1887

Abstract

Despite recent advances in our understanding of the genomics of members of the genus Leptospira, little is known on how virulence has emerged in this heterogeneous bacterial genus as well as on the lifestyle of pathogenic members of the genus Leptospira outside animal hosts. Here, we isolated 12 novel species of the genus Leptospira from tropical soils, significantly increasing the number of known species to 35 and finding evidence of highly unexplored biodiversity in the genus. Extended comparative phylogenomics and pan-genome analyses at the genus level by incorporating 26 novel genomes, revealed that, the traditional leptospiral ‘pathogens’ cluster, as defined by their phylogenetic position, can be split in two groups with distinct virulence potential and accessory gene patterns. These genomic distinctions are strongly linked to the ability to cause or not severe infections in animal models and humans. Our results not only provide new insights into virulence evolution in the members of the genus Leptospira, but also lay the foundations for refining the classification of the pathogenic species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000144
2018-01-03
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/1/mgen000144.html?itemId=/content/journal/mgen/10.1099/mgen.0.000144&mimeType=html&fmt=ahah

References

  1. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P et al. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 2015;9:e0003898 [CrossRef][PubMed]
    [Google Scholar]
  2. Torgerson PR, Hagan JE, Costa F, Calcagno J, Kane M et al. Global burden of leptospirosis: estimated in terms of disability adjusted life years. PLoS Negl Trop Dis 2015;9:e0004122 [CrossRef][PubMed]
    [Google Scholar]
  3. Slack AT, Khairani-Bejo S, Symonds ML, Dohnt MF, Galloway RL et al. Leptospira kmetyi sp. nov., isolated from an environmental source in Malaysia. Int J Syst Evol Microbiol 2009;59:705–708 [CrossRef][PubMed]
    [Google Scholar]
  4. Murray GL, Morel V, Cerqueira GM, Croda J, Srikram A et al. Genome-wide transposon mutagenesis in pathogenic Leptospira species. Infect Immun 2009;77:810–816 [CrossRef][PubMed]
    [Google Scholar]
  5. Fouts DE, Matthias MA, Adhikarla H, Adler B, Amorim-Santos L et al. What makes a bacterial species pathogenic?:comparative genomic analysis of the genus Leptospira. PLoS Negl Trop Dis 2016;10:e0004403 [CrossRef][PubMed]
    [Google Scholar]
  6. Xu Y, Zhu Y, Wang Y, Chang YF, Zhang Y et al. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira. Sci Rep 2016;6:20020 [CrossRef][PubMed]
    [Google Scholar]
  7. Picardeau M. Virulence of the zoonotic agent of leptospirosis: still terra incognita?. Nat Rev Microbiol 2017;15:297–307 [CrossRef][PubMed]
    [Google Scholar]
  8. Thibeaux R, Geroult S, Benezech C, Chabaud S, Soupé-Gilbert ME et al. Seeking the environmental source of leptospirosis reveals durable bacterial viability in river soils. PLoS Negl Trop Dis 2017;11:e0005414 [CrossRef][PubMed]
    [Google Scholar]
  9. Chakraborty A, Miyahara S, Villanueva SY, Saito M, Gloriani NG et al. A novel combination of selective agents for isolation of Leptospira species. Microbiol Immunol 2011;55:494–501 [CrossRef][PubMed]
    [Google Scholar]
  10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  11. Page AJ, de Silva N, Hunt M, Quail MA, Parkhill J et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom 2016;2:e000083 [CrossRef][PubMed]
    [Google Scholar]
  12. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  13. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017;45:D535–D542 [CrossRef][PubMed]
    [Google Scholar]
  14. Puche R, Ferrès I, Caraballo L, Rangel Y, Picardeau M et al. Leptospira venezuelensis sp. nov., a new member of the intermediates group isolated from rodents, cattle and humans. IJSEM doi:10.1099/ijsem.0.002528 [Epub ahead of print]
    [Google Scholar]
  15. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef][PubMed]
    [Google Scholar]
  16. Piccirillo A, Niero G, Calleros L, Pérez R, Naya H et al. Campylobacter geochelonis sp. nov. isolated from the western Hermann's tortoise (Testudo hermanni hermanni). Int J Syst Evol Microbiol 2016;66:3468–3476 [CrossRef][PubMed]
    [Google Scholar]
  17. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 2002;30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  18. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010;5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  19. Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M et al. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 2012;40:D284–D289 [CrossRef][PubMed]
    [Google Scholar]
  20. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7:e1002195 [CrossRef][PubMed]
    [Google Scholar]
  21. Popescu AA, Huber KT, Paradis E. ape 3.0: New tools for distance-based phylogenetics and evolutionary analysis in R. Bioinformatics 2012;28:1536–1537 [CrossRef][PubMed]
    [Google Scholar]
  22. Bateman A, Coin L, Durbin R, Finn RD, Hollich V et al. The Pfam protein families database. Nucleic Acids Res 2004;32:138D–141 [CrossRef][PubMed]
    [Google Scholar]
  23. Enright AJ, van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002;30:1575–1584 [CrossRef][PubMed]
    [Google Scholar]
  24. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015;43:D261–D269 [CrossRef][PubMed]
    [Google Scholar]
  25. Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 2007;22:1–20 [CrossRef]
    [Google Scholar]
  26. Pessia A, Grad Y, Cobey S, Puranen JS, Corander J. K-Pax2: Bayesian identification of cluster-defining amino acid positions in large sequence datasets. Microb Genom 2015;1:e000025 [CrossRef][PubMed]
    [Google Scholar]
  27. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P. Vegan: community Ecology Package, R Package 2.0. 3. CRAN R-project org/package= vegan; 2012
    [Google Scholar]
  28. Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 2011;27:3070–3071 [CrossRef][PubMed]
    [Google Scholar]
  29. R Core Team R: A language and environment for statistical computing R foundation for Statistical Computing; 2014
    [Google Scholar]
  30. Mérien F, Amouriaux P, Perolat P, Baranton G, Saint Girons I. Polymerase chain reaction for detection of Leptospira spp. in clinical samples. J Clin Microbiol 1992;30:2219–2224[PubMed]
    [Google Scholar]
  31. Haake DA. Hamster model of leptospirosis. Current Protocols in Microbiology 2006; Chapter :12:Unit 12E 12
    [Google Scholar]
  32. Marcsisin RA, Bartpho T, Bulach DM, Srikram A, Sermswan RW et al. Use of a high-throughput screen to identify Leptospira mutants unable to colonize the carrier host or cause disease in the acute model of infection. J Med Microbiol 2013;62:1601–1608 [CrossRef][PubMed]
    [Google Scholar]
  33. Eshghi A, Becam J, Lambert A, Sismeiro O, Dillies MA et al. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans. Infect Immun 2014;82:2542–2552 [CrossRef][PubMed]
    [Google Scholar]
  34. Lambert A, Picardeau M, Haake DA, Sermswan RW, Srikram A et al. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect Immun 2012;80:2019–2025 [CrossRef][PubMed]
    [Google Scholar]
  35. Ricaldi JN, Matthias MA, Vinetz JM, Lewis AL. Expression of sialic acids and other nonulosonic acids in Leptospira. BMC Microbiol 2012;12:161 [CrossRef][PubMed]
    [Google Scholar]
  36. Eme L, Doolittle WF. Microbial evolution: Xenology (apparently) trumps paralogy. Curr Biol 2016;26:R1181–R1183 [CrossRef][PubMed]
    [Google Scholar]
  37. Dietrich M, Wilkinson DA, Benlali A, Lagadec E, Ramasindrazana B et al. Leptospira and paramyxovirus infection dynamics in a bat maternity enlightens pathogen maintenance in wildlife. Environ Microbiol 2015;17:4280–4289 [CrossRef][PubMed]
    [Google Scholar]
  38. Dietrich M, Wilkinson DA, Soarimalala V, Goodman SM, Dellagi K et al. Diversification of an emerging pathogen in a biodiversity hotspot: Leptospira in endemic small mammals of Madagascar. Mol Ecol 2014;23:2783–2796 [CrossRef][PubMed]
    [Google Scholar]
  39. Gomard Y, Dietrich M, Wieseke N, Ramasindrazana B, Lagadec E et al. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns. FEMS Microbiol Ecol 2016;92:fiw037 [CrossRef][PubMed]
    [Google Scholar]
  40. Matthias MA, Díaz MM, Campos KJ, Calderon M, Willig MR et al. Diversity of bat-associated Leptospira in the Peruvian Amazon inferred by bayesian phylogenetic analysis of 16S ribosomal DNA sequences. Am J Trop Med Hyg 2005;73:964–974[PubMed]
    [Google Scholar]
  41. Ogawa H, Koizumi N, Ohnuma A, Mutemwa A, Hang'ombe BM et al. Molecular epidemiology of pathogenic Leptospira spp. in the straw-colored fruit bat (Eidolon helvum) migrating to Zambia from the Democratic Republic of Congo. Infect Genet Evol 2015;32:143–147 [CrossRef][PubMed]
    [Google Scholar]
  42. Ganoza CA, Matthias MA, Collins-Richards D, Brouwer KC, Cunningham CB et al. Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira. PLoS Med 2006;3:e308 [CrossRef][PubMed]
    [Google Scholar]
  43. Salaün L, Mérien F, Gurianova S, Baranton G, Picardeau M. Application of multilocus variable-number tandem-repeat analysis for molecular typing of the agent of leptospirosis. J Clin Microbiol 2006;44:3954–3962 [CrossRef][PubMed]
    [Google Scholar]
  44. Goarant C, Laumond-Barny S, Perez J, Vernel-Pauillac F, Chanteau S et al. Outbreak of leptospirosis in New Caledonia: diagnosis issues and burden of disease. Trop Med Int Health 2009;14:926–929 [CrossRef][PubMed]
    [Google Scholar]
  45. Lehmann JS, Matthias MA, Vinetz JM, Fouts DE. Leptospiral pathogenomics. Pathogens 2014;3:280–308 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000144
Loading
/content/journal/mgen/10.1099/mgen.0.000144
Loading

Data & Media loading...

Supplementary File 1

PDF

Supplementary File 2

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error