1887

Abstract

A Gram-stain-negative, rod-shaped bacterium, motile by means of a single polar flagellum, designated S-6-2, was isolated from petroleum polluted river sediment in Huangdao, Shandong Province, PR China. The 16S rRNA gene sequence analysis revealed that S-6-2 represented a member of the genus , sharing the highest sequence similarities with (97.5 %) and (97.5 %). Phylogenetic analysis based on 16S rRNA gene, concatenated 16S rRNA, , and genes and genome core-genes indicated that S-6-2 was affiliated with the members of the group. The average nucleotide identity (ANI) and genome-to-genome distance between the whole genome sequences of S-6-2 and closely related species of the genus within the group were less than 77.94 % and 20.5 %, respectively. Differences in phenotypic characteristics were also found between S-6-2 and the closely related species. The major cellular fatty acids (>10 %) were summed feature 8 (Cω7/ C ω6), C, Ccyclo and C. The predominant respiratory quinone was ubiquinone 9. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), one unidentified lipid (L1), two unidentified phospholipids (PL1 and PL2) and an aminophospholipid (APL). The DNA G+C content of the genome of S-6-2 was 60.1 mol%. On the basis of the evidence from the polyphasic taxonomic study, strain S-6-2 can be classified as representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S-6-2 (=CGMCC 1.15798=KCTC 52539).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003763
2019-10-29
2019-11-22
Loading full text...

Full text loading...

References

  1. Wackett LP. Pseudomonas putida—a versatile biocatalyst. Nat Biotechnol 2003;21: 136– 138 [CrossRef]
    [Google Scholar]
  2. Migula W. Über ein neues system Der Bakterien. Arb Bakteriol Inst Karlsruhe 1894;1: 235– 238
    [Google Scholar]
  3. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68: 1825– 1829 [CrossRef]
    [Google Scholar]
  4. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000;146: 2385– 2394 [CrossRef]
    [Google Scholar]
  5. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010;12: 1513– 1530 [CrossRef]
    [Google Scholar]
  6. Mulet M, Gomila M, Lemaitre B, Lalucat J, García-Valdés E. Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol 2012;35: 145– 149 [CrossRef]
    [Google Scholar]
  7. Zhu L, Ding W, Feng L-juan, Dai X, Xu X-yang. Characteristics of an aerobic denitrifier that utilizes ammonium and nitrate simultaneously under the oligotrophic niche. Environ Sci Pollut Res 2012;19: 3185– 3191 [CrossRef]
    [Google Scholar]
  8. Chen Q, Ni J. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. J Ind Microbiol Biotechnol 2011;38: 1305– 1310 [CrossRef]
    [Google Scholar]
  9. Uchino M, Shida O, Uchimura T, Komagata K. Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. nov. J Gen Appl Microbiol 2001;47: 247– 261 [CrossRef]
    [Google Scholar]
  10. Romanenko LA, Uchino M, Falsen E, Frolova GM, Zhukova NV et al. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2005;55: 919– 924 [CrossRef]
    [Google Scholar]
  11. Yoon SH, SM H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2016;67: 1613
    [Google Scholar]
  12. Felsenstein J. PHYLIP – Phylogeny Inference Package, Version 3.6. Distributed by the Author Seattle: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  13. Jukes TH, Cantor CR. Evolution of protein molecules In HN Munro. editor Mammalian protein metabolism New York: Academic Press; 1969; pp 21– 132
    [Google Scholar]
  14. Sánchez D, Mulet M, Rodríguez AC, David Z, Lalucat J et al. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill. Syst Appl Microbiol 2014;37: 89– 94 [CrossRef]
    [Google Scholar]
  15. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015;6: 214 [CrossRef]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20: 406– 416 [CrossRef]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef]
    [Google Scholar]
  21. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015;38: 237– 245 [CrossRef]
    [Google Scholar]
  22. Zhao Y, Sun C, Zhao D, Zhang Y, You Y et al. PGAP-X: extension on pan-genome analysis pipeline. BMC Genomics 2018;19: [CrossRef]
    [Google Scholar]
  23. Katoh K, Misawa K, Kuma K-ichi, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30: 3059– 3066 [CrossRef]
    [Google Scholar]
  24. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009;26: 1641– 1650 [CrossRef]
    [Google Scholar]
  25. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10: 563– 569 [CrossRef]
    [Google Scholar]
  26. Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min 2015;8: 1 [CrossRef]
    [Google Scholar]
  27. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007;23: 673– 679 [CrossRef]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68: 461– 466 [CrossRef]
    [Google Scholar]
  29. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67: 2053– 2057 [CrossRef]
    [Google Scholar]
  30. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25: 3389– 3402 [CrossRef]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef]
    [Google Scholar]
  33. Smibert RM, Kreig NR. Phenotypic characterization In Gerhardt P, Murray RGE, Wood WA, Kreig NR. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 1994; pp 607– 614
    [Google Scholar]
  34. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954;44: 301– 307
    [Google Scholar]
  35. Minnikin D, Collins M, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 1979;47: 87– 95
    [Google Scholar]
  36. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48: 459– 470 [CrossRef]
    [Google Scholar]
  37. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986;123: 251– 256 [CrossRef]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. MIDI Inc; 1990
    [Google Scholar]
  39. Palleroni NJ. Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microbiology 2003;149: 1– 7 [CrossRef]
    [Google Scholar]
  40. Cámara B, Strömpl C, Verbarg S, Spröer C, Pieper DH et al. Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 2007;57: 923– 931 [CrossRef]
    [Google Scholar]
  41. Pascual J, Lucena T, Ruvira MA, Giordano A, Gambacorta A et al. Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. Int J Syst Evol Microbiol 2012;62: 438– 444 [CrossRef]
    [Google Scholar]
  42. Vancanneyti M, Witt S, Abraham W-R, Kersters K, Fredrickson HL. Fatty acid content in whole-cell hydrolysates and phospholipid and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 1996;19: 528– 540 [CrossRef]
    [Google Scholar]
  43. Gibello A, Vela AI, Martín M, Mengs G, Alonso PZ et al. Pseudomonas composti sp. nov., isolated from compost samples. Int J Syst Evol Microbiol 2011;61: 2962– 2966 [CrossRef]
    [Google Scholar]
  44. Lin S-Y, Hameed A, Hung M-H, Liu Y-C, Hsu Y-H et al. Pseudomonas matsuisoli sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 2015;65: 902– 909 [CrossRef]
    [Google Scholar]
  45. Bennasar A, Rosselló-Mora R, Lalucat J, Moore ER. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 1996;46: 200– 205 [CrossRef]
    [Google Scholar]
  46. Kim K-H, Roh SW, Chang H-W, Nam Y-D, Yoon J-H et al. Pseudomonas sabulinigri sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 2009;59: 38– 41 [CrossRef]
    [Google Scholar]
  47. Hwang CY, Zhang GI, Kang S-H, Kim HJ, Cho BC. Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 2009;59: 3019– 3024 [CrossRef]
    [Google Scholar]
  48. Zhang D-C, Liu H-C, Zhou Y-G, Schinner F, Margesin R. Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61: 2333– 2337 [CrossRef]
    [Google Scholar]
  49. Xiao Y-P, Hui W, Wang Q, Roh SW, Shi X-Q et al. Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. Int J Syst Evol Microbiol 2009;59: 2594– 2598 [CrossRef]
    [Google Scholar]
  50. Clark LL, Dajcs JJ, McLean CH, Bartell JG, Stroman DW. Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol 2006;56: 709– 714 [CrossRef]
    [Google Scholar]
  51. Palleroni NJ. Pseudomonas Bergey's Manual of Systematics of Archaea and Bacteria 2015; pp 1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003763
Loading
/content/journal/ijsem/10.1099/ijsem.0.003763
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error