1887

Abstract

Cholera is a severe, water-borne diarrhoeal disease caused by toxin-producing strains of the bacterium Vibrio cholerae. Comparative genomics has revealed ‘waves’ of cholera transmission and evolution, in which clones are successively replaced over decades and centuries. However, the extent of V. cholerae genetic diversity within an epidemic or even within an individual patient is poorly understood. Here, we characterized V. cholerae genomic diversity at a micro-epidemiological level within and between individual patients from Bangladesh and Haiti. To capture within-patient diversity, we isolated multiple (8 to 20) V. cholerae colonies from each of eight patients, sequenced their genomes and identified point mutations and gene gain/loss events. We found limited but detectable diversity at the level of point mutations within hosts (zero to three single nucleotide variants within each patient), and comparatively higher gene content variation within hosts (at least one gain/loss event per patient, and up to 103 events in one patient). Much of the gene content variation appeared to be due to gain and loss of phage and plasmids within the V. cholerae population, with occasional exchanges between V. cholerae and other members of the gut microbiota. We also show that certain intra-host variants have phenotypic consequences. For example, the acquisition of a Bacteroides plasmid and non-synonymous mutations in a sensor histidine kinase gene both reduced biofilm formation, an important trait for environmental survival. Together, our results show that V. cholerae is measurably evolving within patients, with possible implications for disease outcomes and transmission dynamics.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000142
2017-12-07
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/12/mgen000142.html?itemId=/content/journal/mgen/10.1099/mgen.0.000142&mimeType=html&fmt=ahah

References

  1. Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet 2012;379:2466–2476 [CrossRef][PubMed]
    [Google Scholar]
  2. Reidl J, Klose KE. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 2002;26:125–139 [CrossRef][PubMed]
    [Google Scholar]
  3. Chatterjee SN, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2003;1639:65–79 [CrossRef]
    [Google Scholar]
  4. Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F et al. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 2012;8:e1002917–13 [CrossRef][PubMed]
    [Google Scholar]
  5. Wilson DJ. Insights from genomics into bacterial pathogen populations. PLoS Pathog 2012;8:e1002874e1002879 [CrossRef][PubMed]
    [Google Scholar]
  6. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 2011;477:462–465 [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 2009;106:15442–15447 [CrossRef][PubMed]
    [Google Scholar]
  8. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC et al. The origin of the Haitian cholera outbreak strain. N Engl J Med 2011;364:33–42 [CrossRef][PubMed]
    [Google Scholar]
  9. Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS et al. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio 2011;2:e00157-11 [CrossRef][PubMed]
    [Google Scholar]
  10. Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES et al. Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. MBio 2013;4:e00398-13 [CrossRef][PubMed]
    [Google Scholar]
  11. Orata FD, Keim PS, Boucher Y. The 2010 cholera outbreak in Haiti: how science solved a controversy. PLoS Pathog 2014;10:e1003967 [CrossRef][PubMed]
    [Google Scholar]
  12. Azarian T, Ali A, Johnson JA, Mohr D, Prosperi M et al. Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. MBio 2014;5:e01824-14 [CrossRef][PubMed]
    [Google Scholar]
  13. Pybus OG, Rambaut A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet 2009;10:540–550 [CrossRef][PubMed]
    [Google Scholar]
  14. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 2016;14:150–162 [CrossRef][PubMed]
    [Google Scholar]
  15. Worby CJ, Lipsitch M, Hanage WP. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput Biol 2014;10:e1003549 [CrossRef][PubMed]
    [Google Scholar]
  16. Didelot X, Gardy J, Colijn C. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol Biol Evol 2014;31:1869–1879 [CrossRef][PubMed]
    [Google Scholar]
  17. Croucher NJ, Didelot X. The application of genomics to tracing bacterial pathogen transmission. Curr Opin Microbiol 2015;23:62–67 [CrossRef][PubMed]
    [Google Scholar]
  18. Patra R, Chattopadhyay S, de R, Ghosh P, Ganguly M et al. Multiple infection and microdiversity among Helicobacter pylori isolates in a single host in India. PLoS One 2012;7:e43370 [CrossRef][PubMed]
    [Google Scholar]
  19. Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC et al. Evolutionary consequences of intra-patient phage predation on microbial populations. Elife 2014;3:W400–W410 [CrossRef][PubMed]
    [Google Scholar]
  20. Kendall EA, Chowdhury F, Begum Y, Khan AI, Li S et al. Relatedness of Vibrio cholerae O1/O139 isolates from patients and their household contacts, determined by multilocus variable-number tandem-repeat analysis. J Bacteriol 2010;192:4367–4376 [CrossRef][PubMed]
    [Google Scholar]
  21. Faruque SM, Chowdhury N, Kamruzzaman M, Dziejman M, Rahman MH et al. Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proc Natl Acad Sci USA 2004;101:2123–2128 [CrossRef][PubMed]
    [Google Scholar]
  22. Rashed SM, Azman AS, Alam M, Li S, Sack DA et al. Genetic variation of Vibrio cholerae during outbreaks, Bangladesh, 2010–2011. Emerg Infect Dis 2014;20:54–60 [CrossRef][PubMed]
    [Google Scholar]
  23. Limmathurotsakul D, Holden MT, Coupland P, Price EP, Chantratita N et al. Microevolution of Burkholderia pseudomallei during an acute infection. J Clin Microbiol 2014;52:3418–3421 [CrossRef][PubMed]
    [Google Scholar]
  24. Al-Hajoj SA, Akkerman O, Parwati I, Al-Gamdi S, Rahim Z et al. Microevolution of Mycobacterium tuberculosis in a tuberculosis patient. J Clin Microbiol 2010;48:3813–3816 [CrossRef][PubMed]
    [Google Scholar]
  25. Morelli G, Didelot X, Kusecek B, Schwarz S, Bahlawane C et al. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet 2010;6:e1001036 [CrossRef][PubMed]
    [Google Scholar]
  26. Mcadam PR, Holmes A, Templeton KE, Fitzgerald JR. Adaptive evolution of Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. PLoS One 2011;6:e24301e24305 [CrossRef][PubMed]
    [Google Scholar]
  27. Golubchik T, Batty EM, Miller RR, Farr H, Young BC et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS One 2013;8:e6131914 [CrossRef][PubMed]
    [Google Scholar]
  28. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ et al. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat Genet 2014;46:82–87 [CrossRef][PubMed]
    [Google Scholar]
  29. Price EP, Sarovich DS, Mayo M, Tuanyok A, Drees KP et al. Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. MBio 2013;4:e00388-13 [CrossRef][PubMed]
    [Google Scholar]
  30. Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 2009;7:693–702 [CrossRef][PubMed]
    [Google Scholar]
  31. David LA, Weil A, Ryan ET, Calderwood SB, Harris JB et al. Gut microbial succession follows acute secretory diarrhea in humans. MBio 2015;6:e00381-15 [CrossRef][PubMed]
    [Google Scholar]
  32. Abel S, Abel Zur Wiesch P, Chang HH, Davis BM, Lipsitch M et al. Sequence tag-based analysis of microbial population dynamics. Nat Methods 2015;12:223–226 [CrossRef][PubMed]
    [Google Scholar]
  33. Keymer DP, Boehm AB. Recombination shapes the structure of an environmental Vibrio cholerae population. Appl Environ Microbiol 2011;77:537–544 [CrossRef][PubMed]
    [Google Scholar]
  34. Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K et al. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio 2011;2:e00335-10 [CrossRef][PubMed]
    [Google Scholar]
  35. Larocque RC, Harris JB, Dziejman M, Li X, Khan AI et al. Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun 2005;73:4488–4493 [CrossRef][PubMed]
    [Google Scholar]
  36. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989;123:585–595[PubMed]
    [Google Scholar]
  37. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics 1998;148:1667–1686[PubMed]
    [Google Scholar]
  38. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  39. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015;16:157 [CrossRef][PubMed]
    [Google Scholar]
  40. Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome sequence assembly. Nat Methods 2011;8:61–65 [CrossRef][PubMed]
    [Google Scholar]
  41. Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC et al. Extensive error in the number of genes inferred from draft genome assemblies. PLoS Comput Biol 2014;10:e1003998 [CrossRef][PubMed]
    [Google Scholar]
  42. Taviani E, Grim CJ, Chun J, Huq A, Colwell RR. Genomic analysis of a novel integrative conjugative element in Vibrio cholerae. FEBS Lett 2009;583:3630–3636 [CrossRef][PubMed]
    [Google Scholar]
  43. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  44. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2016;2:vew007 [CrossRef]
    [Google Scholar]
  45. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012;29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  46. Duchêne S, Holt KE, Weill FX, Le Hello S, Hawkey J et al. Genome-scale rates of evolutionary change in bacteria. Microb Genom 2016;2:e000094 [CrossRef][PubMed]
    [Google Scholar]
  47. Mcdonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 1991;351:652–654 [CrossRef][PubMed]
    [Google Scholar]
  48. Smith DR, Maestre-Reyna M, Lee G, Gerard H, Wang AH et al. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc Natl Acad Sci USA 2015;112:10491–10496 [CrossRef][PubMed]
    [Google Scholar]
  49. Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG et al. Fallacy of the unique genome: sequence diversity within single Helicobacter pylori strains. MBio 2017;8:e02321-16 [CrossRef][PubMed]
    [Google Scholar]
  50. Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ et al. Characterizing and measuring bias in sequence data. Genome Biol 2013;14:R51
    [Google Scholar]
  51. Darmon E, Leach DRF. Bacterial genome instability. Microbiol Mol Biol Rev 2014;78:1–39
    [Google Scholar]
  52. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005;69:326–356 [CrossRef][PubMed]
    [Google Scholar]
  53. Herrera CM, Crofts AA, Henderson JC, Pingali SC, Davies BW et al. The Vibrio cholerae VprA-VprB two-component system controls virulence through endotoxin modification. MBio 2014;5:e02283-14 [CrossRef][PubMed]
    [Google Scholar]
  54. Almagro-Moreno S, Pruss K, Taylor RK. Intestinal colonization dynamics of Vibrio cholerae. PLoS Pathog 2015;11:e1004787 [CrossRef][PubMed]
    [Google Scholar]
  55. Shapiro BJ, Levade I, Kovacikova G, Taylor RK, Almagro-Moreno S. Origins of pandemic Vibrio cholerae from environmental gene pools. Nat Microbiol 2016;2:16240 [CrossRef][PubMed]
    [Google Scholar]
  56. Bilecen K, Yildiz FH. Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ Microbiol 2009;11:2015–2029 [CrossRef][PubMed]
    [Google Scholar]
  57. Bilecen K, Fong JC, Cheng A, Jones CJ, Zamorano-Sánchez D et al. Polymyxin B resistance and biofilm formation in Vibrio cholerae are controlled by the response regulator CarR. Infect Immun 2015;83:1199–1209 [CrossRef][PubMed]
    [Google Scholar]
  58. Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 2014;15:490 [CrossRef][PubMed]
    [Google Scholar]
  59. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015;347:63–67 [CrossRef][PubMed]
    [Google Scholar]
  60. Faruque SM, Mekalanos JJ. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012;3:556–565 [CrossRef][PubMed]
    [Google Scholar]
  61. Folster JP, Katz L, Mccullough A, Parsons MB, Knipe K et al. Multidrug-resistant IncA/C plasmid in Vibrio cholerae from Haiti. Emerg Infect Dis 2014;20:1951–1953 [CrossRef][PubMed]
    [Google Scholar]
  62. Hazen TH, Pan L, Gu JD, Sobecky PA. The contribution of mobile genetic elements to the evolution and ecology of Vibrios. FEMS Microbiol Ecol 2010;74:485–499 [CrossRef][PubMed]
    [Google Scholar]
  63. das B, Pazhani GP, Sarkar A, Mukhopadhyay AK, Nair GB et al. Molecular evolution and functional divergence of Vibrio cholerae. Curr Opin Infect Dis 2016;29:520–527 [CrossRef][PubMed]
    [Google Scholar]
  64. Tribble GD, Mao S, James CE, Lamont RJ. A Porphyromonas gingivalis haloacid dehalogenase family phosphatase interacts with human phosphoproteins and is important for invasion. Proc Natl Acad Sci USA 2006;103:11027–11032 [CrossRef][PubMed]
    [Google Scholar]
  65. Rosch JW, Mann B, Thornton J, Sublett J, Tuomanen E. Convergence of regulatory networks on the pilus locus of Streptococcus pneumoniae. Infect Immun 2008;76:3187–3196 [CrossRef][PubMed]
    [Google Scholar]
  66. Rogers PD, Liu TT, Barker KS, Hilliard GM, English BK et al. Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J Antimicrob Chemother 2007;59:616–626 [CrossRef][PubMed]
    [Google Scholar]
  67. Favrot L, Blanchard JS, Vergnolle O. Bacterial GCN5-related N-acetyltransferases: from resistance to regulation. Biochemistry 2016;55:989–1002 [CrossRef][PubMed]
    [Google Scholar]
  68. Houot L, Watnick PI. A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. J Bacteriol 2008;190:311–320 [CrossRef][PubMed]
    [Google Scholar]
  69. Houot L, Chang S, Pickering BS, Absalon C, Watnick PI. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 2010;192:3055–3067 [CrossRef][PubMed]
    [Google Scholar]
  70. Houot L, Chang S, Absalon C, Watnick PI. Vibrio cholerae phosphoenolpyruvate phosphotransferase system control of carbohydrate transport, biofilm formation, and colonization of the germfree mouse intestine. Infect Immun 2010;78:1482–1494 [CrossRef][PubMed]
    [Google Scholar]
  71. Shin SJ, Wu CW, Steinberg H, Talaat AM. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 2006;74:3825–3833 [CrossRef][PubMed]
    [Google Scholar]
  72. Grim CJ, Hasan NA, Taviani E, Haley B, Chun J et al. Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol 2010;192:3524–3533 [CrossRef][PubMed]
    [Google Scholar]
  73. Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 2001;67:561–568 [CrossRef][PubMed]
    [Google Scholar]
  74. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 2014;7:167–176 [CrossRef][PubMed]
    [Google Scholar]
  75. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011;480:241–244 [CrossRef][PubMed]
    [Google Scholar]
  76. Rafique R, Rashid M-U, Monira S, Rahman Z, Mahmud MT et al. Transmission of infectious Vibrio cholerae through drinking water among the household contacts of cholera patients (CHoBI7 trial). Front Microbiol 2016;7:4096 [CrossRef]
    [Google Scholar]
  77. Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Mol Biol Evol 2017;34:93–109 [CrossRef][PubMed]
    [Google Scholar]
  78. Boucher Y, Orata FD, Alam M. The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen. Front Microbiol 2015;6: [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000142
Loading
/content/journal/mgen/10.1099/mgen.0.000142
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

Supplementary File 3

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error