1887

Abstract

Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a public health threat and outbreaks occur worldwide. Here, we investigate genomic differences between related STEC O157:H7 that caused two outbreaks, eight weeks apart, at the same restaurant. Short-read genome sequencing divided the outbreak strains into two sub-clusters separated by only three single-nucleotide polymorphisms in the core genome while traditional typing identified them as separate phage types, PT8 and PT54. Isolates did not cluster with local strains but with those associated with foreign travel to the Middle East/North Africa. Combined long-read sequencing approaches and optical mapping revealed that the two outbreak strains had undergone significant microevolution in the accessory genome with prophage gain, loss and recombination. In addition, the PT54 sub-type had acquired a 240 kbp multi-drug resistance (MDR) IncHI2 plasmid responsible for the phage type switch. A PT54 isolate had a general fitness advantage over a PT8 isolate in rich medium, including an increased capacity to use specific amino acids and dipeptides as a nitrogen source. The second outbreak was considerably larger and there were multiple secondary cases indicative of effective human-to-human transmission. We speculate that MDR plasmid acquisition and prophage changes have adapted the PT54 strain for human infection and transmission. Our study shows the added insights provided by combining whole-genome sequencing approaches for outbreak investigations.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000084
2016-09-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/9/mgen000084.html?itemId=/content/journal/mgen/10.1099/mgen.0.000084&mimeType=html&fmt=ahah

References

  1. Alikhan N. F., Petty N. K., Ben Zakour N. L., Beatson S. A.. 2011; BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics12:402 [CrossRef][PubMed]
    [Google Scholar]
  2. Allison H. E.. 2007; Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol2:165–174 [CrossRef][PubMed]
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  4. Asadulghani M., Ogura Y., Ooka T., Itoh T., Sawaguchi A., Iguchi A., Nakayama K., Hayashi T.. 2009; The defective prophage pool of Escherichia coli O157: prophage–prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog5:e1000408 [CrossRef][PubMed]
    [Google Scholar]
  5. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  6. Bell B. P., Goldoft M., Griffin P. M., Davis M. A., Gordon D. C., Tarr P. I., Bartleson C. A., Lewis J. H., Barrett T. J., Wells J. G.. 1994; A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA272:1349–1353[PubMed]
    [Google Scholar]
  7. Bochner B. R., Gadzinski P., Panomitros E.. 2001; Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res11:1246–1255 [CrossRef][PubMed]
    [Google Scholar]
  8. Bolger A. M., Lohse M., Usadel B.. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  9. Byrne L., Elson R., Dallman T. J., Perry N., Ashton P., Wain J., Adak G. K., Grant K. A., Jenkins C.. 2014; Evaluating the use of multilocus variable number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 as a routine public health tool in England. PLoS One9:e85901 [CrossRef][PubMed]
    [Google Scholar]
  10. Castanie-Cornet M. P., Penfound T. A., Smith D., Elliott J. F., Foster J. W.. 1999; Control of acid resistance in Escherichia coli. J Bacteriol181:3525–3535[PubMed]
    [Google Scholar]
  11. Chen Y. T., Lauderdale T. L., Liao T. L., Shiau Y. R., Shu H. Y., Wu K. M., Yan J. J., Su I. J., Tsai S. F.. 2007; Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 β-lactamases in Klebsiella pneumoniae. Antimicrob Agents Chemother51:3004–3007 [CrossRef][PubMed]
    [Google Scholar]
  12. Chin C. S., Alexander D. H., Marks P., Klammer A. A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J. et al. 2013; Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  13. Clawson M. L., Keen J. E., Smith T. P., Durso L. M., McDaneld T. G., Mandrell R. E., Davis M. A., Bono J. L.. 2009; Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms. Genome Biol10:R56 [CrossRef][PubMed]
    [Google Scholar]
  14. Cooper K. K., Mandrell R. E., Louie J. W., Korlach J., Clark T. A., Parker C. T., Huynh S., Chain P. S., Ahmed S., Carter M. Q.. 2014; Complete genome sequences of two Escherichia coli O145:H28 outbreak strains of food origin. Genome Announc2:e0048214 [CrossRef][PubMed]
    [Google Scholar]
  15. Cowley L. A., Beckett S. J., Chase-Topping M., Perry N., Dallman T. J., Gally D. L., Jenkins C.. 2015; Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages. BMC Genomics16: [CrossRef][PubMed]
    [Google Scholar]
  16. Dallman T. J., Ashton P. M., Byrne L., Perry N. T., Petrovska L., Ellis R., Allison L., Hanson M. F., Holmes A. et al. 2015a; Applying phylogenomics to understand the emergence of Shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microbial Genomics1: [CrossRef]
    [Google Scholar]
  17. Dallman T. J., Byrne L., Ashton P. M., Cowley L. A., Perry N. T., Adak G., Petrovska L., Ellis R. J., Elson R. et al. 2015b; Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clin Infect Dis61:305–312 [CrossRef][PubMed]
    [Google Scholar]
  18. Darling A. E., Mau B., Perna N. T.. 2010; progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  19. Eppinger M., Mammel M. K., Leclerc J. E., Ravel J., Cebula T. A.. 2011; Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A108:20142–20147 [CrossRef][PubMed]
    [Google Scholar]
  20. Fang L., Li X., Li L., Li S., Liao X., Sun J., Liu Y.. 2016; Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci Rep6:25312 [CrossRef][PubMed]
    [Google Scholar]
  21. Feasey N. A., Cain A. K., Msefula C. L., Pickard D., Alaerts M., Aslett M., Everett D. B., Allain T. J., Dougan G. et al. 2014; Drug resistance in Salmonella enterica ser. Typhimurium bloodstream infection, Malawi. Emerg Infect Dis20:1957–1959 [CrossRef][PubMed]
    [Google Scholar]
  22. Ferenci T.. 2005; Maintaining a healthy SPANC balance through regulatory and mutational adaptation. Mol Microbiol57:1–8 [CrossRef][PubMed]
    [Google Scholar]
  23. Gilmour M. W., Thomson N. R., Sanders M., Parkhill J., Taylor D. E.. 2004; The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid52:182–202 [CrossRef][PubMed]
    [Google Scholar]
  24. Hayashi T., Makino K., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C. G., Ohtsubo E., Nakayama K. et al. 2001; Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res8:11–22 [CrossRef][PubMed]
    [Google Scholar]
  25. Herold S., Karch H., Schmidt H.. 2004; Shiga toxin-encoding bacteriophages-genomes in motion. Int J Med Microbiol294:115–121 [CrossRef][PubMed]
    [Google Scholar]
  26. Holt K. E., Baker S., Weill F. X., Holmes E. C., Kitchen A., Yu J., Sangal V., Brown D. J., Coia J. E. et al. 2012; Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet44:1056–1059 [CrossRef][PubMed]
    [Google Scholar]
  27. Jenkins C., Dallman T. J., Launders N., Willis C., Byrne L., Jorgensen F., Eppinger M., Adak G. K., Aird H. et al. 2015; Public health investigation of two outbreaks of Shiga toxin-producing Escherichia coli O157 associated with consumption of watercress. Appl Environ Microbiol81:3946–3952 [CrossRef][PubMed]
    [Google Scholar]
  28. Johnson T. J., Wannemeuhler Y. M., Scaccianoce J. A., Johnson S. J., Nolan L. K.. 2006; Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrob Agents Chemother50:3929–3933 [CrossRef][PubMed]
    [Google Scholar]
  29. Kariuki S., Okoro C., Kiiru J., Njoroge S., Omuse G., Langridge G., Kingsley R. A., Dougan G., Revathi G.. 2015; Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M15 gene on a novel IncHI2 plasmid. Antimicrob Agents Chemother59:3133–3139 [CrossRef][PubMed]
    [Google Scholar]
  30. Khakhria R., Duck D., Lior H.. 1990; Extended phage-typing scheme for Escherichia coli O157:H7. Epidemiol Infect105:511–520 [CrossRef][PubMed]
    [Google Scholar]
  31. Koren S., Harhay G. P., Smith T. P., Bono J. L., Harhay D. M., Mcvey S. D., Radune D., Bergman N. H., Phillippy A. M.. 2013; Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol14:R101 [CrossRef][PubMed]
    [Google Scholar]
  32. Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L.. 2004; Versatile and open software for comparing large genomes. Genome Biol5:R12 [CrossRef][PubMed]
    [Google Scholar]
  33. Labrie S. J., Samson J. E., Moineau S.. 2010; Bacteriophage resistance mechanisms. Nat Rev Microbiol8:317–327 [CrossRef][PubMed]
    [Google Scholar]
  34. Latif H., Li H. J., Charusanti P., Palsson B. Ø., Aziz R. K.. 2014; A gapless, unambiguous genome sequence of the enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Genome Announc2: [CrossRef][PubMed]
    [Google Scholar]
  35. Law D.. 2000; Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J Appl Microbiol88:729–745 [CrossRef][PubMed]
    [Google Scholar]
  36. Lenski R. E.. 1991; Quantifying fitness and gene stability in microorganisms. Biotechnology15:173–192[PubMed]
    [Google Scholar]
  37. Li H., Durbin R.. 2009; Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  38. Li L., Liao X., Yang Y., Sun J., Li L., Liu B., Yang S., Ma J., Li X. et al. 2013; Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. J Antimicrob Chemother68:2263–2268 [CrossRef][PubMed]
    [Google Scholar]
  39. Lim J. Y., La H. J., Sheng H., Forney L. J., Hovde C. J.. 2010; Influence of plasmid pO157 on Escherichia coli O157:H7 Sakai biofilm formation. Appl Environ Microbiol76:963–966 [CrossRef][PubMed]
    [Google Scholar]
  40. Losada L., DebRoy C., Radune D., Kim M., Sanka R., Brinkac L., Kariyawasam S., Shelton D., Fratamico P. M. et al. 2016; Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids. Plasmid83:8–11 [CrossRef][PubMed]
    [Google Scholar]
  41. Luo H., Zhang C. T., Gao F.. 2014; Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes. Front Microbiol5:482 [CrossRef][PubMed]
    [Google Scholar]
  42. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S. et al. 2010; The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  43. Ogura Y., Mondal S. I., Islam M. R., Mako T., Arisawa K., Katsura K., Ooka T., Gotoh Y., Murase K. et al. 2015; The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep5:16663 [CrossRef][PubMed]
    [Google Scholar]
  44. Page A. J., Cummins C. A., Hunt M., Wong V. K., Reuter S., Holden M. T., Fookes M., Falush D., Keane J. A., Parkhill J.. 2015; Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  45. Pennington H.. 2010; Escherichia coli O157. Lancet376:1428–1435 [CrossRef][PubMed]
    [Google Scholar]
  46. Quick J., Ashton P., Calus S., Chatt C., Gossain S., Hawker J., Nair S., Neal K., Nye K. et al. 2015; Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol16:114 [CrossRef][PubMed]
    [Google Scholar]
  47. Richard H. T., Foster J. W.. 2003; Acid resistance in Escherichia coli. Adv Appl Microbiol52:167–186[PubMed]
    [Google Scholar]
  48. Seemann T.. 2014; Prokka: rapid prokaryotic genome annotation. Bioinformatics30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  49. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  50. Vaas L. A., Sikorski J., Hofner B., Fiebig A., Buddruhs N., Klenk H. P., Göker M.. 2013; opm: an R package for analysing OmniLog® phenotype microarray data. Bioinformatics29:1823–1824 [CrossRef][PubMed]
    [Google Scholar]
  51. Whelan K. F., Colleran E., Taylor D. E.. 1995; Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol177:5016–5027[PubMed]
    [Google Scholar]
  52. Whelan K. F., Sherburne R. K., Taylor D. E.. 1997; Characterization of a region of the IncHI2 plasmid R478 which protects Escherichia coli from toxic effects specified by components of the tellurite, phage, and colicin resistance cluster. J Bacteriol179:63–71[PubMed]
    [Google Scholar]
  53. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S.. 2011; PHAST: a fast phage search tool. Nucleic Acids Res39:W347–W352 [CrossRef][PubMed]
    [Google Scholar]
  54. Dallman, T. J., Ashton, P. A., Jenkins, C., Grant K. NCBI Short Read Archive PRJNA248042 2015
  55. Cowley, L. A., Dallman, T. J., Bono, J. NCBI GenbankCP015831CP015832CP015833 2015
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000084
Loading
/content/journal/mgen/10.1099/mgen.0.000084
Loading

Data & Media loading...

Supplements

Supplementary File 1

WORD

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error