity in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 1984;22:161–166 [CrossRef]
    [Google Scholar]
  19. Aedo S, Tomasz A. Role of the stringent stress response in the antibiotic resistance phenotype of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2016;60:2311–2317 [CrossRef]
    [Google Scholar]
  20. Gaca AO, Colomer-Winter C, Lemos JA. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol 2015;197:1146–1156 [CrossRef]
    [Google Scholar]
  21. Pardos de la Gandara M, Borges V, Chung M, Milheiriço C, Gomes JP et al. Genetic determinants of high-level oxacillin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2018;62:e00206-18 [CrossRef]
    [Google Scholar]
  22. Berger-Bächi B, Barberis-Maino L, Strässle A, Kayser FH, FemA KFH. Fema, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol Gen Genet 1989;219:263–269 [CrossRef]
    [Google Scholar]
  23. García-Álvarez L, Holden MTG, Lindsay H, Webb CR, Brown DFJ et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 2011;11:595–603 [CrossRef]
    [Google Scholar]
  24. Paterson GK, Harrison EM, Holmes MA. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol 2014;22:42–47 [CrossRef]
    [Google Scholar]
  25. Diaz R, Ramalheira E, Afreixo V, Gago B. Methicillin-resistant Staphylococcus aureus carrying the new mecC gene – a meta-analysis. Diagn Microbiol Infect Dis 2016;84:135–140 [CrossRef]
    [Google Scholar]
  26. Worthing KA, Coombs GW, Pang S, Abraham S, Saputra S et al. Isolation of mecC MRSA in Australia. J Antimicrob Chemother 2016;71:2348–2349 [CrossRef]
    [Google Scholar]
  27. Kim CK, Milheiriço C, de Lencastre H, Tomasz A. Antibiotic resistance as a stress response: recovery of high-level oxacillin resistance in methicillin-resistant Staphylococcus aureus “auxiliary” (fem) mutants by induction of the stringent stress response. Antimicrob Agents Chemother 2017;61:e00313-17 [CrossRef]
    [Google Scholar]
  28. Ba X, Harrison EM, Lovering AL, Gleadall N, Zadoks R et al. Old drugs to treat resistant bugs: methicillin-resistant Staphylococcus aureus isolates with mecC are susceptible to a combination of penicillin and clavulanic acid. Antimicrob Agents Chemother 2015;59:7396–7404 [CrossRef]
    [Google Scholar]
  29. Mancini S, Laurent F, Veloso TR, Giddey M, Vouillamoz J et al. In vivo effect of flucloxacillin in experimental endocarditis caused by mecC-positive Staphylococcus aureus showing temperature-dependent susceptibility in vitro. Antimicrob Agents Chemother 2015;59:2435–2438 [CrossRef]
    [Google Scholar]
  30. Ito T, Hiramatsu K, Tomasz A, de Lencastre H, Perreten V et al. Guidelines for reporting novel mecA gene homologues. Antimicrob Agents Chemother 2012;56:4997–4999 [CrossRef]
    [Google Scholar]
  31. Schwendener S, Cotting K, Perreten V. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep 2017;7:43797 [CrossRef]
    [Google Scholar]
  32. Rolo J, Worning P, Nielsen JB, Bowden R, Bouchami O et al. Evolutionary origin of the staphylococcal cassette chromosome mec (SCC mec). Antimicrob Agents Chemother 2017;61:e02302-16 [CrossRef]
    [Google Scholar]
  33. International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC) Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 2009;53:4961–4967 [CrossRef]
    [Google Scholar]
  34. Baines SL, Howden BP, Heffernan H, Stinear TP, Carter GP et al. Rapid emergence and evolution of Staphylococcus aureus clones harboring fusC-containing staphylococcal cassette chromosome elements. Antimicrob Agents Chemother 2016;60:2359–2365 [CrossRef]
    [Google Scholar]
  35. Ellington MJ, Reuter S, Harris SR, Holden MTG, Cartwright EJ et al. Emergent and evolving antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2015;45:477–484 [CrossRef]
    [Google Scholar]
  36. Harris TM, Bowen AC, Holt DC, Sarovich DS, Stevens K et al. Investigation of trimethoprim/sulfamethoxazole resistance in an emerging sequence type 5 methicillin-resistant Staphylococcus aureus clone reveals discrepant resistance reporting. Clin Microbiol Infect 2018;24:1027–1029 [CrossRef]
    [Google Scholar]
  37. Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB et al. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018;3:e00612-17 [CrossRef]
    [Google Scholar]
  38. Firth N, Jensen SO, Kwong SM, Skurray RA, Ramsay JP. Staphylococcal plasmids, transposable and integrative elements. Microbiol Spectr 2018;6:GPP3-0030-2018 [CrossRef]
    [Google Scholar]
  39. Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol 2014;21:593–601 [CrossRef]
    [Google Scholar]
  40. Jones D, Elshaboury RH, Munson E, Dilworth TJ. A retrospective analysis of treatment and clinical outcomes among patients with methicillin-susceptible Staphylococcus aureus bloodstream isolates possessing detectable mecA by a commercial PCR assay compared to patients with methicillin-resistant Staphylococcus aureus bloodstream isolates. Antimicrob Agents Chemother 2018;62:e01396-17 [CrossRef]
    [Google Scholar]
  41. Proulx MK, Palace SG, Gandra S, Torres B, Weir S et al. Reversion from methicillin susceptibility to methicillin resistance in Staphylococcus aureus during treatment of bacteremia. J Infect Dis 2016;213:1041–1048 [CrossRef]
    [Google Scholar]
  42. Chung M, Kim CK, Conceição T, Aires-De-Sousa M, de Lencastre H et al. Heterogeneous oxacillin-resistant phenotypes and production of PBP2a by oxacillin-susceptible/mecA-positive MRSA strains from Africa. J Antimicrob Chemother 2016;71:2804–2809 [CrossRef]
    [Google Scholar]
  43. Harrison EM, Ba X, Coll F, Blane B, Restif O et al. Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat Microbiol 2019;4:1680–1691 [CrossRef]
    [Google Scholar]
  44. Skinner S, Murray M, Walus T, Karlowsky JA. Failure of cloxacillin in treatment of a patient with borderline oxacillin-resistant Staphylococcus aureus endocarditis. J Clin Microbiol 2009;47:859–861 [CrossRef]
    [Google Scholar]
  45. Burd EM, Alam MT, Passalacqua KD, Kalokhe AS, Eaton ME et al. Development of oxacillin resistance in a patient with recurrent Staphylococcus aureus bacteremia. J Clin Microbiol 2014;52:3114–3117 [CrossRef]
    [Google Scholar]
  46. Ba X, Harrison EM, Edwards GF, Holden MTG, Larsen AR et al. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J Antimicrob Chemother 2014;69:594–597 [CrossRef]
    [Google Scholar]
  47. Ba X, Kalmar L, Hadjirin NF, Kerschner H, Apfalter P et al. Truncation of GdpP mediates β-lactam resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 2019;74:1182–1191 [CrossRef]
    [Google Scholar]
  48. Argudín MA, Roisin S, Nienhaus L, Dodémont M, de Mendonça R et al. Genetic diversity among Staphylococcus aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes. Antimicrob Agents Chemother 2018;62:e00091-18 [CrossRef]
    [Google Scholar]
  49. Corrigan RM, Gründling A. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 2013;11:513–524 [CrossRef]
    [Google Scholar]
  50. Planet PJ. Life after USA300: the rise and fall of a superbug. J Infect Dis 2017;215:S71–S77 [CrossRef]
    [Google Scholar]
  51. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019;17:203–218 [CrossRef]
    [Google Scholar]
  52. Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D et al. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010;7:e1000215 [CrossRef]
    [Google Scholar]
  53. Harris SR, Feil EJ, Holden MTG, Quail MA, Nickerson EK et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010;327:469–474 [CrossRef]
    [Google Scholar]
  54. Köser CU, Holden MTG, Ellington MJ, Cartwright EJP, Brown NM et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 2012;366:2267–2275 [CrossRef]
    [Google Scholar]
  55. Senn L, Clerc O, Zanetti G, Basset P, Prod'hom G et al. The stealthy superbug: the role of asymptomatic enteric carriage in maintaining a long-term hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. mBio 2016;7:e02039-15 [CrossRef]
    [Google Scholar]
  56. Harris SR, Cartwright EJP, Török ME, Holden MTG, Brown NM et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 2013;13:130–136 [CrossRef]
    [Google Scholar]
  57. Uhlemann A-C, Dordel J, Knox JR, Raven KE, Parkhill J et al. Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community. Proc Natl Acad Sci USA 2014;111:6738–6743 [CrossRef]
    [Google Scholar]
  58. Price LB, Stegger M, Hasman H, Aziz M, Larsen J et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 2012;3:e00305-11 [CrossRef]
    [Google Scholar]
  59. Gonçalves da Silva A, Baines SL, Carter GP, Heffernan H, French NP et al. A phylogenomic framework for assessing the global emergence and evolution of clonal complex 398 methicillin-resistant Staphylococcus aureus. Microb Genom 2017;3:e000105 [CrossRef]
    [Google Scholar]
  60. Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA et al. Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. mBio 2016;7:e00444-16 [CrossRef]
    [Google Scholar]
  61. Reuter S, Török ME, Holden MTG, Reynolds R, Raven KE et al. Building a genomic framework for prospective MRSA surveillance in the United Kingdom and the Republic of Ireland. Genome Res 2016;26:263–270 [CrossRef]
    [Google Scholar]
  62. Toleman MS, Reuter S, Jamrozy D, Wilson HJ, Blane B et al. Prospective genomic surveillance of methicillin-resistant Staphylococcus aureus (MRSA) associated with bloodstream infection, England, 1 October 2012 to 30 September 2013. Euro Surveill 2019;24:1800215 [CrossRef]
    [Google Scholar]
  63. Price JR, Cole K, Bexley A, Kostiou V, Eyre DW et al. Transmission of Staphylococcus aureus between health-care workers, the environment, and patients in an intensive care unit: a longitudinal cohort study based on whole-genome sequencing. Lancet Infect Dis 2017;17:207–214 [CrossRef]
    [Google Scholar]
  64. Coll F, Harrison EM, Toleman MS, Reuter S, Raven KE et al. Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Sci Transl Med 2017;9:eaak9745 [CrossRef]
    [Google Scholar]
  65. Petit RA, Read TD. Staphylococcus aureus viewed from the perspective of 40,000+ genomes. PeerJ 2018;6:e5261 [CrossRef]
    [Google Scholar]
  66. Guérillot R, Gonçalves da Silva A, Monk I, Giulieri S, Tomita T et al. Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus. mSphere 2018;3:e00550-17 [CrossRef]
    [Google Scholar]
  67. Bradley P, den Bakker HC, Rocha EPC, McVean G, Iqbal Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat Biotechnol 2019;37:152152–159 [CrossRef]
    [Google Scholar]
  68. Copin R, Shopsin B, Torres VJ. After the deluge: mining Staphylococcus aureus genomic data for clinical associations and host-pathogen interactions. Curr Opin Microbiol 2018;41:43–50 [CrossRef]
    [Google Scholar]
  69. Holden MTG, Hsu L-Y, Kurt K, Weinert LA, Mather AE et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013;23:653–664 [CrossRef]
    [Google Scholar]
  70. Baines SL, Holt KE, Schultz MB, Seemann T, Howden BO et al. Convergent adaptation in the dominant global hospital clone ST239 of methicillin-resistant Staphylococcus aureus. mBio 2015;6:e00080 [CrossRef]
    [Google Scholar]
  71. Stinear TP, Holt KE, Chua K, Stepnell J, Tuck KL et al. Adaptive change inferred from genomic population analysis of the ST93 epidemic clone of community-associated methicillin-resistant Staphylococcus aureus. Genome Biol Evol 2014;6:366–378 [CrossRef]
    [Google Scholar]
  72. Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S et al. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 2019;116:1745–1754 [CrossRef]
    [Google Scholar]
  73. van Hal SJ, Steinig EJ, Andersson P, Holden MTG, Harris SR et al. Global scale dissemination of ST93: a divergent Staphylococcus aureus epidemic lineage that has recently emerged from remote Northern Australia. Front Microbiol 2018;9:1453 [CrossRef]
    [Google Scholar]
  74. DeLeo FR, Kennedy AD, Chen L, Bubeck Wardenburg J, Kobayashi SD et al. Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci USA 2011;108:18091–18096 [CrossRef]
    [Google Scholar]
  75. Tong SYC, Holden MTG, Nickerson EK, Cooper BS, Köser CU et al. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res 2015;25:111–118 [CrossRef]
    [Google Scholar]
  76. Ward MJ, Goncheva M, Richardson E, McAdam PR, Raftis E et al. Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA. Genome Biol 2016;17:160 [CrossRef]
    [Google Scholar]
  77. Lindsay JA. Hospital-associated MRSA and antibiotic resistance – what have we learned from genomics?. Int J Med Microbiol 2013;303:318–323 [CrossRef]
    [Google Scholar]
  78. Couderc C, Jolivet S, Thiébaut ACM, Ligier C, Remy L et al. Fluoroquinolone use is a risk factor for methicillin-resistant Staphylococcus aureus acquisition in long-term care facilities: a nested case-case-control study. Clin Infect Dis 2014;59:206–215 [CrossRef]
    [Google Scholar]
  79. Dweba CC, Zishiri OT, El Zowalaty ME. Methicillin-resistant Staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infect Drug Resist 2018;11:2497–2509 [CrossRef]
    [Google Scholar]
  80. Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev 2017;30:827–860 [CrossRef]
    [Google Scholar]
  81. Ortwine JK, Werth BJ, Sakoulas G, Rybak MJ. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the "seesaw effect": Taking advantage of the back door left open?. Drug Resist Updat 2013;16:73–79 [CrossRef]
    [Google Scholar]
  82. Liu J, Chen D, Peters BM, Li L, Li B et al. Staphylococcal chromosomal cassettes mec (SCCmec): a mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog 2016;101:56–67 [CrossRef]
    [Google Scholar]
  83. Byrne ME, Gillespie MT, Skurray RA. Molecular analysis of a gentamicin resistance transposonlike element on plasmids isolated from North American Staphylococcus aureus strains. Antimicrob Agents Chemother 1990;34:2106–2113 [CrossRef]
    [Google Scholar]
  84. Carter GP, Schultz MB, Baines SL, Gonçalves da Silva A, Heffernan H et al. Topical antibiotic use coselects for the carriage of mobile genetic elements conferring resistance to unrelated antimicrobials in Staphylococcus aureus. Antimicrob Agents Chemother 2018;62:e02000–02017 [CrossRef]
    [Google Scholar]
  85. Schmitz FJ, Jones ME, Hofmann B, Hansen B, Scheuring S et al. Characterization of grlA, grlB, gyrA, and gyrB mutations in 116 unrelated isolates of Staphylococcus aureus and effects of mutations on ciprofloxacin MIC. Antimicrob Agents Chemother 1998;42:1249–1252 [CrossRef]
    [Google Scholar]
  86. Baines SL, Jensen SO, Firth N, Gonçalves da Silva A, Seemann T et al. Remodeling of pSK1 family plasmids and enhanced chlorhexidine tolerance in a dominant hospital lineage of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2019;63:e02356-18 [CrossRef]
    [Google Scholar]
  87. Patel JB, Gorwitz RJ, Jernigan JA. Mupirocin resistance. Clin Infect Dis 2009;49:935–941 [CrossRef]
    [Google Scholar]
  88. Yokoyama M, Stevens E, Laabei M, Bacon L, Heesom K et al. Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA. Genome Biol 2018;19:94 [CrossRef]
    [Google Scholar]
  89. Laabei M, Massey R. Using functional genomics to decipher the complexity of microbial pathogenicity. Curr Genet 2016;62:523525 [CrossRef]
    [Google Scholar]
  90. Giulieri SG, Holmes NE, Stinear TP, Howden BP. Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections. Expert Rev Anti Infect Ther 2016;14:1023–1036 [CrossRef]
    [Google Scholar]
  91. Bergdoll M, Crass BA, Reiser RF, Robbins RN, Davis JP. A new staphylococcal enterotoxin, enterotoxin F, associated with toxic-shock-syndrome Staphylococcus aureus isolates. The Lancet 1981;317:1017–1021 [CrossRef]
    [Google Scholar]
  92. Gillet Y, Henry T, Vandenesch F. Fulminant staphylococcal infections. Microb Spectr 2018;6: [CrossRef]
    [Google Scholar]
  93. Chua KYL, Monk IR, Lin Y-H, Seemann T, Tuck KL et al. Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus. BMC Microbiol 2014;14:31 [CrossRef]
    [Google Scholar]
  94. Gillet Y, Issartel B, Vanhems P, Fournet J-C, Lina G et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. The Lancet 2002;359:753–759 [CrossRef]
    [Google Scholar]
  95. Laabei M, Uhlemann A-C, Lowy FD, Austin ED, Yokoyama M et al. Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLoS Biol 2015;13:e1002229 [CrossRef]
    [Google Scholar]
  96. Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, Bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors?. Front Cell Infect Microbiol 2012;2:12 [CrossRef]
    [Google Scholar]
  97. Otto M. Community-Associated MRSA: what makes them special?. Int J Med Microbiol 2013;303:324–330 [CrossRef]
    [Google Scholar]
  98. Young BC, Earle SG, Soeng S, Sar P, Kumar V et al. Panton–Valentine leucocidin is the key determinant of Staphylococcus aureus pyomyositis in a bacterial GWAS. eLife 2019;8:e42486 [CrossRef]
    [Google Scholar]
  99. Rudkin JK, Laabei M, Edwards AM, Joo H-S, Otto M et al. Oxacillin alters the toxin expression profile of community-associated methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2014;58:1100–1107 [CrossRef]
    [Google Scholar]
  100. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010;23:616–687 [CrossRef]
    [Google Scholar]
  101. Li M, Du X, Villaruz AE, Diep BA, Wang D et al. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 2012;18:816–819 [CrossRef]
    [Google Scholar]
  102. Levine DP. Vancomycin: a history. Clin Infect Dis 2006;42 (Suppl. 1):S5–S12 [CrossRef]
    [Google Scholar]
  103. Lee JYH, Howden BP. Vancomycin in the treatment of methicillin-resistant Staphylococcus aureus – a clinician’s guide to the science informing current practice. Expert Rev Anti Infect Ther 2015;13:855–869
    [Google Scholar]
  104. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 2003;302:1569–1571 [CrossRef]
    [Google Scholar]
  105. Périchon B, Courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009;53:45804587 [CrossRef]
    [Google Scholar]
  106. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 2003;348:1342–1347 [CrossRef]
    [Google Scholar]
  107. Noble WC, Virani Z, Cree RG. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett 1992;72:195–198 [CrossRef]
    [Google Scholar]
  108. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 2017;90:269–281
    [Google Scholar]
  109. Ghahremani M, Jazani NH, Sharifi Y. Emergence of vancomycin-intermediate and -resistant Staphylococcus aureus among methicillin-resistant S. aureus isolated from clinical specimens in the northwest of Iran. J Glob Antimicrob Resist 2018;14:4–9 [CrossRef]
    [Google Scholar]
  110. Kumar M. Multidrug-Resistant Staphylococcus aureus, India, 2013-2015. Emerg Infect Dis 2016;22:1666–1667 [CrossRef]
    [Google Scholar]
  111. Kos VN, Desjardins CA, Griggs A, Cerqueira G, Van Tonder A et al. Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with methicillin-resistant S. aureus hospital-acquired infection in the United States. mBio 2012;3:e00112-12 [CrossRef]
    [Google Scholar]
  112. Howden BP, Johnson PDR, Ward PB, Stinear TP, Davies JK. Isolates with low-level vancomycin resistance associated with persistent methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2006;50:3039–3047 [CrossRef]
    [Google Scholar]
  113. Pfeltz RF, Singh VK, Schmidt JL, Batten MA, Baranyk CS et al. Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 2000;44:294–303 [CrossRef]
    [Google Scholar]
  114. Howden BP, Davies JK, Johnson PDR, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 2010;23:99–139 [CrossRef]
    [Google Scholar]
  115. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 2007;104:9451–9456 [CrossRef]
    [Google Scholar]
  116. Cui L, Neoh H-M, Shoji M, Hiramatsu K. Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 2009;53:1231–1234 [CrossRef]
    [Google Scholar]
  117. Howden BP, McEvoy CRE, Allen DL, Chua K, Gao W et al. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 2011;7:e1002359 [CrossRef]
    [Google Scholar]
  118. Cui L, Isii T, Fukuda M, Ochiai T, Neoh H-M et al. An rpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrob Agents Chemother 2010;54:5222–5233 [CrossRef]
    [Google Scholar]
  119. Passalacqua KD, Satola SW, Crispell EK, Read TD. A mutation in the PP2C phosphatase gene in a Staphylococcus aureus USA300 clinical isolate with reduced susceptibility to vancomycin and daptomycin. Antimicrob Agents Chemother 2012;56:5212–5223 [CrossRef]
    [Google Scholar]
  120. Giulieri SG, Baines SL, Guerillot R, Seemann T, Gonçalves da Silva A et al. Genomic exploration of sequential clinical isolates reveals a distinctive molecular signature of persistent Staphylococcus aureus bacteraemia. Genome Med 2018;10:65 [CrossRef]
    [Google Scholar]
  121. McEvoy CRE, Tsuji B, Gao W, Seemann T, Porter JL et al. Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS256 tempering of WalKR expression. Antimicrob Agents Chemother 2013;57:3240–3249 [CrossRef]
    [Google Scholar]
  122. Alam MT, Petit RA, Crispell EK, Thornton TA, Conneely KN et al. Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biol Evol 2014;6:1174–1185 [CrossRef]
    [Google Scholar]
  123. Rishishwar L, Petit RA, Kraft CS, Jordan IK. Genome sequence-based discriminator for vancomycin-intermediate Staphylococcus aureus. J Bacteriol 2014;196:940–948 [CrossRef]
    [Google Scholar]
  124. Zhang S, Sun X, Chang W, Dai Y, Ma X et al. Systematic review and meta-analysis of the epidemiology of vancomycin-intermediate and heterogeneous vancomycin-intermediate Staphylococcus aureus isolates. PLoS One 2015;10:e0136082 [CrossRef]
    [Google Scholar]
  125. Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM et al. Genetic and molecular predictors of high vancomycin MIC in Staphylococcus aureus bacteremia isolates. J Clin Microbiol 2014;52:3384–3393 [CrossRef]
    [Google Scholar]
  126. Howden BP, Peleg AY, Stinear TP. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA. Infect Genet Evol 2014;21:575–582 [CrossRef]
    [Google Scholar]
  127. Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 2014;124:2836–2840 [CrossRef]
    [Google Scholar]
  128. Humphries RM, Pollett S, Sakoulas G. A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev 2013;26:759–780 [CrossRef]
    [Google Scholar]
  129. Kelley PG, Gao W, Ward PB, Howden BP. Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother 2011;66:1057–1060 [CrossRef]
    [Google Scholar]
  130. Sharma M, Riederer K, Chase P, Khatib R. High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis 2008;27:433–437 [CrossRef]
    [Google Scholar]
  131. Bayer AS, Schneider T, Sahl H-G. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann NY Acad Sci 2013;1277:139–158 [CrossRef]
    [Google Scholar]
  132. Yang S-J, Mishra NN, Rubio A, Bayer AS. Causal role of single nucleotide polymorphisms within the mprF gene of Staphylococcus aureus in daptomycin resistance. Antimicrob Agents Chemother 2013;57:5658–5664 [CrossRef]
    [Google Scholar]
  133. Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 2006;50:2137–2145 [CrossRef]
    [Google Scholar]
  134. Adhikari RP et al. Vancomycin-induced deletion of the methicillin resistance gene mecA in Staphylococcus aureus. J Antimicrob Chemother 2004;54:360–363 [CrossRef]
    [Google Scholar]
  135. Renzoni A, Kelley WL, Rosato RR, Martinez MP, Roch M et al. Molecular bases determining daptomycin resistance-mediated resensitization to β-lactams (seesaw effect) in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2017;61:e01634-16 [CrossRef]
    [Google Scholar]
  136. Wang G, Hindler JF, Ward KW, Bruckner DA. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol 2006;44:3883–3886 [CrossRef]
    [Google Scholar]
  137. Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother 2009;53:5265–5274 [CrossRef]
    [Google Scholar]
  138. Locke JB, Rahawi S, LaMarre J, Mankin AS, Shaw KJ. Genetic environment and stability of cfr in methicillin-resistant Staphylococcus aureus CM05. Antimicrob Agents Chemother 2012;56:332–340 [CrossRef]
    [Google Scholar]
  139. Locke JB, Zuill DE, Scharn CR, Deane J, Sahm DF et al. Identification and characterization of linezolid-resistant cfr-positive Staphylococcus aureus USA300 isolates from a New York City medical center. Antimicrob Agents Chemother 2014;58:6949–6952 [CrossRef]
    [Google Scholar]
  140. Sánchez García M, De la Torre MA, Morales G, Peláez B, José Tolón M et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA 2010;303:2260–2264
    [Google Scholar]
  141. Geriak M, Haddad F, Rizvi K, Rose W, Kullar R et al. Clinical data on daptomycin plus ceftaroline versus standard of care monotherapy in the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 2019;63:e02483-18 [CrossRef]
    [Google Scholar]
  142. Long SW, Olsen RJ, Mehta SC, Palzkill T, Cernoch PL et al. Pbp2A mutations causing high-level ceftaroline resistance in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 2014;58:6668–6674 [CrossRef]
    [Google Scholar]
  143. Wüthrich D, Cuénod A, Hinic V, Morgenstern M, Khanna N et al. Genomic characterization of inpatient evolution of MRSA resistant to daptomycin, vancomycin and ceftaroline. J Antimicrob Chemother 2019;74:1452–1454 [CrossRef]
    [Google Scholar]
  144. Alm RA, McLaughlin RE, Kos VN, Sader HS, Iaconis JP et al. Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: an epidemiological and structural perspective. J Antimicrob Chemother 2014;69:2065–2075 [CrossRef]
    [Google Scholar]
  145. Lee H, Yoon E-J, Kim D, Kim JW, Lee K-J et al. Ceftaroline resistance by clone-specific polymorphism in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2018;62:e00485-18 [CrossRef]
    [Google Scholar]
  146. Abbott IJ, Jenney AWJ, Jeremiah CJ, Mirčeta M, Kandiah JP et al. Reduced in vitro activity of ceftaroline by Etest among clonal complex 239 methicillin-resistant Staphylococcus aureus clinical strains from Australia. Antimicrob Agents Chemother 2015;59:7837–7841 [CrossRef]
    [Google Scholar]
  147. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 2015;6:10063 [CrossRef]
    [Google Scholar]
  148. Gordon NC, Price JR, Cole K, Everitt R, Morgan M et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 2014;52:1182–1191 [CrossRef]
    [Google Scholar]
  149. Williamson DA, Heffernan H, Nimmo G. Contemporary genomic approaches in the diagnosis and typing of Staphylococcus aureus. Pathology 2015;47:270–275 [CrossRef]
    [Google Scholar]
  150. Lower SK, Lamlertthon S, Casillas-Ituarte NN, Lins RD, Yongsunthon R et al. Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc Natl Acad Sci USA 2011;108:18372–18377 [CrossRef]
    [Google Scholar]
  151. Recker M, Laabei M, Toleman MS, Reuter S, Saunderson RB et al. Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nat Microbiol 2017;2:1381–1388 [CrossRef]
    [Google Scholar]
  152. Lilje B, Rasmussen RV, Dahl A, Stegger M, Skov RL et al. Whole-genome sequencing of bloodstream Staphylococcus aureus isolates does not distinguish bacteraemia from endocarditis. Microb Genom 2017;3:mgen.0.000138 [CrossRef]
    [Google Scholar]
  153. Read TD, Massey RC. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med 2014;6:109 [CrossRef]
    [Google Scholar]
  154. Scott WK, Medie FM, Ruffin F, Sharma-Kuinkel BK, Cyr DD et al. Human genetic variation in GLS2 is associated with development of complicated Staphylococcus aureus bacteremia. PLoS Genet 2018;14:e1007667 [CrossRef]
    [Google Scholar]
  155. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 2016;14:150–162 [CrossRef]
    [Google Scholar]
  156. Young BC, Wu C-H, Gordon NC, Cole K, Price JR et al. Severe infections emerge from commensal bacteria by adaptive evolution. eLife 2017;6:e30637 [CrossRef]
    [Google Scholar]
  157. Guérillot R, Li L, Baines S, Howden B, Schultz MB et al. Comprehensive antibiotic-linked mutation assessment by resistance mutation sequencing (RM-seq). Genome Med 2018;10:63 [CrossRef]
    [Google Scholar]
  158. Davis JS, Sud A, O'Sullivan MVN, Robinson JO, Ferguson PE et al. Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis 2016;62:173–180 [CrossRef]
    [Google Scholar]
  159. Steinig EJ, Duchene S, Robinson DA, Monecke S, Yokoyama M et al. Evolution and global transmission of a multidrug-resistant, community-associated methicillin-resistant Staphylococcus aureus lineage from the Indian subcontinent. mBio 2019;10:e01105-19 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000324
Loading
/content/journal/mgen/10.1099/mgen.0.000324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error