1887

Abstract

To understand the evolutionary dynamics of extended-spectrum β-lactamase (ESBL)-encoding genes in Escherichia coli, we undertook a comparative genomic analysis of 116 whole plasmid sequences of human or animal origin isolated over a period spanning before and after the use of third-generation cephalosporins (3GCs) using a gene-sharing network approach. The plasmids included 82 conjugative, 22 mobilizable and 9 non-transferable plasmids and 3 P-like bacteriophages. ESBL-encoding genes were found on 64 conjugative, 6 mobilizable, 2 non-transferable plasmids and 2 P1-like bacteriophages, indicating that these last three types of mobile elements also play a role, albeit modest, in the diffusion of the ESBLs. The network analysis showed that the plasmids clustered according to their genome backbone type, but not by origin or period of isolation or by antibiotic-resistance type, including type of ESBL-encoding gene. There was no association between the type of plasmid and the phylogenetic history of the parental strains. Finer scale analysis of the more abundant clusters IncF and IncI1 showed that ESBL-encoding plasmids and plasmids isolated before the use of 3GCs had the same diversity and phylogenetic history, and that acquisition of ESBL-encoding genes had occurred during multiple independent events. Moreover, the bla CTX-M-15 gene, unlike other CTX-M genes, was inserted at a hot spot in a bla TEM-1-Tn2 transposon. These findings showed that ESBL-encoding genes have arrived on wide range of pre-existing plasmids and that the successful spread of bla CTX-M-15 seems to be favoured by the presence of well-adapted IncF plasmids that carry a Tn2-bla TEM-1 transposon.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000203
2018-08-06
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/9/mgen000203.html?itemId=/content/journal/mgen/10.1099/mgen.0.000203&mimeType=html&fmt=ahah

References

  1. Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 2008;13:19044[PubMed]
    [Google Scholar]
  2. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol 2013;303:298–304 [CrossRef][PubMed]
    [Google Scholar]
  3. Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol 2006;9:466–475 [CrossRef][PubMed]
    [Google Scholar]
  4. Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008;8:159–166 [CrossRef][PubMed]
    [Google Scholar]
  5. Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 2013;26:744–758 [CrossRef][PubMed]
    [Google Scholar]
  6. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007;59:165–174 [CrossRef][PubMed]
    [Google Scholar]
  7. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011;35:736–755 [CrossRef][PubMed]
    [Google Scholar]
  8. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008;61:273–281 [CrossRef][PubMed]
    [Google Scholar]
  9. Blanco J, Mora A, Mamani R, López C, Blanco M et al. National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. J Antimicrob Chemother 2011;66:2011–2021 [CrossRef][PubMed]
    [Google Scholar]
  10. Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015;28:565–591 [CrossRef][PubMed]
    [Google Scholar]
  11. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J et al. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 2008;14:195–200 [CrossRef][PubMed]
    [Google Scholar]
  12. Marcadé G, Deschamps C, Boyd A, Gautier V, Picard B et al. Replicon typing of plasmids in Escherichia coli producing extended-spectrum β-lactamases. J Antimicrob Chemother 2009;63:67–71 [CrossRef][PubMed]
    [Google Scholar]
  13. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M et al. Comparative analysis of extended-spectrum-β-lactamase-carrying plasmids from different members of Enterobacteriaceae isolated from poultry, pigs and humans: evidence for a shared β-lactam resistance gene pool?. J Antimicrob Chemother 2009;63:1286–1288 [CrossRef][PubMed]
    [Google Scholar]
  14. Meunier D, Jouy E, Lazizzera C, Kobisch M, Madec JY. CTX-M-1- and CTX-M-15-type β-lactamases in clinical Escherichia coli isolates recovered from food-producing animals in France. Int J Antimicrob Agents 2006;28:402–407 [CrossRef][PubMed]
    [Google Scholar]
  15. Smet A, Boyen F, Flahou B, Doublet B, Praud K et al. Emergence of CTX-M-2-producing Escherichia coli in diseased horses: evidence of genetic exchanges of blaCTX-M-2 linked to ISCR1. J Antimicrob Chemother 2012;67:1289–1291 [CrossRef][PubMed]
    [Google Scholar]
  16. Birgy A, Mariani-Kurkdjian P, Bidet P, Doit C, Genel N et al. Characterization of extended-spectrum-β-lactamase-producing Escherichia coli strains involved in maternal-fetal colonization: prevalence of E. coli ST131. J Clin Microbiol 2013;51:1727–1732 [CrossRef][PubMed]
    [Google Scholar]
  17. Deschamps C, Clermont O, Hipeaux MC, Arlet G, Denamur E et al. Multiple acquisitions of CTX-M plasmids in the rare D2 genotype of Escherichia coli provide evidence for convergent evolution. Microbiology 2009;155:1656–1668 [CrossRef][PubMed]
    [Google Scholar]
  18. Lavollay M, Mamlouk K, Frank T, Akpabie A, Burghoffer B et al. Clonal dissemination of a CTX-M-15 β-lactamase-producing Escherichia coli strain in the Paris area, Tunis, and Bangui. Antimicrob Agents Chemother 2006;50:2433–2438 [CrossRef][PubMed]
    [Google Scholar]
  19. Ochman H, Selander RK. Standard reference strains of Escherichia coli from natural populations. J Bacteriol 1984;157:690–693[PubMed]
    [Google Scholar]
  20. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N et al. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 1999;67:546–553[PubMed]
    [Google Scholar]
  21. Hughes VM, Datta N. Conjugative plasmids in bacteria of the 'pre-antibiotic' era. Nature 1983;302:725–726 [CrossRef][PubMed]
    [Google Scholar]
  22. Baker KS, Burnett E, McGregor H, Deheer-Graham A, Boinett C et al. The Murray collection of pre-antibiotic era Enterobacteriacae: a unique research resource. Genome Med 2015;7:97 [CrossRef][PubMed]
    [Google Scholar]
  23. Branger C, Zamfir O, Geoffroy S, Laurans G, Arlet G et al. Genetic background of Escherichia coli and extended-spectrum β-lactamase type. Emerg Infect Dis 2005;11:54–61 [CrossRef][PubMed]
    [Google Scholar]
  24. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005;63:219–228 [CrossRef][PubMed]
    [Google Scholar]
  25. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013;5:58–65 [CrossRef][PubMed]
    [Google Scholar]
  26. Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 2008;9:560 [CrossRef][PubMed]
    [Google Scholar]
  27. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003;52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar S, Blaxter ML. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 2010;11:571 [CrossRef][PubMed]
    [Google Scholar]
  29. Médigue C, Calteau A, Cruveiller S, Gachet M, Gautreau G et al. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data. Brief Bioinform 2017; [CrossRef][PubMed]
    [Google Scholar]
  30. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006;34:D32–D36 [CrossRef][PubMed]
    [Google Scholar]
  31. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de La Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010;74:434–452 [CrossRef][PubMed]
    [Google Scholar]
  32. Chan PT, Ohmori H, Tomizawa J, Lebowitz J. Nucleotide sequence and gene organization of ColE1 DNA. J Biol Chem 1985;260:8925–8935[PubMed]
    [Google Scholar]
  33. Haneda T, Okada N, Miki T, Danbara H. Sequence analysis and characterization of sulfonamide resistance plasmid pRF-1 from Salmonella enterica serovar Choleraesuis. Plasmid 2004;52:218–224 [CrossRef][PubMed]
    [Google Scholar]
  34. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–3903 [CrossRef][PubMed]
    [Google Scholar]
  35. R Core Team R: A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing; 2013
    [Google Scholar]
  36. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  37. Brilli M, Mengoni A, Fondi M, Bazzicalupo M, Liò P et al. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics 2008;9:551 [CrossRef][PubMed]
    [Google Scholar]
  38. Newman MEJ. The structure and function of complex networks. SIAM Rev Soc Ind Appl Math 2003;45:167–256 [CrossRef]
    [Google Scholar]
  39. Csárdi G, Nepusz T. The igraph Software Package for Complex Network Research. InterJournal 2006
    [Google Scholar]
  40. Callaway DS, Newman ME, Strogatz SH, Watts DJ. Network robustness and fragility: percolation on random graphs. Phys Rev Lett 2000;85:5468–5471 [CrossRef][PubMed]
    [Google Scholar]
  41. Barabási AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5:101–113 [CrossRef][PubMed]
    [Google Scholar]
  42. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010;5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  43. Billard-Pomares T, Fouteau S, Jacquet ME, Roche D, Barbe V et al. Characterization of a P1-like bacteriophage carrying an SHV-2 extended-spectrum β-lactamase from an Escherichia coli strain. Antimicrob Agents Chemother 2014;58:6550–6557 [CrossRef][PubMed]
    [Google Scholar]
  44. Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A et al. Genome of bacteriophage P1. J Bacteriol 2004;186:7032–7068 [CrossRef][PubMed]
    [Google Scholar]
  45. Nilsson AS, Haggård-Ljungquist E. Evolution of P2-like phages and their impact on bacterial evolution. Res Microbiol 2007;158:311–317 [CrossRef][PubMed]
    [Google Scholar]
  46. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010;65:2518–2529 [CrossRef][PubMed]
    [Google Scholar]
  47. Loftie-Eaton W, Rawlings DE. Diversity, biology and evolution of IncQ-family plasmids. Plasmid 2012;67:15–34 [CrossRef][PubMed]
    [Google Scholar]
  48. Compain F, Frangeul L, Drieux L, Verdet C, Brisse S et al. Complete nucleotide sequence of two multidrug-resistant IncR plasmids from Klebsiella pneumoniae. Antimicrob Agents Chemother 2014;58:4207–4210 [CrossRef][PubMed]
    [Google Scholar]
  49. Partridge SR, Paulsen IT, Iredell JR. pJIE137 carrying blaCTX-M-62 is closely related to p271A carrying blaNDM-1. Antimicrob Agents Chemother 2012;56:2166–2168 [CrossRef][PubMed]
    [Google Scholar]
  50. Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, Saunders JR. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology 2000;146:2267–2275 [CrossRef][PubMed]
    [Google Scholar]
  51. Praszkier J, Wei T, Siemering K, Pittard J. Comparative analysis of the replication regions of IncB, IncK, and IncZ plasmids. J Bacteriol 1991;173:2393–2397 [CrossRef][PubMed]
    [Google Scholar]
  52. Stokes MO, Abuoun M, Umur S, Wu G, Partridge SR et al. Complete sequence of pSAM7, an IncX4 plasmid carrying a novel blaCTX-M-14b transposition unit isolated from Escherichia coli and Enterobacter cloacae from cattle. Antimicrob Agents Chemother 2013;57:4590–4594 [CrossRef][PubMed]
    [Google Scholar]
  53. Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H et al. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 2012;68:43–50 [CrossRef][PubMed]
    [Google Scholar]
  54. Compain F, Poisson A, Le Hello S, Branger C, Weill FX et al. Targeting relaxase genes for classification of the predominant plasmids in Enterobacteriaceae. Int J Med Microbiol 2014;304:236–242 [CrossRef][PubMed]
    [Google Scholar]
  55. Varsaki A, Moncalián G, Garcillán-Barcia MP, Drainas C, de La Cruz F. Analysis of ColE1 MbeC unveils an extended ribbon-helix-helix family of nicking accessory proteins. J Bacteriol 2009;191:1446–1455 [CrossRef][PubMed]
    [Google Scholar]
  56. Whiteley M, Taylor DE. Identification of DNA homologies among H incompatibility group plasmids by restriction enzyme digestion and Southern transfer hybridization. Antimicrob Agents Chemother 1983;24:194–200 [CrossRef][PubMed]
    [Google Scholar]
  57. Boyd EF, Hill CW, Rich SM, Hartl DL. Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 1996;143:1091–1100[PubMed]
    [Google Scholar]
  58. Ho WS, Yap KP, Yeo CC, Rajasekaram G, Thong KL. The complete sequence and comparative analysis of a multidrug-resistance and virulence multireplicon IncFII plasmid pEC302/04 from an extraintestinal pathogenic Escherichia coli EC302/04 indicate extensive diversity of IncFII plasmids. Front Microbiol 2015;6:1547 [CrossRef][PubMed]
    [Google Scholar]
  59. Fernandez-Lopez R, de Toro M, Moncalian G, Garcillan-Barcia MP, de La Cruz F. Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Front Mol Biosci 2016;3:71 [CrossRef][PubMed]
    [Google Scholar]
  60. Partridge SR, Zong Z, Iredell JR. Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli. Antimicrob Agents Chemother 2011;55:4971–4978 [CrossRef][PubMed]
    [Google Scholar]
  61. Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K et al. Separate F-type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence type 131. mSphere 2016;1:e00121-16 [CrossRef][PubMed]
    [Google Scholar]
  62. Irrgang A, Falgenhauer L, Fischer J, Ghosh H, Guiral E et al. CTX-M-15-producing E. coli isolates from food products in Germany are mainly associated with an IncF-type plasmid and belong to two predominant clonal E. coli lineages. Front Microbiol 2017;8:2318 [CrossRef][PubMed]
    [Google Scholar]
  63. Smith H, Bossers A, Harders F, Wu G, Woodford N et al. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans. Antimicrob Agents Chemother 2015;59:5357–5365 [CrossRef][PubMed]
    [Google Scholar]
  64. Haenni M, Saras E, Métayer V, Doublet B, Cloeckaert A et al. Spread of the blaTEM-52 gene is mainly ensured by IncI1/ST36 plasmids in Escherichia coli isolated from cattle in France. J Antimicrob Chemother 2012;67:2774–2776 [CrossRef][PubMed]
    [Google Scholar]
  65. Madec JY, Haenni M, Métayer V, Saras E, Nicolas-Chanoine MH. High prevalence of the animal-associated bla CTX-M-1 IncI1/ST3 plasmid in human Escherichia coli isolates. Antimicrob Agents Chemother 2015;59:5860–5861 [CrossRef][PubMed]
    [Google Scholar]
  66. Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 2011;17:873–880 [CrossRef][PubMed]
    [Google Scholar]
  67. Eckert C, Gautier V, Arlet G. DNA sequence analysis of the genetic environment of various blaCTX-M genes. J Antimicrob Chemother 2006;57:14–23 [CrossRef][PubMed]
    [Google Scholar]
  68. Courpon-Claudinon A, Lefort A, Panhard X, Clermont O, Dornic Q et al. Bacteraemia caused by third-generation cephalosporin-resistant Escherichia coli in France: prevalence, molecular epidemiology and clinical features. Clin Microbiol Infect 2011;17:557–565 [CrossRef][PubMed]
    [Google Scholar]
  69. Li JJ, Spychala CN, Hu F, Sheng JF, Doi Y. Complete nucleotide sequences of blaCTX-M-harboring IncF plasmids from community-associated Escherichia coli strains in the United States. Antimicrob Agents Chemother 2015;59:3002–3007 [CrossRef][PubMed]
    [Google Scholar]
  70. Hu F, O'Hara JA, Rivera JI, Doi Y. Molecular features of community-associated extended-spectrum-β-lactamase-producing Escherichia coli strains in the United States. Antimicrob Agents Chemother 2014;58:6953–6957 [CrossRef][PubMed]
    [Google Scholar]
  71. Lahlaoui H, de Luca F, Maradel S, Ben-Haj-Khalifa A, Ben Hamouda H et al. Occurrence of conjugative IncF-type plasmids harboring the blaCTX-M-15 gene in Enterobacteriaceae isolates from newborns in Tunisia. Pediatr Res 2015;77:107–110 [CrossRef][PubMed]
    [Google Scholar]
  72. Kim JS, Kim J, Jeon SE, Kim SJ, Kim NO et al. Complete nucleotide sequence of the IncI1 plasmid pSH4469 encoding CTX-M-15 extended-spectrum β-lactamase in a clinical isolate of Shigella sonnei from an outbreak in the Republic of Korea. Int J Antimicrob Agents 2014;44:533–537 [CrossRef][PubMed]
    [Google Scholar]
  73. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. Mbio 2016;7:e02162-15 [CrossRef][PubMed]
    [Google Scholar]
  74. Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ et al. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 2009;53:4472–4482 [CrossRef][PubMed]
    [Google Scholar]
  75. Dhanji H, Doumith M, Rooney PJ, O'Leary MC, Loughrey AC et al. Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum beta-lactamases in nursing homes in Belfast, UK. J Antimicrob Chemother 2011;66:297–303 [CrossRef][PubMed]
    [Google Scholar]
  76. Bailey JK, Pinyon JL, Anantham S, Hall RM. Commensal Escherichia coli of healthy humans: a reservoir for antibiotic-resistance determinants. J Med Microbiol 2010;59:1331–1339 [CrossRef][PubMed]
    [Google Scholar]
  77. Briñas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C. Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 2002;46:3156–3163 [CrossRef][PubMed]
    [Google Scholar]
  78. Massot M, Daubié AS, Clermont O, Jauréguy F, Couffignal C et al. Phylogenetic, virulence and antibiotic resistance characteristics of commensal strain populations of Escherichia coli from community subjects in the Paris area in 2010 and evolution over 30 years. Microbiology 2016;162:642–650 [CrossRef][PubMed]
    [Google Scholar]
  79. Lefort A, Panhard X, Clermont O, Woerther PL, Branger C et al. Host factors and portal of entry outweigh bacterial determinants to predict the severity of Escherichia coli bacteremia. J Clin Microbiol 2011;49:777–783 [CrossRef][PubMed]
    [Google Scholar]
  80. Kronvall G. Antimicrobial resistance 1979-2009 at Karolinska hospital, Sweden: normalized resistance interpretation during a 30-year follow-up on Staphylococcus aureus and Escherichia coli resistance development. APMIS 2010;118:621–639 [CrossRef][PubMed]
    [Google Scholar]
  81. Tadesse DA, Zhao S, Tong E, Ayers S, Singh A et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis 2012;18:741–749 [CrossRef][PubMed]
    [Google Scholar]
  82. de Toro M, Garcilláon-Barcia MP, de La Cruz F. Plasmid diversity and adaptation analyzed by massive sequencing of Escherichia coli plasmids. Microbiol Spectr 2014;2:PLAS-0031-2014 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000203
Loading
/content/journal/mgen/10.1099/mgen.0.000203
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error