Control of Dimorphism in *Candida albicans* by Zinc: Effect on Cell Morphology and Composition

By H. YAMAGUCHI

Department of Microbiology, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received 3 April 1974; Revised 7 October 1974)

Zinc participates in the morphogenesis of a wide range of micro-organisms. In several dimorphic fungi such as *Histoplasma capsulatum* (Pine & Peacock, 1958), *Mucor rouxii* (Bartnicki-Garcia & Nickerson, 1962) and *Candida albicans* (Widra, 1964), zinc completely reverses the filamentous or mycelial phase of growth. Fungal cultures in which the morphology is influenced by a single factor can be useful for the study of metabolic processes underlying the dimorphic phase conversion and in this paper the changes in some macromolecular constituents of *C. albicans*, associated with its morphological transformation, are described with respect to the concentration of zinc added to the defined basal medium.

METHODS

Candida albicans strain 6713, which forms extensive filaments under some nutritional conditions (Yamaguchi, 1974a) was grown on a medium depleted of trace metals and containing (per l): glucose, 8 g; (NH₄)₂SO₄, 8 g; KH₂PO₄, 3·6 g; Na,HPO₄·12H₂O, 1·2 g; MgSO₄·7H₂O, 0·2 g; D-biotin, 0·1 µg. In zinc-replete medium ZnSO₄·7H₂O was added at 9 µM. Zinc-deficient medium was unsupplemented. Medium was inoculated (per ml) with about 10 µg dry wt of *C. albicans* taken from the surface of a 2-day-old culture grown at 37 °C on Sabouraud’s glucose agar slants, washed three times with double-distilled water, and finally resuspended in water.

Growth conditions and methods for assay of dry weight, the proportion of yeastlike-phase (Y) cells to filamentous-phase (F) cells during growth, and the content of DNA, RNA and protein were as previously described (Yamaguchi, 1974a). DNA phosphorus and RNA phosphorus were calculated by using the atomic extinction coefficient for phosphorus proposed by Logan, Mannell & Rossiter (1952). Insoluble inorganic polyphosphate in the hot 1 M-HClO₄ extract of the yeast was determined by adsorbing the nucleic acids on charcoal according to the method of Harold (1960), and the residual phosphorus, all of which was acid-labile, was taken as insoluble inorganic polyphosphate. After incinerating with conc. H₂SO₄ plus conc. HNO₃, the resulting orthophosphate was determined by the method of Fiske & SubbaRow (1925).

RESULTS AND DISCUSSION

The yield of *C. albicans* after 24 h growth was maximal with 3 µM-Zn²⁺; zinc above 10⁻³ M was inhibitory to growth (Fig. 1). Zinc-deficient cultures consisted almost entirely of F cells but the proportion of Y cells increased with increasing concentrations of zinc, reaching a maximal level at 9 µM-Zn²⁺ (Fig. 1). Observations with the light microscope agreed with these results, which were obtained using a mechanical filtration method.
Short communication

Fig. 1. Effect of different concentrations of zinc added to medium on total growth and morphology of Candida albicans. ●, Dry wt of yeast; ○, proportion of Y cells.

Table 1. Effect of zinc on the yield and concentrations of macromolecular constituents of Candida albicans during exponential and post-exponential growth

<table>
<thead>
<tr>
<th>Age of culture (h)</th>
<th>Yield (g dry wt/l)</th>
<th>Protein (µg)</th>
<th>DNA (µg P)</th>
<th>RNA (µg P)</th>
<th>Polyphosphate (µg P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Zn²⁺ added at 9 x 10⁻⁶ M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>292</td>
<td>0.32</td>
<td>2.84</td>
<td>12.8</td>
</tr>
<tr>
<td>8</td>
<td>0.59</td>
<td>290</td>
<td>0.17</td>
<td>3.00</td>
<td>12.3</td>
</tr>
<tr>
<td>12</td>
<td>1.92</td>
<td>312</td>
<td>0.18</td>
<td>3.00</td>
<td>12.1</td>
</tr>
<tr>
<td>18</td>
<td>3.01</td>
<td>376</td>
<td>0.16</td>
<td>2.62</td>
<td>—</td>
</tr>
<tr>
<td>24</td>
<td>3.13</td>
<td>405</td>
<td>0.19</td>
<td>2.53</td>
<td>12.0</td>
</tr>
</tbody>
</table>

No addition of Zn²⁺

4	0.11	273	0.35	3.60	16.0
8	0.51	306	0.27	2.43	19.1
12	0.89	300	0.22	1.67	20.2
18	1.75	309	0.21	0.79	—
24	2.08	314	0.23	0.69	20.4

For the first 6 h of growth, zinc-deficient and zinc-replete cultures grew at the same rate with a doubling time of about 1.5 h. Subsequently, zinc-replete cultures still grew exponentially for about 5 h before slowing down, whereas the growth rate of zinc-deficient cultures dropped to about half but growth continued almost linearly at this rate for another 15 h. Growth of the deficient cultures over the latter period consisted essentially of filament elongation. It continued for at least 24 h after the yeast had reached its maximum dry weight.

Changes in content of several macromolecules were examined in both zinc-replete and zinc-deficient cultures (Table 1). There was little difference between the two cultures in the protein and DNA contents throughout the growth phase. The concentrations of RNA and inorganic polyphosphate did not change significantly when there was an adequate concentration of zinc, but when zinc was deficient the RNA content fell to a third and the content of inorganic polyphosphate doubled during the post-exponential phase of growth. The
inhibition of RNA synthesis and the accumulation of polyphosphate in the zinc-deficient cultures were apparent before inhibition of growth was observed.

The present data suggest that zinc has a primary function in metabolism of RNA in *C. albicans*, rather than protein or DNA. Zinc may be required for the synthesis of RNA or in preventing its degradation. Whatever the mechanism of action may be, the complete cessation of net RNA synthesis at the transitory stage from Y growth to F growth, under a certain degree of zinc deficiency, may imply that subsequent filamentous elongation takes place without net ribosomal formation. There is therefore a significant difference in the metabolic processes involved in mycelial elongation (F growth) and simple cell division (Y growth). Low RNA concentrations and a high incidence of F forms also occur when *C. albicans* is grown with an insufficient supply of yeast extract (Yamaguchi, 1974a) or biotin (Yamaguchi, 1974b).

Polyphosphate probably functions as store of 'high-energy' phosphate, as it may participate in the reversible synthesis of ADP and ATP (Yoshida & Yamataka, 1953). The accumulation of polyphosphate in zinc-deficient cultures of *C. albicans*, therefore, suggests that cessation of both net RNA synthesis and growth is not due to a failure of energy-yielding metabolism. There may be an antagonism between polyphosphate and nucleic acid metabolism, each competing for ATP, as has been postulated by Smith, Wilkinson & Duguid (1954) and Mudd, Yoshida & Koike (1958). The physiological role of such metabolism of phosphorous compounds in the F growth is being investigated.

I am grateful to Professor K. Iwata for valuable advice and to Miss Akiko Sawanobori for excellent technical assistance.

REFERENCES

The insert enclosed in Volume 86, Part 1, January (Fig. 1. Matching matrix of the 98 test cultures based on 180 pooled characters) should be inserted in Volume 85, Part 2, December, facing p. 293.
Index of Authors

ATTWOOD, M. M., see HARDER, W., MATIN, A. & ATTWOOD, M. M. Studies on the physiological significance of the lack of a pyruvate dehydrogenase complex of *Hyphomicrobium* sp. 319

AUDMAY, T. K. & RUSSELL, D. W. Enniatin production by *Fusarium sambucinum*: primary, secondary, and unitary metabolism 327

BAKER, D. A. & PARK, R. W. A. Changes in morphology and cell wall structure that occur during growth of *Vibrio* sp. NCTC4716 in batch culture 12

BARNETT, J. A., BASCOMB, S. & GOWER, J. C. A maximal predictive classification of *Klebsielleae* and of the yeasts 93

BASCOMB, S., see BARNETT, J. A., BASCOMB, S. & GOWER, J. C. A maximal predictive classification of *Klebsielleae* and of the yeasts 93

BEEVER, R. F. Regulation of 2-phosphoenolpyruvate carboxykinase and isocitrate lyase synthases in *Neurospora crassa* 197

Bhattacharjee, J. K., see KURTZ, M. Biosynthesis of lysine in *Rhodotorula glutinis*: role of pipicolic acid 103

BRILES, E. B. & TOMASZ, A. Physiological studies on the pneumococcal Forssman antigen: a choline-containing lipoteichoic acid 267

BROWN, A. D. Microbial water relations. Effects of solute concentration on the respiratory activity of sugar-tolerant and non-tolerant yeasts 241

BROWN, C. M. & DILWORTH, M. J. Ammonia assimilation by *Rhizobium* cultures and bacteroids 39

Buhagiar, R. W. M. *Toluropils bacarum*, *Toluropils pustula* and *Toluropils multis-gemmis* sp. nov. three new yeasts from soft fruit 1

Bu'Lock, J. D., see MILLONIG, G., DE ROSA, M., GAMBCORTA, A. & Bu'Lock, J. D. Ultrastructure of an extremely thermophilic acidophilic microorganism 165

Bu'Lock, J. D., see de ROSA, M., GAMBCORTA, A. & Bu'Lock, J. D. Extremely thermophilic acidophilic bacteria convergent with *Sulfobolus acidocaldarius* 156

Butcher, D. N., see PHILLIPS, R. Attempts to induce tumours with nucleic acid preparations from *Agrobacterium tumefaciens* 311

Caten, C. E., see MERRICK, M. J. The inheritance of penicillin titre in wild-type isolates of *Aspergillus nidulans* 283

Child, J. J., see SIETsMA, J. H., CHILD, J. J., NESBITT, L. R. & HASKINS, R. H. Chemistry and ultrastructure of the hyphal walls of *Pythium aca- nthicum* 29

COETZEE, J. N. Chromosome transfer in *Proteus mirabilis* mediated by a hybrid plasmid 133

Coleman, G. & STORMONTH, D. A. Stimulation of the differential rate of exoenzyme formation in *Bacillus amyloleiquefaciens* by streptolydigin, an inhibitor of RNA chain elongation 194

COLES, R. S., JUN. The effect of coenzyme leakage and replacement on the growth and metabolism of *two Fusobacteria* 147

COPLAND, H. J. R., see MOSLEY, B. E. B. Involvement of a recombination repair function in disciplined cell division of *Micrococcus radiodurans* 343

Datta, N., see HEDGES, R. W., RODRIGUEZ-LEMOINE, V. & Datta, N. R factors from *Serratia marcescens* 88

Datta, N., see Rodriguez-Lemoine, V., Jacob, A. E., Hedges, R. W. & Datta, N. Thermosensitive production of their transfer systems by group S plasmids 111

Dilworth, M. J., see Brown, C. M. Ammonia assimilation by *Rhizobium* cultures and bacteroids 39

EBRINGER, L., see ŠMARDA, J., EBRINGER, L. & MACH, J. The effect of colicin E2 on the flagellate *Euglena gracilis* 365

Eylan, E., see LINDBAUM, I., Eylan, E. & RAANANI, E. Enhancement of growth of *Leptospira icterohaemorrhagiae* by tissue cell cultures 358

Fox, R. F. & McClain, D. E. Enzyme electrophoretograms in the analysis of taxon relatedness of *Micrococcus cryophilus*, *Branhamella catarhalis* and atypical neisserias 210

Gambarcorta, A., see MILLONG, G., De ROSA, M., GAMBCORTA, A. & Bu'Lock, J. D. Ultrastructure of an extremely thermophilic acidophilic microorganism 165

Gambarcorta, A., see De ROSA, M., Gambarcota, A. & Bu'Lock, J. D. Extremely thermophilic acidophilic bacteria convergent with *Sulfobolus acidocaldarius* 156

Gibbons, R. A., Jones, G. W. & Sellwood, R. An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutination inhibition test using glycoproteins and fractions from sow colostrum 228

Goodell, E. W. & Schwarz, U. Sphere-rod morphogenesis of *Escherichia coli* 201

Gower, J. C., see Barnett, J. A., Bascomb, S. & Gower, J. C. A maximal predictive classification of *Klebsielleae* and of the yeasts 93

Guest, J. R., see Watts, D. J. Studies on the vitamin nutrition of the cellular slime mould *Dictyostelium discoideum* 333

Günther, T., Richter, L. & Schmalbeck, J. Phospholipids of *Escherichia coli* in magnesium deficiency 191
Index of Authors

HARDER, W., MATIN, A. & ATTWOOD, M. M. Studies on the physiological significance of the lack of pyruvate dehydrogenase complex in *Hyphomicrobiu* sp. 319

HASKINS, R. H., see SIETSM, J. H., CHILD, J. J., NESBITT, L. R. & HASKINS, R. H. Chemistry and ultrastructure of the hyphal walls of *Pythium acanthum* 29

HEDGES, R. W., RODRIGUEZ-LEMOINE, V. & Datta, N. R factors from *Serratia marcescens* 88

HEDGES, R. W., see RODRIGUEZ-LEMOINE, V., JACOB, A. E., HEDGES, R. W. & Datta, N. Thermosensitive production of their transfer systems by group S plasmids 111

HOLLINGDALE, M. R. Isolation of lipopolysaccharide from the walls of *Micropylpora faeni*: chemical composition and serological reactivity 250

HOLMGREN, J. & LÖNNROTH, I. Oligomeric structure of cholera toxin: characteristics of the H and L subunits 49

JACOB, A. E., see RODRIGUEZ-LEMOINE, V., JACOB, A. E., HEDGES, R. W. & Datta, N. Thermosensitive production of their transfer systems by group S plasmids 111

JARVIS, A. W., LAWRENCE, R. C. & PRITCHARD, G. G. Glucose repression of enterotoxins A, B and C and other extracellular proteins in staphylococci in batch and continuous culture 75

JONES, G. W., see GIBBONS, R. A., JONES, G. W. & SELLWOOD, R. An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutination inhibition test using glycoproteins and fractions from sow colostrum 228

KIDBY, D. K., see MURRAY, A. D. Sub-cellular location of mercury in yeast grown in the presence of mercuric chloride 66

KINGHORN, J. R. & PATEMAN, J. A. Mutations which affect amino acid transport in *Aspergillus nidulans* 174

KINGHORN, J. R. & PATEMAN, J. A. The structural gene for NADP-I-glutamate dehydrogenase in *Aspergillus nidulans* 294

KIYOMIYA, A., see OHTA, K., KIYOMIYA, A., KOYAMA, N. & Nosoh, Y. The basis of the alkalophilic property of a species of Bacillus 259

KOYAMA, N., see OHTA, K., KIYOMIYA, A., KOYAMA, N. & Nosoh, Y. The basis of the alkalophilic property of a species of Bacillus 259

KURTZ, M. & BHATTACHARJEE, J. K. Biosynthesis of lysine in *Rhodotorula glutinis*: role of piperocil acid 103

LAWRENCE, R. C., see JARVIS, A. W., LAWRENCE, R. C. & PRITCHARD, G. G. Glucose repression of enterotoxins A, B and C and other extracellular proteins in staphylococci in batch and continuous culture 75

LINDENBAUM, I., EYLAN, E. & RAANANI, E. Enhancement of growth of *Leptospira icterohaemorrhagiae* by tissue cell cultures 358

LÖNNROTH, I., see HOLMGREN, J. Oligomeric structure of cholera toxin: characteristics of the H and L subunits 49

LOUDLINI, R. E. Polarity of the *cysJIIH* operon of *Salmonella typhiurium* 275

MCCLAIN, D. E., see FOX, R. F. Enzyme electrophoretograms in the analysis of taxon relatedness of *Micrococcus cryophillus*, *Branhamella catarrhalis* and atypical neisserias 210

MACH, J., see SMARDA, J., EBRINGER, L. & MACH, J. The effect of colicin E2 on the flagellate *Euglena gracilis* 363

MARCHANT, R., see PATTON, A. M. The effect of cytochalasin B on hyphal morphogenesis in *Polyposis biensis* 301

MARKOTT, M. S. Isolation and chemical characterization of plasma membranes from the yeast and mycelial forms of *Candida albicans* 115

MATIN, A., see HARDER, W., MATIN, A. & ATTWOOD, M. M. Studies on the physiological significance of the lack of a pyruvate dehydrogenase complex in *Hyphomicrobiu* sp. 319

MERRICK, M. J. & CATEN, C. E. The inheritance of penicillin titre in wild-type isolates of *Aspergillus nidulans* 283

MEYNNEL, E., see LAWN, A. M. Extrusion of sex pili by rapidly washed R+ *Escherichia coli* 188

MILLONG, G., DE ROYA, M., GAMBARCORTA, A. & BU’LOCK, J. D. Ultrastructure of an extremely thermophilic acidophilic micro-organism 165

MONTI-BRAGADIN, C., SAMER, L., ROTTINI, G. D. & PANI, B. The compatibility of Hly factor, a transmissible element which controls α-haemolysin production in *Escherichia coli* 367

MOSELEY, B. E. B. & COPLAND, H. J. R. Involvement of a recombination repair function in disciplined cell division of *Micrococcus radiodurans* 343

MURRAY, A. D. & KIDBY, D. K. Sub-cellular location of mercury in yeast grown in the presence of mercuric chloride 66

NESBITT, L. R., see SIETSM, J. H., CHILD, J. J., NESBITT, L. R. & HASKINS, R. H. Chemistry and ultrastructure of the hyphal walls of *Pythium acanthum* 29

NOSOH, Y., see OHTA, K., KIYOMIYA, A., KOYAMA, N. & Nosoh, Y. The basis of the alkalophilic property of a species of Bacillus 259

OHTA, K., KIYOMIYA, A., KOYAMA, N. & Nosoh, Y. The basis of the alkalophilic property of a species of Bacillus 259
ROTTINI, G. D. & PANI, B. The compatibility of Hly factor, a transmissible element which controls \(\alpha \)-haemolysin production in *Escherichia coli* 367

PARK, R. W. A., see BAKER, D. A. Changes in morphology and cell wall structure that occur during growth of *Vibrio* sp. SCTC4716 in batch culture 12

PATEMAN, J. A., see KINGHORN, J. R. Mutations which affect amino acid transport in *Aspergillus nidulans* 174

PATEMAN, J. A., see KINGHORN, J. R. The structural gene for NADP L-glutamate dehydrogenase in *Aspergillus nidulans* 294

PATTON, A. M. & MARCHANT, R. The effect of cytochalasin B on hyphal morphogenesis in *Polyporus biennis* 301

PHILLIPS, R. & BUTCHER, D. N. Attempts to induce tumours with nucleic acid preparations from *Agrobacterium tumefaciens* 311

PRITCHARD, G. G., see JARVIS, A. W., LAWRENCE, R. C. & PRITCHARD, G. G. Glucose repression of enterotoxins A, B and C and other extracellular proteins in staphylococci in batch and continuous culture 75

RAANANI, E., see LINDENBAUM, I., EYLAN, E. & RAANANI, E. Enhancement of growth of *Leptospira icterohaemorrhagiae* by tissue cell cultures 358

RAWLE, C. T., see McCARTHY, D. H. The rapid serological diagnosis of fish furunculosis caused by 'smooth' and 'rough' strains of *Aeromonas salmonicida* 185

RICHTER, L., see GÜNTHER, T., RICHTER, L. & SCHMALBECK, J. Phospholipids of *Escherichia coli* in magnesium deficiency 191

RODRIGUEZ-LEMOINE, V., see HEDGES, R. W., RODRIGUEZ-LEMOINE, V. & DATTU, N. R factors from *Serratia marcescens* 88

RODRIGUEZ-LEMOINE, V., JACOB, A. E., HEDGES, R. W. & DATTU, N. Thermosensitive production of their transfer systems by group S plasmids 111

DE ROSA, M., GAMBARCUTA, A. & BU'LOCK, J. D. Extremely thermophilic acidophilic bacteria convergent with *Sulfobulbus acidocaldarius* 156

DE ROSA, M., see MILLONG, G., DE ROSA, M., GAMBARCUTA, A. & BU'LOCK, J. D. Ultrastructure of an extremely thermophilic acidophilic micro-organism 165

ROTTINI, G. D., see MONTI-Bragadin, C., SAMER, L., ROTTINI, G. D. & PANI, B. The compatibility of Hly factor, a transmissible element which controls \(\alpha \)-haemolysin production in *Escherichia coli* 367

RUSSELL, D. W., see AUDHYA, T. K. Enniatin production by *Fusarium sambucinum*: primary, secondary, and unitary metabolism 327

SANGER, L., see MONTI-Bragadin, C., SAMER, L., ROTTINI, G. D. & PANI, B. The compatibility of Hly factor, a transmissible element which controls \(\alpha \)-haemolysin production in *Escherichia coli* 367

SCHMALBECK, J., see GÜNTHER, T., RICHTER, L. & SCHMALBECK, J. Phospholipids of *Escherichia coli* in magnesium deficiency 191

SCHWARTZ, U., see GOODELL, E. W. Sphere-rod morphogenesis of *Escherichia coli* 201

SELLWOOD, R., see GIBBONS, R. A., JONES, G. W. & SELLWOOD, R. An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutination inhibition test using glycoproteins and fractions from sow colostrum 228

SIETSMA, J. H., see BRILES, E. B. Physiological studies on the pneumococcal Forssman antigen: a choline-containing lipoteichoic acid 267

WATTS, D. J. & GUEST, J. R. Studies on the vitamin nutrition of the cellular slime mould *Dictyostelium discoideum* 333

YAMAGUCHI, H. Control of dimorphism in *Candida albicans* by zinc: effect on cell morphology and composition 370
Index of Subjects

Aeromonas salmonicida, serological examination of 'smooth' and 'rough' strains (McCarthy & Rowle) 185

Agrobacterium tumefaciens and tumour formation (Phillips & Butcher) 311

Alkalophilic, Bacillus species of (Ohta, Kiyomiya, Koyama & Nosoh) 259

Amino acid transport in *Aspergillus nidulans* (Kinghorn & Pateman) 174

Ammonia assimilation by Rhizobium and nodules (Brown & Dilworth) 39

Antibiotic production by *Fusarium sambucinum* (Audhya & Russell) 327

Antigen, Forssman, of pneumococcus (Briles et al.) 267

Aspergillus nidulans, inheritance of penicillin titre (Merrick & Caten) 283

Aspergillus nidulans, mutations affecting amino acid transport in (Kinghorn & Pateman) 174

Aspergillus nidulans, structural gene for NADP L-glutamate dehydrogenase (Kinghorn & Pateman) 294

Bacillus, alkalophilic species (Ohta, Kiyomiya, Koyama & Nosoh) 259

Bacillus amyloliquefaciens, effect of streptolydigin on exoenzyme formation (Coleman & Stormonth) 194

Bisnor-lipoic acid, bacterial metabolism (Shih, Rozo, Wright & McCormick) 217

Branhamella catarrhalis, enzyme electrophoreograms in taxonomy of (Fox & McClain) 210

Candida albicans, effect of zinc on composition and dimorphism (Yamaguchi) 370

Candida albicans, plasma membranes from yeast and mycelial forms (Marriott) 115

Carbon sources for *Hyphomicrobium* sp. (Harder, Matin & Attwood) 319

Cell division in *Micrococcus radiodurans* (Moseley & Copland) 343

Chlorophyll synthesis in *Euglena gracilis*, inhibition by colicin E2 (Šmarda, Ebringer & Mach) 363

Cholera toxin, H and L subunits of (Holmgren & Lönroth) 49

Chromosome transfer in *Proteus mirabilis* (Coetzee) 133

Clamp connexion, effect of cytochalasin B on (Patton & Marchant) 301

Classification, maximal predictive, for yeasts and Klebsiellaceae (Barnett, Bascomb & Gower) 93

Coenzymes of fusobacteria (Coles) 147

Colicin E2, effect on *Euglena gracilis* (Šmarda, Ebringer & Mach) 163

Compatibility of Hly factor (Monti-Bragadin, Samer, Rottini & Paní) 367

Conjugation in *Proteus mirabilis* (Coetzee) 133

CysIH operon of *Salmonella typhimurium*, polarity of (Loughlin) 275

Cytochalasin B, effect of *Polypora biennis* (Patton & Marchant) 301

Dictyostelium discoideum, vitamin nutrition (Watts & Guest) 333

Dimorphism in *Candida albicans*, effect of zinc (Yamaguchi) 370

Enniatin production by *Fusarium sambucinum* (Audhya & Russell) 327

Enterotoxins, staphylococcal, effect of glucose and growth rate on (Jarvis, Lawrence & Pritchard) 75

Escherichia coli, compatibility of Hly factor (Monti-Bragadin, Samer, Rottini & Paní) 367

Escherichia coli, extrusion of sex pili by (Lawn & Meynell) 188

Escherichia coli K88 receptor, identification by haemagglutination inhibition test (Gibbons, Jones & Sellwood) 228

Escherichia coli, magnesium deficiency and phospholipid content in (Günter, Richter & Schmalbeck) 191

Escherichia coli, sphere–rod morphogenesis of (Goodell & Schwarz) 201

Euglena gracilis, effect of colicin E2 on (Šmarda, Ebringer & Mach) 363

Exoenzyme formation in *Bacillus amyloliquefaciens* (Coleman & Stormonth) 194

Forsmann antigen of pneumococcus, physiology (Briels & Tomas) 267

Furunculosis and rapid identification of *Aeromonas salmonicida* (McCarthy & Rowle) 185

Fusarium sambucinum, enniatin production by (Audhya & Russell) 327

Fusobacterium, coenzyme leakage from (Coles) 147

Genetics of penicillin titre in *Aspergillus nidulans* (Merrick & Caten) 283

1-Glutamate dehydrogenase, NADP, in *Aspergillus nidulans*, structural gene for (Kinghorn & Pateman) 294

Glutamine synthetase and glutamate synthase in Rhizobium (Brown & Dilworth) 39

Glucose, repression of extracellular proteins in staphylococci by (Jarvis, Lawrence & Pritchard) 75

Growth of *Leptospira icterohaemorrhagiae*, enhancement by tissue cell cultures (Lindenbaum, Eylan & Rannani) 358

Haemagglutination by K88 adhesin and glycoprotein inhibition (Gibbons, Jones & Sellwood) 228

Heterokaryon incompatibility, relationship to penicillin yield in *Aspergillus nidulans* (Merrick & Caten) 283

Hly factor, compatibility of (Monti-Bragadin, Samer, Rottini & Paní) 367
Index of Subjects

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyphae of Polyporus bennis, effect of cytochalasin B on morphogenesis of (Patton & Marchant)</td>
<td>301</td>
</tr>
<tr>
<td>Hyphae of Pythium acanthicum, composition of walls (Sietsma, Child, Nesbitt & Haskins)</td>
<td>29</td>
</tr>
<tr>
<td>Hyphomicrobium sp., pyruvate dehydrogenase deficiency in (Harder, Matin & Attwood)</td>
<td>319</td>
</tr>
<tr>
<td>Isocitrate lyase, regulation of synthesis in Neurospora crassa (Beever)</td>
<td>197</td>
</tr>
<tr>
<td>K88 antigen, inhibition of haemagglutination by sestolum (Gibbons, Jones & Sellwood)</td>
<td>228</td>
</tr>
<tr>
<td>Klebsiellaeae, a maximal predictive classification of (Barnett, Bascomb & Gower)</td>
<td>93</td>
</tr>
<tr>
<td>Leakage of coenzymes from fusobacteria (Coles)</td>
<td>147</td>
</tr>
<tr>
<td>Leptospira icterohaemorrhagiae, growth enhancement by tissue cell cultures (Lindenbaum, Eylan & Raanani)</td>
<td>358</td>
</tr>
<tr>
<td>Lipic acid, metabolism by Pseudomonas putida tp (Shih, Rozo, Wright & McCormick)</td>
<td>217</td>
</tr>
<tr>
<td>Lipopolysaccharide from walls of Micropolyspora faeni, composition and serological reactivity (Hollingdale)</td>
<td>250</td>
</tr>
<tr>
<td>Lipoteichoic acid of pneumococcus, physiology of (Briles & Tomasz)</td>
<td>267</td>
</tr>
<tr>
<td>Lysine biosynthesis in Rhodotorula glutinis, role of pipoelic acid in (Kurtz & Bhattacharjee)</td>
<td>103</td>
</tr>
<tr>
<td>Magnesium deficiency and phospholipid composition in Escherichia coli (Günther, Richter & Schmalbeck)</td>
<td>191</td>
</tr>
<tr>
<td>Membranes, plasma, from yeast and mycelial forms of Candida albicans (Marriott)</td>
<td>115</td>
</tr>
<tr>
<td>Mercury, sub-cellular location in yeast (Murray & Kitty)</td>
<td>66</td>
</tr>
<tr>
<td>Metabolism and enniatin production by Fusarium sambucinum (Audhya & Russell)</td>
<td>327</td>
</tr>
<tr>
<td>Micrococcus cryophilus, enzyme electrophoretograms in taxonomy of (Fox & McClain)</td>
<td>210</td>
</tr>
<tr>
<td>Micrococcus radiodurans, recombination repair and cell division in (Moseley & Copland)</td>
<td>343</td>
</tr>
<tr>
<td>Micropolyspora faeni, lipopolysaccharide from walls (Hollingdale)</td>
<td>250</td>
</tr>
<tr>
<td>Morphogenesis in Vibrio nctc4716 (Baker & Park)</td>
<td>12</td>
</tr>
<tr>
<td>Mutations affecting amino acid transfer in Aspergillus nidulans (Kinghorn & Pateman)</td>
<td>174</td>
</tr>
<tr>
<td>Neisserias, atypical, enzyme electrophoretograms in taxonomy of (Fox & McClain)</td>
<td>210</td>
</tr>
<tr>
<td>Neurospora crassa, 2-phosphoenolpyruvate carboxykinase and isocitrate lyase synthesis (Beever)</td>
<td>197</td>
</tr>
<tr>
<td>Nodules, ammonia assimilation in (Brown & Dilworth)</td>
<td>39</td>
</tr>
<tr>
<td>Nucleic acid from Agrobacterium tumefaciens, and tumour induction (Phillips & Butcher)</td>
<td>311</td>
</tr>
<tr>
<td>Penicillin FL-1060, formation of spheres of Escherichia coli with (Goodell & Schwarz)</td>
<td>201</td>
</tr>
<tr>
<td>Penicillin, inheritance of titre in Aspergillus nidulans (Merrick & Caten)</td>
<td>283</td>
</tr>
<tr>
<td>Peptidoglycan in walls of Vibrio nctc4716 (Baker & Park)</td>
<td>12</td>
</tr>
<tr>
<td>2-Phosphoenolpyruvate carboxykinase, regulation of synthesis in Neurospora crassa (Beever)</td>
<td>197</td>
</tr>
<tr>
<td>Phospholipids in magnesium-deficient Escherichia coli (Günther, Richter & Schmalbeck)</td>
<td>191</td>
</tr>
<tr>
<td>Pili, sex, extrusion by rapidly washed R+ Escherichia coli (Lawn & Meynell)</td>
<td>188</td>
</tr>
<tr>
<td>Piperolic acid, role in lysine biosynthesis in Rhodotorula glutinis (Kurtz & Bhattacharjee)</td>
<td>103</td>
</tr>
<tr>
<td>Plasma membranes from yeast and mycelial forms of Candida albicans (Marriott)</td>
<td>115</td>
</tr>
<tr>
<td>Plasmids from Serratia marcescens (Hedges, Rodriguez-Lemoine & Datta)</td>
<td>88</td>
</tr>
<tr>
<td>Plasmids, group S, thermosensitive transfer system (Rodriguez-Lemoine, Jacob, Hedges & Datta)</td>
<td>111</td>
</tr>
<tr>
<td>Plasmids in Proteus mirabilis (Coetzee)</td>
<td>133</td>
</tr>
<tr>
<td>Pneumococcus, Forssman antigen of (Briles & Tomasz)</td>
<td>267</td>
</tr>
<tr>
<td>Polarity of the cysJHI operon (Loughlin)</td>
<td>275</td>
</tr>
<tr>
<td>Polyporus bennis, cytochalasin B and hyphal morphogenesis (Patton & Marchant)</td>
<td>301</td>
</tr>
<tr>
<td>Proteins of staphylococci, extracellular, effect of glucose and growth rate on (Jarvis, Lawrence & Pritchard)</td>
<td>75</td>
</tr>
<tr>
<td>Proteus mirabilis, chromosome transfer in (Coetzee)</td>
<td>133</td>
</tr>
<tr>
<td>Pseudomonas putida tp, metabolism of lipoate and analogues (Shih, Rozo, Wright & McCormick)</td>
<td>217</td>
</tr>
<tr>
<td>Pyruvate dehydrogenase deficiency in Hyphomicrobium sp. (Harder, Matin & Attwood)</td>
<td>319</td>
</tr>
<tr>
<td>Pythium acanthicum, hyphal wall composition (Sietsma, Child, Nesbitt & Haskins)</td>
<td>29</td>
</tr>
<tr>
<td>Radiation and cell division in Micrococcus radiodurans (Moseley & Copland)</td>
<td>343</td>
</tr>
<tr>
<td>Recombination and cell division in Micrococcus radiodurans (Moseley & Copland)</td>
<td>343</td>
</tr>
<tr>
<td>Respiration apparatus in sugar-tolerant and nontolerant yeasts (Brown)</td>
<td>241</td>
</tr>
<tr>
<td>R factors from Serratia marcescens (Hedges, Rodriguez-Lemoine & Datta)</td>
<td>88</td>
</tr>
<tr>
<td>Rhizobium, ammonia assimilation by (Brown & Dilworth)</td>
<td>39</td>
</tr>
<tr>
<td>Rhodotorula glutinis, lysine biosynthesis in (Kurtz & Bhattacharjee)</td>
<td>103</td>
</tr>
<tr>
<td>Salmonella typhimurium, polarity of the cysJH operon (Loughlin)</td>
<td>275</td>
</tr>
<tr>
<td>Serology, rapid examination of 'smooth' and 'rough' strains of Aeromonas salmonicida (McCarthy & Rowle)</td>
<td>185</td>
</tr>
<tr>
<td>Serratia marcescens, plasmids from (Hedges, Rodriguez-Lemoine & Datta)</td>
<td>88</td>
</tr>
<tr>
<td>Spheroplasts of Escherichia coli, morphogenetic capacity of (Goodell & Schwarz)</td>
<td>201</td>
</tr>
<tr>
<td>S plasmids, thermosensitive transfer system (Rodriguez-Lemoine, Jacob, Hedges & Datta)</td>
<td>111</td>
</tr>
<tr>
<td>Staphylococci, glucose repression of extracellular proteins of (Jarvis, Lawrence & Pritchard)</td>
<td>75</td>
</tr>
<tr>
<td>Streptolydigin, stimulation of exoenzyme formation in Bacillus amyloyliquefaciens by (Coleman & Stornis)</td>
<td>194</td>
</tr>
</tbody>
</table>
Index of Subjects

Sulfolobus acidocaldarius, acidophilic thermophiles convergent with (de Rosa, Gambacorta & Bu’Lock) 156

Taxonomy of *Micrococcus cryophilus*, *Branhamella catarrhalis* and atypical neisserias (Fox & McClain) 210

Temperature, effect on transfer of group S plasmids (Rodriguez-Lemoine, Jacob, Hedges & Datta) 111

Tetranor-lipoic acid, bacterial metabolism (Shih, Rozo, Wright & McCormick) 217

Thermophile, acidophilic, ultrastructure of (Millonig, de Rosa, Gambacorta & Bu’Lock) 165

Thermophiles, acidophilic, convergent with *Sulfolobus acidocaldarius* (de Rosa, Gambacorta & Bu’Lock) 156

Tissue cultures, effect on leptospires (Lindenbaum, Eylan & Raanani) 358

Torulopsis, new species from fruit (Buhagiar) 1

Toxin, cholera, H and L subunits of (Holmgren & Lönroth) 49

Transfer of group S plasmids, thermosensitivity of (Rodriguez-Lemoine, Jacob, Hedges & Datta) 111

Transport of amino acids in *Aspergillus nidulans* (Kinghorn & Pateman) 174

Tumour induction by *Agrobacterium tumefaciens* (Phillips & Butcher) 311

Ultrastructure of thermophilic acidophilic microorganisms (Millonig, de Rosa, Gambacorta & Bu’Lock) 165

Vibrio NCTC4716, morphological changes in (Baker & Park) 12

Vitamin nutrition of *Dictyostelium discoideum* (Watts & Guest) 333

Walls, hyphal, composition in *Pythium acanthum* (Sietsma, Child, Nesbitt & Haskins) 29

Walls of *Vibrio NCTC4716*, changes in peptidoglycan layer (Baker & Park) 12

Water relations of sugar-tolerant yeasts (Brown) 241

Yeasts, a maximal predictive classification of (Barnett, Bascomb & Gower) 93

Yeasts, new species of *Torulopsis* from fruit (Buhagiar) 1

Yeasts, sugar-tolerant and non-tolerant, respiratory apparatus in (Brown) 241

Yeast, subcellular location of mercury in (Murray & Kidby) 66

Zinc, effect on composition and dimorphism of *Candida albicans* (Yamaguchi) 370