1887

Abstract

Avian pathogenic Escherichia coli (APEC) cause widespread economic losses in poultry production and are potential zoonotic pathogens. Genome sequences of 95 APEC from commercial poultry operations in four Australian states that carried the class 1 integrase gene intI1, a proxy for multiple drug resistance (MDR), were characterized. Sequence types ST117 (22/95), ST350 (10/95), ST429 and ST57 (each 9/95), ST95 (8/95) and ST973 (7/95) dominated, while 24 STs were represented by one or two strains. FII and FIB repA genes were the predominant (each 93/95, 98 %) plasmid incompatibility groups identified, but those of B/O/K/Z (25/95, 26 %) and I1 (24/95, 25 %) were also identified frequently. Virulence-associated genes (VAGs) carried by ColV and ColBM virulence plasmids, including those encoding protectins [iss (91/95, 96 %), ompT (91/95, 96 %) and traT (90/95, 95 %)], iron-acquisition systems [sitA (88/95, 93 %), etsA (87/95, 92 %), iroN (84/95, 89 %) and iucD/iutA (84/95, 89 %)] and the putative avian haemolysin hylF (91/95, 96 %), featured prominently. Notably, mobile resistance genes conferring resistance to fluoroquinolones, colistin, extended-spectrum β-lactams and carbapenems were not detected in the genomes of these 95 APEC but carriage of the sulphonamide resistance gene, sul1 (59/95, 63 %), the trimethoprim resistance gene cassettes dfrA5 (48/95, 50 %) and dfrA1 (25/95, 27 %), the tetracycline resistance determinant tet(A) (51/95, 55 %) and the ampicillin resistance genes blaTEM-1A/B/C (48/95, 52 %) was common. IS26 (77/95, 81 %), an insertion element known to capture and mobilize a wide spectrum of antimicrobial resistance genes, was also frequently identified. These studies provide a baseline snapshot of drug-resistant APEC in Australia and their role in the carriage of ColV-like virulence plasmids.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000250
2019-01-23
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/2/mgen000250.html?itemId=/content/journal/mgen/10.1099/mgen.0.000250&mimeType=html&fmt=ahah

References

  1. Poolman JT, Wacker M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis 2016; 213:6–13 [View Article][PubMed]
    [Google Scholar]
  2. Tan C, Tang X, Zhang X, Ding Y, Zhao Z et al. Serotypes and virulence genes of extraintestinal pathogenic Escherichia coli isolates from diseased pigs in China. Vet J 2012; 192:483–488 [View Article]
    [Google Scholar]
  3. Dho-Moulin M, Fairbrother JM. Avian pathogenic Escherichia coli (APEC). Vet Res 1999; 30:299–316
    [Google Scholar]
  4. Jakobsen L, Kurbasic A, Skjøt-Rasmussen L, Ejrnæs K, Porsbo LJ et al. Escherichia coli Isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis 2010; 7:537–547 [View Article]
    [Google Scholar]
  5. Jakobsen L, Garneau P, Bruant G, Harel J, Olsen SS et al. Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. EurJ of Clin Microbiol Infect Dis 2012; 31:1121–1129 [View Article]
    [Google Scholar]
  6. Gupta K, Hooton TM, Stamm WE. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med 2001; 135:41–50 [View Article]
    [Google Scholar]
  7. Tivendale KA, Noormohammadi AH, Allen JL, Browning GF. The conserved portion of the putative virulence region contributes to virulence of avian pathogenic Escherichia coli. Microbiology 2009; 155:450–460 [View Article]
    [Google Scholar]
  8. Tivendale KA, Allen JL, Ginns CA, Crabb BS, Browning GF. Association of iss and iucA, but Not tsh, with Plasmid-Mediated Virulence of Avian Pathogenic Escherichia coli. Infect Immun 2004; 72:6554–6560 [View Article]
    [Google Scholar]
  9. Delicato ER, de Brito BG, Gaziri LCJ, Vidotto MC. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Vet Microbiol 2003; 94:97–103 [View Article]
    [Google Scholar]
  10. Johnson TJ, Siek KE, Johnson SJ, Nolan LK. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among Avian Escherichia coli strains. J Bacteriol 2006; 188:745–758 [View Article]
    [Google Scholar]
  11. Pfaff-McDonough SJ, Horne SM, Giddings CW, Ebert JO, Doetkott C et al. Complement resistance-related traits among Escherichia coli isolates from apparently healthy birds and birds with colibacillosis. Avian Dis 2000; 44:23–33 [View Article]
    [Google Scholar]
  12. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Nolan LK. Characterizing the APEC pathotype. Vet Res 2005; 36:241–256 [View Article]
    [Google Scholar]
  13. Zhao L, Gao S, Huan H, Xu X, Zhu X et al. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiology 2009; 155:1634–1644 [View Article]
    [Google Scholar]
  14. Stromberg ZR, Johnson JR, Fairbrother JM, Kilbourne J, van Goor A et al. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PLoS One 2017; 12:e0180599 [View Article]
    [Google Scholar]
  15. Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A et al. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun 2010; 78:3412–3419 [View Article]
    [Google Scholar]
  16. Chanteloup NK, Porcheron G, Delaleu B, Germon P, Schouler C et al. The extra-intestinal avian pathogenic Escherichia coli strain BEN2908 invades avian and human epithelial cells and survives intracellularly. Vet Microbiol 2011; 147:435–439 [View Article]
    [Google Scholar]
  17. Johnson JR, Delavari P, Kuskowski M, Stell AL. Phylogenetic distribution of extraintestinal virulence‐associated traits in Escherichia coli. J Infect Dis 2001; 183:78–88 [View Article]
    [Google Scholar]
  18. Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P et al. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother 2003; 47:2161–2168 [View Article]
    [Google Scholar]
  19. Rodriguez-Siek KE et al. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 2005; 151:2097–2110 [View Article]
    [Google Scholar]
  20. Manges AR. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 2016; 22:122–129 [View Article]
    [Google Scholar]
  21. Ewers C, Li G, Wilking H, Kiebling S, Alt K et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?. Int J of Microbiol 2007; 297:163–176 [View Article]
    [Google Scholar]
  22. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L et al. Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 2010; 16:88–95 [View Article]
    [Google Scholar]
  23. Maluta RP, Logue CM, Casas MRT, Meng T, Guastalli EAL et al. Overlapped Sequence Types (STs) and Serogroups of Avian Pathogenic (APEC) and Human Extra-Intestinal Pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS One 2014; 9:e105016 [View Article]
    [Google Scholar]
  24. Manges AR, Johnson JR. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 2012; 55:712–719 [View Article][PubMed]
    [Google Scholar]
  25. Messenger AM, Barnes AN, Gray GC. Reverse zoonotic disease transmission (zooanthroponosis): a systematic review of seldom-documented human biological threats to animals. PLoS One 2014; 9:e89055 [View Article][PubMed]
    [Google Scholar]
  26. David E Swayne LKN, John Barnes H, Vaillancourt JP, Catherine M, Abdul-Aziz T et al. Diseases of Poultry, 13th Edition: Chapter 18 - Colibacillosis, 13 ed. Wiley-Blackwel;
    [Google Scholar]
  27. Guabiraba R, Schouler C. Avian colibacillosis: still many black holes. FEMS Microbiol Lett 2015; 362:fnv118 [View Article]
    [Google Scholar]
  28. Bingen E, Picard B, Brahimi N, Mathy S, Desjardins P et al. Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. J Infect Dis 1998; 177:642–650 [View Article][PubMed]
    [Google Scholar]
  29. Boyd EF, Hartl DL. Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol 1998; 180:1159–1165
    [Google Scholar]
  30. Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X et al. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol 2007; 24:2373–2384 [View Article]
    [Google Scholar]
  31. Johnson TJ, Jordan D, Kariyawasam S, Stell AL, Bell NP et al. Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 2010; 78:1931–1942 [View Article]
    [Google Scholar]
  32. Mellata M. Human and avian extraintestinal pathogenic Escherichia coli : infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis 2013; 10:916–932 [View Article]
    [Google Scholar]
  33. Djordjevic SP, Stokes HW, Chowdhury PR, Elements M. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol 2013; 4:86 [View Article]
    [Google Scholar]
  34. Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM et al. Genomic microbial epidemiology is needed to comprehend the global problem of antibiotic resistance and to improve pathogen diagnosis. Front Microbiol 2016; 7:843 [View Article]
    [Google Scholar]
  35. Cordoni G, Woodward MJ, Wu H, Alanazi M, Wallis T et al. Comparative genomics of European avian pathogenic E. Coli (APEC). BMC Genomics 2016; 17:960 [View Article]
    [Google Scholar]
  36. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. Isme J 2015; 9:1269–1279 [View Article]
    [Google Scholar]
  37. Johnson TJ, Wannemuehler Y, Doetkott C, Johnson SJ, Rosenberger SC et al. Identification of Minimal Predictors of Avian Pathogenic Escherichia coli Virulence for Use as a Rapid Diagnostic Tool. J Clin Microbiol 2008; 46:3987–3996 [View Article]
    [Google Scholar]
  38. Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M et al. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 2017; 3: [View Article]
    [Google Scholar]
  39. Marquez C, Labbate M, Raymondo C, Fernandez J, Gestal AM et al. Urinary tract infections in a South American population: dynamic spread of class 1 integrons and multidrug resistance by homologous and site-specific recombination. J Clin Microbiol 2008; 46:3417–3425 [View Article]
    [Google Scholar]
  40. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article]
    [Google Scholar]
  41. Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article]
    [Google Scholar]
  42. Chen L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2004; 33:D325–D328 [View Article]
    [Google Scholar]
  43. Clermont O, Bonacorsi S, Bingen E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl Environ Microbiol 2000; 66:4555–4558 [View Article]
    [Google Scholar]
  44. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article]
    [Google Scholar]
  45. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3: [View Article]
    [Google Scholar]
  46. Bagel S, Hüllen V, Wiedemann B, Heisig P. Impact of gyrA and parC Mutations on quinolone resistance, doubling time, and supercoiling degree of Escherichia coli. Antimicrob Agents Chemother 1999; 43:868–875 [View Article]
    [Google Scholar]
  47. Seemann T. Snippy: Fast Bacterial Variant Calling from NGS Reads 2015
    [Google Scholar]
  48. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014; 30:3276–3278 [View Article]
    [Google Scholar]
  49. Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2014; 2:e243 [View Article]
    [Google Scholar]
  50. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  51. Wyrsch E, Chowdhury PR, Abraham S, Santos J, Darling AE et al. Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs. BMC Genomics 2015; 16:165 [View Article]
    [Google Scholar]
  52. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article]
    [Google Scholar]
  53. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree : an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
  54. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article]
    [Google Scholar]
  55. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  56. Pires-dos-Santos T, Bisgaard M, Christensen H. Genetic diversity and virulence profiles of Escherichia coli causing salpingitis and peritonitis in broiler breeders. Vet Microbiol 2013; 162:873–880 [View Article]
    [Google Scholar]
  57. Usein CR, Papagheorghe R, Oprea M, Condei M, Strãuţ M. Molecular characterization of bacteremic Escherichia coli isolates in Romania. Folia Microbiol 2016; 61:221–226 [View Article]
    [Google Scholar]
  58. Mora A, López C, Herrera A, Viso S, Mamani R et al. Emerging avian pathogenic Escherichia coli strains belonging to clonal groups O111:H4-D-ST2085 and O111:H4-D-ST117 with high virulence-gene content and zoonotic potential. Vet Microbiol 2012; 156:347–352 [View Article]
    [Google Scholar]
  59. Manges AR, Harel J, Masson L, Edens TJ, Portt A et al. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog Dis 2015; 12:302–310 [View Article]
    [Google Scholar]
  60. Fernandes MR, Sellera FP, Moura Q, Souza TA, Lincopan N. Draft genome sequence of a CTX-M-8, CTX-M-55 and FosA3 co-producing Escherichia coli ST117/B2 isolated from an asymptomatic carrier. J Glob Antimicrob Resist 2018; 12:183–184 [View Article]
    [Google Scholar]
  61. Braga JFV, Chanteloup NK, Trotereau A, Baucheron S, Guabiraba R et al. Diversity of Escherichia coli strains involved in vertebral osteomyelitis and arthritis in broilers in Brazil. BMC Vet Res 2016; 12:140 [View Article]
    [Google Scholar]
  62. Kemmett K, Williams NJ, Chaloner G, Humphrey S, Wigley P et al. The contribution of systemic Escherichia coli infection to the early mortalities of commercial broiler chickens. Avian Pathology 2014; 43:37–42 [View Article]
    [Google Scholar]
  63. Ronco T, Stegger M, Olsen RH, Sekse C, Nordstoga AB et al. Spread of avian pathogenic Escherichia coli ST117 O78:H4 in Nordic broiler production. BMC Genomics 2017; 18:13 [View Article]
    [Google Scholar]
  64. Olsen RH, Chadfield MS, Christensen JP, Scheutz F, Christensen H et al. Clonality and virulence traits of Escherichia coli associated with haemorrhagic septicaemia in turkeys. Avian Pathology 2011; 40:587–595 [View Article]
    [Google Scholar]
  65. Knöbl T, Moreno AM, Paixão R, Gomes TA, Vieira MA et al. Prevalence of avian pathogenic Escherichia coli (APEC) clone harboring sfa gene in Brazil. ScientificWorldJournal 2012; 2012:1–7 [View Article][PubMed]
    [Google Scholar]
  66. Müller A, Stephan R, Nüesch-Inderbinen M. Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. Sci Total Environ 2016; 541:667–672 [View Article]
    [Google Scholar]
  67. Trobos M, Christensen H, Sunde M, Nordentoft S, Agerso Y et al. Characterization of sulphonamide-resistant Escherichia coli using comparison of sul2 gene sequences and multilocus sequence typing. Microbiology 2009; 155:831–836 [View Article]
    [Google Scholar]
  68. Alikhan N-F, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet 2018; 14:e1007261e1007261 [View Article]
    [Google Scholar]
  69. Matter LB, Spricigo DA, Tasca C, Vargas AC. Invasin gimB found in a bovine intestinal Escherichia coli with an adherent and invasive profile. Braz J Microbiol 2015; 46:875–878
    [Google Scholar]
  70. Hertz FB, Nielsen JB, Schønning K, Littauer P, Knudsen JD et al. “Population structure of drug-susceptible, -resistant and ESBL-producing Escherichia coli from community-acquired urinary tract infections”. BMC Microbiol 2016; 16:63 [View Article]
    [Google Scholar]
  71. Riley LW. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 2014; 20:380–390 [View Article][PubMed]
    [Google Scholar]
  72. Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli Sequence type 95 strains. mSphere 2017; 2: [View Article]
    [Google Scholar]
  73. Abraham S, Jordan D, Wong HS, Johnson JR, Toleman MA et al. First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing animals. J Glob Antimicrob Resist 2015; 3:273–277 [View Article]
    [Google Scholar]
  74. Guo S, Wakeham D, Brouwers HJM, Cobbold RN, Abraham S et al. Human-associated fluoroquinolone-resistant Escherichia coli clonal lineages, including ST354, isolated from canine feces and extraintestinal infections in Australia. Microbes Infect 2015; 17:266–274 [View Article]
    [Google Scholar]
  75. Awawdeh L. Studies on avian pathogenic Escherichia coli in commercial broiler Chicken in South East Queensland The University of Queensland; 2018
    [Google Scholar]
  76. Younis G, Awad A, Mohamed N. Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic Escherichia coli isolated from broiler chickens. Vet World 2017; 10:1167–1172 [View Article]
    [Google Scholar]
  77. Liao XP, Xia J, Yang L, Li L, Sun J et al. Characterization of CTX-M-14-producing Escherichia coli from food-producing animals. Front Microbiol 2015; 6:1136 [View Article]
    [Google Scholar]
  78. Lima Barbieri N, Nielsen DW, Wannemuehler Y, Cavender T, Hussein A et al. mcr-1 identified in Avian Pathogenic Escherichia coli (APEC). PLoS One 2017; 12:e0172997 [View Article]
    [Google Scholar]
  79. Perreten V, Strauss C, Collaud A, Gerber D. Colistin resistance gene mcr-1 in avian-pathogenic Escherichia coli in South Africa. Antimicrob Agents Chemother 2016; 60:4414–4415 [View Article]
    [Google Scholar]
  80. Trung NV, Matamoros S, Carrique-Mas JJ, Nghia NH, Nhung NT et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam. Emerg Infect Dis 2017; 23:529–532 [View Article]
    [Google Scholar]
  81. Wang Y, Zhang R, Li J, Wu Z, Yin W et al. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2017; 2:16260 [View Article]
    [Google Scholar]
  82. Authority AAPaVM Antibiotic resistance in animals; 2017
  83. Pl H, Wu L, Yeung MK, Lin CH, Chow KH et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PloS one 2011; 6:e17989
    [Google Scholar]
  84. Harmer CJ, Hall RM. IS 26 -mediated formation of transposons carrying antibiotic resistance genes. mSphere 2016; 1: [View Article]
    [Google Scholar]
  85. Mangat CS, Bekal S, Irwin RJ, Mulvey MR. A novel hybrid plasmid carrying multiple antimicrobial resistance and virulence genes in salmonella enterica serovar Dublin. Antimicrob Agents Chemother 2017; 61:e0260102616 [View Article]
    [Google Scholar]
  86. Porse A, Schønning K, Munck C, Sommer MOA. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol Biol Evol 2016; 33:2860–2873 [View Article]
    [Google Scholar]
  87. Harmer CJ, Hall RM. IS26-mediated precise excision of the IS26-aphA1a translocatable unit. MBio 2015; 6:e0186601815
    [Google Scholar]
  88. Harmer CJ, Hall RM. Targeted conservative formation of cointegrates between two DNA molecules containing IS 26 occurs via strand exchange at either IS end. Mol Microbiol 2017; 106:409–418 [View Article]
    [Google Scholar]
  89. Cain AK, Liu X, Djordjevic SP, Hall RM. Transposons related to Tn 1696 in IncHI2 plasmids in multiply antibiotic resistant Salmonella enterica serovar typhimurium from Australian Animals. Microbial Drug Resistance 2010; 16:197–202 [View Article]
    [Google Scholar]
  90. Dawes FE, Kuzevski A, Bettelheim KA, Hornitzky MA, Djordjevic SP et al. Distribution of class 1 integrons with is26-mediated deletions in their 3′-conserved segments in Escherichia coli of human and animal origin. PLoS One 2010; 5:e12754 [View Article]
    [Google Scholar]
  91. Barbieri NL, de Oliveira AL, Tejkowski TM, Pavanelo DB, Matter LB et al. Molecular characterization and clonal relationships among Escherichia coli strains isolated from broiler chickens with colisepticemia. Foodborne Pathog Dis 2015; 12:74–83 [View Article][PubMed]
    [Google Scholar]
  92. Cunha MP, de Oliveira MG, de Oliveira MC, da Silva KC, Gomes CR et al. Virulence profiles, phylogenetic background, and antibiotic resistance of Escherichia coli isolated from turkeys with airsacculitis. ScientificWorldJournal 2014; 2014:1–8 [View Article][PubMed]
    [Google Scholar]
  93. Dissanayake DRA, Octavia S, Lan R. Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Vet Microbiol 2014; 168:403–412 [View Article]
    [Google Scholar]
  94. Wy X, Yj L, Fan C. Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli. Can j microbiol 2018; 64:147–154
    [Google Scholar]
  95. Lynne AM, Skyberg JA, Logue CM, Doetkott C, Foley SL et al. Characterization of a series of transconjugant mutants of an avian pathogenic Escherichia coli isolate for resistance to serum complement. Avian Dis 2007; 51:771–776 [View Article]
    [Google Scholar]
  96. Hejair HMA, Ma J, Zhu Y, Sun M, Dong W et al. Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli. Res Vet Sci 2017; 115:109–116 [View Article]
    [Google Scholar]
  97. Pramoonjago P, Kaneko M, Kinoshita T, Ohtsubo E, Takeda J et al. Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance. J Immunol 1992; 148:827–836
    [Google Scholar]
  98. Lynne AM, Kariyawasam S, Wannemuehler Y, Johnson TJ, Johnson SJ et al. Recombinant Iss as a potential vaccine for avian colibacillosis. Avian Dis 2012; 56:192–199 [View Article]
    [Google Scholar]
  99. Chen Y, Wright PJ, Lee CS, Browning GF. Uropathogenic virulence factors in isolates of Escherichia coli from clinical cases of canine pyometra and feces of healthy bitches. Vet Microbiol 2003; 94:57–69 [View Article]
    [Google Scholar]
  100. Pourbakhsh SA, Dho-Moulin M, Brée A, Desautels C, Martineau-Doize B et al. Localization of the in vivo expression of P and F1 fimbriae in chickens experimentally inoculated with pathogenic Escherichia coli. Microb Pathog 1997; 22:331–341 [View Article]
    [Google Scholar]
  101. Lund B, Lindberg F, Marklund B-I, Normark S. Tip proteins of pili associated with pyelonephritis: new candidates for vaccine development. Vaccine 1988; 6:110–112 [View Article]
    [Google Scholar]
  102. Kariyawasam S, Johnson TJ, Nolan LK. The pap operon of avian pathogenic Escherichia coli strain O1:K1 is located on a novel pathogenicity Island. Infect Immun 2006; 74:744–749 [View Article]
    [Google Scholar]
  103. Rice JC, Peng T, Spence JS, Wang HQ, Goldblum RM et al. Pyelonephritic Escherichia coli expressing P fimbriae decrease immune response of the mouse kidney. J Am Soc Nephrol 2005; 16:3583–3591 [View Article][PubMed]
    [Google Scholar]
  104. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 2007; 73:1976–1983 [View Article][PubMed]
    [Google Scholar]
  105. Moran RA, Hall RM. Evolution of regions containing antibiotic resistance genes in FII-2-FIB-1 ColV-Colla virulence plasmids. Microb Drug Resist 2018; 24:411–421 [View Article][PubMed]
    [Google Scholar]
  106. Cullik A, Pfeifer Y, Prager R, von Baum H, Witte W. A novel IS26 structure surrounds blaCTX-M genes in different plasmids from German clinical Escherichia coli isolates. J Med Microbiol 2010; 59:580–587 [View Article][PubMed]
    [Google Scholar]
  107. Hammond DS, Harris T, Bell J, Turnidge J, Giffard PM. Selection of SHV extended-spectrum-β-lactamase-dependent cefotaxime and ceftazidime resistance in Klebsiella pneumoniae requires a plasmid-borne blaSHV gene. Antimicrob Agents Chemother 2008; 52:441–445 [View Article][PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000250
Loading
/content/journal/mgen/10.1099/mgen.0.000250
Loading

Data & Media loading...

Supplements

Supplementary File 1

Supplementary File 2

Supplementary File 3

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error