1887

Abstract

Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000089
2016-10-01
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/10/mgen000089.html?itemId=/content/journal/mgen/10.1099/mgen.0.000089&mimeType=html&fmt=ahah

References

  1. Alfano J. R., Collmer A.. 2004; Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annual Review of. Phytopathology42:385–414
    [Google Scholar]
  2. Andrews S.. 2010; FastQC: A quality control tool for high throughput sequence data. Bioinformaticshttp://www.bioinformatics.babraham.ac.uk/projects/fastqc/
    [Google Scholar]
  3. Bartoli C., Lamichhane J. R., Berge O., Guilbaud C., Varvaro L., Balestra G. M., Vinatzer B. A., Morris C. E.. 2015; A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs: the example of kiwifruit canker. Mol Plant Pathol16:137–149 [CrossRef][PubMed]
    [Google Scholar]
  4. Berge O., Monteil C. L., Bartoli C., Chandeysson C., Guilbaud C., Sands D. C., Morris C. E.. 2014; A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One9:e105547 [CrossRef][PubMed]
    [Google Scholar]
  5. Block A., Toruño T. Y., Elowsky C. G., Zhang C., Steinbrenner J., Beynon J., Alfano J. R.. 2014; The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. New Phytol201:1358–1370 [CrossRef][PubMed]
    [Google Scholar]
  6. Buell C. R., Joardar V., Lindeberg M., Selengut J., Paulsen I. T., Gwinn M. L., Dodson R. J., Deboy R. T., Durkin A. S. et al. 2003; The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A100:10181–10186 [CrossRef][PubMed]
    [Google Scholar]
  7. Cai R., Lewis J., Yan S., Liu H., Clarke C. R., Campanile F., Almeida N. F., Studholme D. J., Lindeberg M. et al. 2011a; The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathogens7:e1002130 [CrossRef]
    [Google Scholar]
  8. Cai R., Yan S., Liu H., Leman S., Vinatzer B. A.. 2011b; Reconstructing host range evolution of bacterial plant pathogens using Pseudomonas syringae pv. tomato and its close relatives as a model. Infection Genetics and. Evolution11:1738–1751
    [Google Scholar]
  9. Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J.. 2009; DNAPlotter: circular and linear interactive genome visualization. Bioinformatics25:119–120 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen X. M.. 2005; Epidemiology and control of stripe rust Puccinia striiformis f. sp tritici on wheat. Canadian Journal of Plant Pathology27:314–337
    [Google Scholar]
  11. Cheng L., Connor T. R., Siren J., Aanensen D. M., Corander J.. 2013; Hierarchical and Spatially Explicit Clustering of DNA Sequences with BAPS Software. Molecular Biology and. Evolution30:1224–1228
    [Google Scholar]
  12. Clarke C. R., Studholme D. J., Hayes B., Runde B., Weisberg A., Cai R., Wroblewski T., Daunay M. C., Wicker E. et al. 2015; Genome-enabled phylogeographic investigation of the quarantine pathogen Ralstonia solanacearum race 3 biovar 2 and screening for sources of resistance against its core effectors. Phytopathology105:597–607 [CrossRef][PubMed]
    [Google Scholar]
  13. Constantinidou H. A., Hirano S. S., Baker L. S., Upper C. D.. 1990; Atmospheric dispersal of ice nucleation-active bacteria: the role of rain. Phytopathology80:934–937 [CrossRef]
    [Google Scholar]
  14. Corander J., Waldmann P., Marttinen P., Sillanpää M. J.. 2004; BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics20:2363–2369 [CrossRef][PubMed]
    [Google Scholar]
  15. Corander J., Marttinen P., Sirén J., Tang J.. 2008; Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics9: [CrossRef][PubMed]
    [Google Scholar]
  16. Demba Diallo M., Monteil C. L., Vinatzer B. A., Clarke C. R., Glaux C., Guilbaud C., Desbiez C., Morris C. E.. 2012; Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME J6:1325–1335 [CrossRef][PubMed]
    [Google Scholar]
  17. Didelot X., Falush D.. 2007; Inference of bacterial microevolution using multilocus sequence data. Genetics175:1251–1266 [CrossRef][PubMed]
    [Google Scholar]
  18. Feil H., Feil W. S., Chain P., Larimer F., DiBartolo G., Copeland A., Lykidis A., Trong S., Nolan M. et al. 2005; Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A102:11064–11069 [CrossRef][PubMed]
    [Google Scholar]
  19. Garland T., Bennett A. F., Rezende E. L.. 2005; Phylogenetic approaches in comparative physiology. J Exp Biol208:3015–3035 [CrossRef][PubMed]
    [Google Scholar]
  20. Gitaitis R., Walcott R.. 2007; The epidemiology and management of seedborne bacterial diseases. Annu Rev Phytopathol45:371–397 [CrossRef][PubMed]
    [Google Scholar]
  21. Grosso-Becerra M. V., Santos-Medellín C., González-Valdez A., Méndez J. L., Delgado G., Morales-Espinosa R., Servín-González L., Alcaraz L. D., Soberón-Chávez G.. 2014; Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics15: [CrossRef][PubMed]
    [Google Scholar]
  22. Hanage W. P., Fraser C., Tang J., Connor T. R., Corander J.. 2009; Hyper-recombination, diversity, and antibiotic resistance in pneumococcus. Science324:1454–1457 [CrossRef][PubMed]
    [Google Scholar]
  23. Hann D. R., Domínguez-Ferreras A., Motyka V., Dobrev P., Schornack S., Jehle A., Felix G., Chinchilla D., Rathjen J. P., Boller T.. 2014; The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol201:585–598 [CrossRef][PubMed]
    [Google Scholar]
  24. Hazen T. H., Lafon P. C., Garrett N. M., Lowe T. M., Silberger D. J., Rowe L. A., Frace M., Parsons M. B., Bopp C. A. et al. 2015; Insights into the environmental reservoir of pathogenic Vibrio parahaemolyticus using comparative genomics. Front Microbiol6:204 [CrossRef][PubMed]
    [Google Scholar]
  25. Hirano S. S., Upper C. D.. 2000; Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev64:624–653 [CrossRef][PubMed]
    [Google Scholar]
  26. Hockett K. L., Nishmura M., Karsrud E., Dougherty K. M., Baltrus D. A.. 2014; P. syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector. Am Phytopath Society
    [Google Scholar]
  27. Joardar V., Lindeberg M., Jackson R. W., Selengut J., Dodson R., Brinkac L. M., Daugherty S. C., Deboy R., Durkin A. S. et al. 2005; Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol187:6488–6498 [CrossRef][PubMed]
    [Google Scholar]
  28. Johnson P. T., de Roode J. C., Fenton A.. 2015; Why infectious disease research needs community ecology. Science349: [CrossRef][PubMed]
    [Google Scholar]
  29. Jolley K. A., Maiden M. C.. 2010; BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics11: [CrossRef][PubMed]
    [Google Scholar]
  30. Katoh K., Toh H.. 2008; Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  31. Krueger F.. 2015; Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
  32. Lawson D. J., Hellenthal G., Myers S., Falush D.. 2012; Inference of population structure using dense haplotype data. PLoS Genet8: [CrossRef][PubMed]
    [Google Scholar]
  33. Li W., Chiang Y.-H., Coaker G.. 2013a; The HopQ1 effector’s nucleoside hydrolase-like domain is required for bacterial virulence in arabidopsis and tomato, but not host recognition in Tobacco. PLoS ONE8:e59684 [CrossRef]
    [Google Scholar]
  34. Li W., Yadeta K. A., Elmore J. M., Coaker G.. 2013; The Pseudomonas syringae Effector HopQ1 Promotes Bacterial Virulence and Interacts with Tomato 14-3-3 Proteins in a Phosphorylation-Dependent Manner. PLANT PHYSIOLOGY161:2062–2074 [CrossRef]
    [Google Scholar]
  35. Lindeberg M., Myers C. R., Collmer A., Schneider D. J.. 2008; Roadmap to new virulence determinants in Pseudomonas syringae: Insights from comparative genomics and genome organization. Mol Plant MicrobeIn 21:685–700
    [Google Scholar]
  36. Maiden M. C., Jansen van Rensburg M. J., Bray J. E., Earle S. G., Ford S. A., Jolley K. A., McCarthy N. D.. 2013; MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol11:728–736 [CrossRef][PubMed]
    [Google Scholar]
  37. Martin M.. 2011; Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal17:10 [CrossRef]
    [Google Scholar]
  38. Martins E. P., Garland T.. 1991; Phylogenetic analyses of the correlated evolution of continuous characters: a simulation study. Evolution45:534–557 [CrossRef]
    [Google Scholar]
  39. McCann H. C., Rikkerink E. H., Bertels F., Fiers M., Lu A., Rees-George J., Andersen M. T., Gleave A. P., Haubold B. et al. 2013; Genomic analysis of the Kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog9:e1003503 [CrossRef][PubMed]
    [Google Scholar]
  40. McCarter S. M., Jones J. B., Gitaitis R. D., Smitley D. R.. 1983; Survival of Pseudomonas syringae pv. tomato in association with tomato seed, soil, host tissue, and epiphytic weed hosts in Georgia. Phytopathology73:1393–1398 [CrossRef]
    [Google Scholar]
  41. Méric G., Yahara K., Mageiros L., Pascoe B., Maiden M. C., Jolley K. A., Sheppard S. K.. 2014; A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter. PLoS One9:e92798 [CrossRef][PubMed]
    [Google Scholar]
  42. Mohr T. J., Liu H., Yan S., Morris C. E., Castillo J. A., Jelenska J., Vinatzer B. A.. 2008; Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J Bacteriol190:2858–2870 [CrossRef][PubMed]
    [Google Scholar]
  43. Monteil C. L., Guilbaud C., Glaux C., Lafolie F., Soubeyrand S., Morris C. E.. 2012; Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack. Environ Microbiol14:2099–2112 [CrossRef][PubMed]
    [Google Scholar]
  44. Monteil C. L., Cai R., Liu H., Llontop M. E., Leman S., Studholme D. J., Morris C. E., Vinatzer B. A.. 2013; Nonagricultural reservoirs contribute to emergence and evolution of Pseudomonas syringae crop pathogens. New Phytol199:800–811 [CrossRef][PubMed]
    [Google Scholar]
  45. Monteil C. L., Bardin M., Morris C. E.. 2014a; Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall. ISME J8:2290–2304 [CrossRef]
    [Google Scholar]
  46. Monteil C. L., Lafolie F., Laurent J., Clement J. C., Simler R., Travi Y., Morris C. E.. 2014b; Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters. Environ Microbiol16:2038–2052 [CrossRef][PubMed]
    [Google Scholar]
  47. Morris C. E., Glaux C., Latour X., Gardan L., Samson R., Pitrat M.. 2000; The Relationship of host range, physiology, and genotype to virulence on cantaloupe in pseudomonas syringae from cantaloupe blight epidemics in France. Phytopathology90:636–646 [CrossRef][PubMed]
    [Google Scholar]
  48. Morris C. E., Sands D. C., Vinatzer B. A., Glaux C., Guilbaud C., Buffière A., Yan S., Dominguez H., Thompson B. M.. 2008; The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J2:321–334 [CrossRef][PubMed]
    [Google Scholar]
  49. Morris C. E., Sands D. C., Vanneste J. L., Montarry J., Oakley B., Guilbaud C., Glaux C.. 2010; Inferring the evolutionary history of the plant pathogen Pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. MBio1:e00107-10e00107-20 [CrossRef][PubMed]
    [Google Scholar]
  50. Morris C. E., Monteil C. L., Berge O.. 2013; The life history of Pseudomonas syringae: linking agriculture to earth system processes. Annu Rev Phytopathol51:85–104 [CrossRef][PubMed]
    [Google Scholar]
  51. O'Brien H. E., Thakur S., Guttman D. S.. 2011; Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Annu Rev Phytopathol49:269–289 [CrossRef][PubMed]
    [Google Scholar]
  52. Ochman H., Lawrence J. G., Groisman E. A.. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature405:299–304 [CrossRef][PubMed]
    [Google Scholar]
  53. Pascoe B., Meric G., Murray S., Mageiros L., Yahara K., Bowen R., Jones N. H., Jeeves R. E., Lappin-Scott H. M. et al. 2015; Enhanced biofilm formation evolves from divergent genetic backgrounds in host generalist Campylobacter jejuni. Environ Microbiol17:4779–4789
    [Google Scholar]
  54. Piddock L.. 2006; Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol4:629–636 [CrossRef][PubMed]
    [Google Scholar]
  55. Price M. N., Dehal P. S., Arkin A. P.. 2010; FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  56. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B.. 2000; Artemis: sequence visualization and annotation. Bioinformatics16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  57. Sheppard S. K., Jolley K. A., Maiden M. C.. 2012; A Gene-By-Gene Approach to Bacterial Population Genomics: Whole Genome MLST of Campylobacter. Genes3:261–277 [CrossRef][PubMed]
    [Google Scholar]
  58. Sheppard S. K., Didelot X., Meric G., Torralbo A., Jolley K. A., Kelly D. J., Bentley S. D., Maiden M. C., Parkhill J., Falush D.. 2013; Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci U S A110:11923–11927 [CrossRef][PubMed]
    [Google Scholar]
  59. Singh R. P., Hodson D. P., Huerta-Espino J., Jin Y., Bhavani S., Njau P., Herrera-Foessel S., Singh P. K., Singh S., Govindan V.. 2011; The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol49:465–481 [CrossRef][PubMed]
    [Google Scholar]
  60. Struve C., Krogfelt K. A.. 2004; Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environ Microbiol6:584–590 [CrossRef][PubMed]
    [Google Scholar]
  61. Stukenbrock E. H., McDonald B. A.. 2008; The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol46:75–100 [CrossRef][PubMed]
    [Google Scholar]
  62. Tampakaki A. P., Skandalis N., Gazi A. D., Bastaki M. N., Sarris P. F., Charova S. N., Kokkinidis M., Panopoulos N. J.. 2011; Playing the “Harp”: evolution of our understanding of hrp/hrc genes. Annu Rev Phytopathol48:347–370
    [Google Scholar]
  63. Vinatzer B. A., Monteil C. L., Clarke C. R.. 2014; Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu Rev Phytopathol52,:19–43 [CrossRef][PubMed]
    [Google Scholar]
  64. Wei C. F., Kvitko B. H., Shimizu R., Crabill E., Alfano J. R., Lin N. C., Martin G. B., Huang H. C., Collmer A.. 2007; A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J51:32–46 [CrossRef][PubMed]
    [Google Scholar]
  65. Whiley H., van den Akker B., Giglio S., Bentham R.. 2013; The role of environmental reservoirs in human campylobacteriosis. Int J Environ Res Public Health10:5886–5907 [CrossRef][PubMed]
    [Google Scholar]
  66. Woolhouse M. E., Taylor L. H., Haydon D. T.. 2001; Population biology of multihost pathogens. Science292:1109–1112 [CrossRef][PubMed]
    [Google Scholar]
  67. Xin X. F., He S. Y.. 2013; Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol51:473–498 [CrossRef][PubMed]
    [Google Scholar]
  68. Yahara K., Furuta Y., Oshima K., Yoshida M., Azuma T., Hattori M., Uchiyama I., Kobayashi I.. 2013; Chromosome painting in silico in a bacterial species reveals fine population structure. Molecular Biology and. Evolution30:1454–1464
    [Google Scholar]
  69. Yahara K., Didelot X., Ansari M. A., Sheppard S. K., Falush D.. 2014; Efficient inference of recombination hot regions in bacterial genomes. Mol Biol Evol31:1593–1605 [CrossRef][PubMed]
    [Google Scholar]
  70. Yahara K., Didelot X., Jolley K. A., Kobayashi I., Maiden M. C., Sheppard S. K., Falush D.. 2016a; The landscape of realized homologous recombination in pathogenic bacteria. Mol Biol Evol33:456–471 [CrossRef][PubMed]
    [Google Scholar]
  71. Yahara K., Taylor A., de Vries S., Murray S., Pascoe B., Mageiros L., Torralbo A., Vidal A., Ridley A. et al. 2016b; Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. PeerJ Preprints4:e2300v1
    [Google Scholar]
  72. Yan S., Liu H., Mohr T. J., Jenrette J., Chiodini R., Zaccardelli M., Setubal J. C., Vinatzer B. A.. 2008; Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain. Applied and Environmental. Microbiology74:3171–3181
    [Google Scholar]
  73. Zerbino D. R., Birney E.. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  74. Studholme, D., Monteil C., Swingle B. and Vinatzer, B. A. NCBI, Pseudomonas syringae BioProject (ID 320409) 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000089
Loading
/content/journal/mgen/10.1099/mgen.0.000089
Loading

Data & Media loading...

Supplementary File 1

Supplementary File 2

Supplementary File 3

Supplementary File 4

Supplementary File 5

Supplementary File 6

PDF

Supplementary File 7

PDF

Supplementary File 8

PDF

Supplementary File 9

PDF

Supplementary File 10

PDF

Supplementary File 11

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error