1887

Abstract

The melioidosis bacterium, Burkholderia pseudomallei, is increasingly being recognised as a pathogen in patients with cystic fibrosis (CF). We have recently catalogued genome-wide variation of paired, isogenic B. pseudomallei isolates from seven Australasian CF cases, which were collected between 4 and 55 months apart. Here, we extend this investigation by documenting the transcriptomic changes in B. pseudomallei in five cases. Following growth in an artificial CF sputum medium, four of the five paired isolates exhibited significant differential gene expression (DE) that affected between 32 and 792 genes. The greatest number of DE events was observed between the strains from patient CF9, consistent with the hypermutator status of the latter strain, which is deficient in the DNA mismatch repair protein MutS. Two patient isolates harboured duplications that concomitantly increased expression of the β-lactamase-encoding gene penA, and a 35 kb deletion in another abolished expression of 29 genes. Convergent expression profiles in the chronically-adapted isolates identified two significantly downregulated and 17 significantly upregulated loci, including the resistance-nodulation-division (RND) efflux pump BpeEF–OprC, the quorum-sensing hhqABCDE operon, and a cyanide- and pyocyanin-insensitive cytochrome bd quinol oxidase. These convergent pathoadaptations lead to increased expression of pathways that may suppress competing bacterial and fungal pathogens, and that enhance survival in oxygen-restricted environments, the latter of which may render conventional antibiotics less effective in vivo. Treating chronically adapted B. pseudomallei infections with antibiotics designed to target anaerobic infections, such as the nitroimidazole class of antibiotics, may significantly improve pathogen eradication attempts by exploiting this Achilles heel.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000194
2018-07-10
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/8/mgen000194.html?itemId=/content/journal/mgen/10.1099/mgen.0.000194&mimeType=html&fmt=ahah

References

  1. Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med 2012;367:1035–1044 [CrossRef][PubMed]
    [Google Scholar]
  2. Yip TW, Hewagama S, Mayo M, Price EP, Sarovich DS et al. Endemic melioidosis in residents of desert region after atypically intense rainfall in central Australia, 2011. Emerg Infect Dis 2015;21:1038–1040 [CrossRef][PubMed]
    [Google Scholar]
  3. Chapple SN, Sarovich DS, Holden MT, Peacock SJ, Buller N et al. Whole-genome sequencing of a quarter-century melioidosis outbreak in temperate Australia uncovers a region of low-prevalence endemicity. Microb Genom 2016;2:e000067 [CrossRef][PubMed]
    [Google Scholar]
  4. Sarovich DS, Garin B, de Smet B, Kaestli M, Mayo M et al. Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports melioidosis endemicity in Africa. mSphere 2016;1:e00089-15 [CrossRef][PubMed]
    [Google Scholar]
  5. Leelarasamee A, Bovornkitti S. Melioidosis: review and update. Rev Infect Dis 1989;11:413–425 [CrossRef][PubMed]
    [Google Scholar]
  6. Currie BJ, Ward L, Cheng AC. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 2010;4:e900 [CrossRef][PubMed]
    [Google Scholar]
  7. O'Carroll MR, Kidd TJ, Coulter C, Smith HV, Rose BR et al. Burkholderia pseudomallei: another emerging pathogen in cystic fibrosis. Thorax 2003;58:1087–1091 [CrossRef][PubMed]
    [Google Scholar]
  8. Holland DJ, Wesley A, Drinkovic D, Currie BJ. Cystic fibrosis and Burkholderia pseudomallei infection: an emerging problem?. Clin Infect Dis 2002;35:e138e140 [CrossRef][PubMed]
    [Google Scholar]
  9. Amaral MD. Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients. J Intern Med 2015;277:155–166 [CrossRef][PubMed]
    [Google Scholar]
  10. Cohen TS, Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 2012;18:509–519 [CrossRef][PubMed]
    [Google Scholar]
  11. Coutinho HD, Falcão-Silva VS, Gonçalves GF. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers. Int Arch Med 2008;1:24 [CrossRef][PubMed]
    [Google Scholar]
  12. Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016;24:327–337 [CrossRef][PubMed]
    [Google Scholar]
  13. Geake JB, Reid DW, Currie BJ, Bell SC, Bright-Thomas R et al. An international, multicentre evaluation and description of Burkholderia pseudomallei infection in cystic fibrosis. BMC Pulm Med 2015;15:116 [CrossRef][PubMed]
    [Google Scholar]
  14. Viberg LT, Sarovich DS, Kidd TJ, Geake JB, Bell SC et al. Within-host evolution of Burkholderia pseudomallei during chronic infection of seven Australasian cystic fibrosis patients. MBio 2017;8:e00356-17 [CrossRef][PubMed]
    [Google Scholar]
  15. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 2010;464:250–255 [CrossRef][PubMed]
    [Google Scholar]
  16. Creecy JP, Conway T. Quantitative bacterial transcriptomics with RNA-seq. Curr Opin Microbiol 2015;23:133–140 [CrossRef][PubMed]
    [Google Scholar]
  17. Sriramulu DD, Lünsdorf H, Lam JS, Römling U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 2005;54:667–676 [CrossRef][PubMed]
    [Google Scholar]
  18. Fung C, Naughton S, Turnbull L, Tingpej P, Rose B et al. Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. J Med Microbiol 2010;59:1089–1100 [CrossRef][PubMed]
    [Google Scholar]
  19. Dingemans J, Monsieurs P, Yu SH, Crabbé A, Förstner KU et al. Effect of shear stress on Pseudomonas aeruginosa isolated from the cystic fibrosis lung. MBio 2016;7:e00813-16 [CrossRef][PubMed]
    [Google Scholar]
  20. Currie BJ, Gal D, Mayo M, Ward L, Godoy D et al. Using BOX-PCR to exclude a clonal outbreak of melioidosis. BMC Infect Dis 2007;7:68 [CrossRef][PubMed]
    [Google Scholar]
  21. Humair PF, Douet V, Morán Cadenas F, Schouls LM, van de Pol I et al. Molecular identification of bloodmeal source in Ixodes ricinus ticks using 12S rDNA as a genetic marker. J Med Entomol 2007;44:869–880 [CrossRef][PubMed]
    [Google Scholar]
  22. Price EP, Dale JL, Cook JM, Sarovich DS, Seymour ML et al. Development and validation of Burkholderia pseudomallei-specific real-time PCR assays for clinical, environmental or forensic detection applications. PLoS One 2012;7:e37723 [CrossRef][PubMed]
    [Google Scholar]
  23. Holden MT, Titball RW, Peacock SJ, Cerdeño-Tárraga AM, Atkins T et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 2004;101:14240–14245 [CrossRef][PubMed]
    [Google Scholar]
  24. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–359 [CrossRef][PubMed]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  26. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–169 [CrossRef][PubMed]
    [Google Scholar]
  27. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–140 [CrossRef][PubMed]
    [Google Scholar]
  28. Price EP, Sarovich DS, Mayo M, Tuanyok A, Drees KP et al. Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. MBio 2013;4:e00388-13 [CrossRef][PubMed]
    [Google Scholar]
  29. Reckseidler-Zenteno SL, Viteri DF, Moore R, Wong E, Tuanyok A et al. Characterization of the type III capsular polysaccharide produced by Burkholderia pseudomallei. J Med Microbiol 2010;59:1403–1414 [CrossRef][PubMed]
    [Google Scholar]
  30. Stone JK, Deshazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 2014;12:1487–1499 [CrossRef][PubMed]
    [Google Scholar]
  31. Lipsitz R, Garges S, Aurigemma R, Baccam P, Blaney DD et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei infection, 2010. Emerg Infect Dis 2012;18:e2 [CrossRef][PubMed]
    [Google Scholar]
  32. Podnecky NL, Rhodes KA, Mima T, Drew HR, Chirakul S et al. Mechanisms of resistance to folate pathway inhibitors in Burkholderia pseudomallei: deviation from the norm. MBio 2017;8:e01357-17 [CrossRef][PubMed]
    [Google Scholar]
  33. Currie BJ. Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin Respir Crit Care Med 2015;36:111–125 [CrossRef][PubMed]
    [Google Scholar]
  34. Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B et al. A standard numbering scheme for the class A beta-lactamases. Biochem J 1991;276:269–270 [CrossRef][PubMed]
    [Google Scholar]
  35. Sam IC, See KH, Puthucheary SD. Variations in ceftazidime and amoxicillin-clavulanate susceptibilities within a clonal infection of Burkholderia pseudomallei. J Clin Microbiol 2009;47:1556–1558 [CrossRef][PubMed]
    [Google Scholar]
  36. Sarovich DS, Price EP, von Schulze AT, Cook JM, Mayo M et al. Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia. PLoS One 2012;7:e30789 [CrossRef][PubMed]
    [Google Scholar]
  37. Rholl DA, Papp-Wallace KM, Tomaras AP, Vasil ML, Bonomo RA et al. Molecular investigations of PenA-mediated beta-lactam resistance in Burkholderia pseudomallei. Front Microbiol 2011;2:139 [CrossRef][PubMed]
    [Google Scholar]
  38. Singh AP, Lai SC, Nandi T, Chua HH, Ooi WF et al. Evolutionary analysis of Burkholderia pseudomallei identifies putative novel virulence genes, including a microbial regulator of host cell autophagy. J Bacteriol 2013;195:5487–5498 [CrossRef][PubMed]
    [Google Scholar]
  39. Moore RA, Deshazer D, Reckseidler S, Weissman A, Woods DE. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 1999;43:465–470[PubMed]
    [Google Scholar]
  40. Webb JR, Price EP, Currie BJ, Sarovich DS. Loss of methyltransferase function and increased efflux activity leads to doxycycline resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 2017;61:e00268-17 [CrossRef][PubMed]
    [Google Scholar]
  41. Sarovich DS, Webb JR, Pitman MC, Viberg LT, Mayo M et al. Raising the stakes: loss of efflux-pump regulation decreases meropenem susceptibility in Burkholderia pseudomallei. Clin Infect Dis doi:10.1093/cid/ciy069 [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  42. Webb JR, Price EP, Somprasong N, Schweizer HP, Baird RW et al. Development and validation of a triplex qPCR assay to detect efflux pump-mediated antibiotic resistance in Burkholderia pseudomallei. bioRxiv 2018; doi:10.1101/301960
    [Google Scholar]
  43. Ooi WF, Ong C, Nandi T, Kreisberg JF, Chua HH et al. The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet 2013;9:e1003795 [CrossRef][PubMed]
    [Google Scholar]
  44. Reckseidler SL, Deshazer D, Sokol PA, Woods DE. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun 2001;69:34–44 [CrossRef][PubMed]
    [Google Scholar]
  45. Reckseidler-Zenteno SL, Devinney R, Woods DE. The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun 2005;73:1106–1115 [CrossRef][PubMed]
    [Google Scholar]
  46. Deshazer D, Waag DM, Fritz DL, Woods DE. Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb Pathog 2001;30:253–269 [CrossRef][PubMed]
    [Google Scholar]
  47. Atkins T, Prior R, Mack K, Russell P, Nelson M et al. Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J Med Microbiol 2002;51:539–553 [CrossRef][PubMed]
    [Google Scholar]
  48. Cuccui J, Milne TS, Harmer N, George AJ, Harding SV et al. Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region. Infect Immun 2012;80:1209–1221 [CrossRef][PubMed]
    [Google Scholar]
  49. Deshazer D, Brett PJ, Woods DE. The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 1998;30:1081–1100 [CrossRef][PubMed]
    [Google Scholar]
  50. Tuanyok A, Stone JK, Mayo M, Kaestli M, Gruendike J et al. The genetic and molecular basis of O-antigenic diversity in Burkholderia pseudomallei lipopolysaccharide. PLoS Negl Trop Dis 2012;6:e1453 [CrossRef][PubMed]
    [Google Scholar]
  51. Peacock SJ, Schweizer HP, Dance DA, Smith TL, Gee JE et al. Management of accidental laboratory exposure to Burkholderia pseudomallei and B. mallei. Emerg Infect Dis 2008;14:e2 [CrossRef][PubMed]
    [Google Scholar]
  52. Marvig RL, Sommer LM, Jelsbak L, Molin S, Johansen HK. Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients. Future Microbiol 2015;10:599–611 [CrossRef][PubMed]
    [Google Scholar]
  53. Cotter PA, Melville SB, Albrecht JA, Gunsalus RP. Aerobic regulation of cytochrome d oxidase (cydAB) operon expression in Escherichia coli: roles of Fnr and ArcA in repression and activation. Mol Microbiol 1997;25:605–615 [CrossRef][PubMed]
    [Google Scholar]
  54. Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C et al. Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 2006;188:8079–8086 [CrossRef][PubMed]
    [Google Scholar]
  55. Hamad MA, Austin CR, Stewart AL, Higgins M, Vázquez-Torres A et al. Adaptation and antibiotic tolerance of anaerobic Burkholderia pseudomallei. Antimicrob Agents Chemother 2011;55:3313–3323 [CrossRef][PubMed]
    [Google Scholar]
  56. Edwards DI. Mechanisms of selective toxicity of metronidazole and other nitroimidazole drugs. Br J Vener Dis 1980;56:285–290 [CrossRef][PubMed]
    [Google Scholar]
  57. Chapalain A, Groleau MC, Le Guillouzer S, Miomandre A, Vial L et al. Interplay between 4-hydroxy-3-methyl-2-alkylquinoline and N-acyl-homoserine lactone signaling in a Burkholderia cepacia complex clinical strain. Front Microbiol 2017;8:1021 [CrossRef][PubMed]
    [Google Scholar]
  58. Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M et al. Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 2006;13:701–710 [CrossRef][PubMed]
    [Google Scholar]
  59. Kim K, Kim YU, Koh BH, Hwang SS, Kim SH et al. HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-kappaB pathway. Immunology 2010;129:578–588 [CrossRef][PubMed]
    [Google Scholar]
  60. Kilani-Feki O, Culioli G, Ortalo-Magné A, Zouari N, Blache Y et al. Environmental Burkholderia cepacia strain Cs5 acting by two analogous alkyl-quinolones and a didecyl-phthalate against a broad spectrum of phytopathogens fungi. Curr Microbiol 2011;62:1490–1495 [CrossRef][PubMed]
    [Google Scholar]
  61. Brown NL, Stoyanov JV, Kidd SP, Hobman JL. The MerR family of transcriptional regulators. FEMS Microbiol Rev 2003;27:145–163 [CrossRef][PubMed]
    [Google Scholar]
  62. Singh SK, Grass G, Rensing C, Montfort WR. Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 2004;186:7815–7817 [CrossRef][PubMed]
    [Google Scholar]
  63. Samanovic MI, Ding C, Thiele DJ, Darwin KH. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 2012;11:106–115 [CrossRef][PubMed]
    [Google Scholar]
  64. Gray RD, Duncan A, Noble D, Imrie M, O'Reilly DS et al. Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest 2010;137:635–641 [CrossRef][PubMed]
    [Google Scholar]
  65. Smith DJ, Anderson GJ, Bell SC, Reid DW. Elevated metal concentrations in the CF airway correlate with cellular injury and disease severity. J Cyst Fibros 2014;13:289–295 [CrossRef][PubMed]
    [Google Scholar]
  66. Yoder-Himes DR, Chain PS, Zhu Y, Wurtzel O, Rubin EM et al. Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci USA 2009;106:3976–3981 [CrossRef][PubMed]
    [Google Scholar]
  67. Crabbé A, de Boever P, van Houdt R, Moors H, Mergeay M et al. Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol 2008;10:2098–2110 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000194
Loading
/content/journal/mgen/10.1099/mgen.0.000194
Loading

Data & Media loading...

Supplementary File 1

Supplementary File 2

Supplementary File 3

Supplementary File 4

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error