Mutation to High-level Streptomycin-resistance in R⁺ Bacteria

By L. E. PEARCE* AND ELINOR MEYNELL

M.R.C. Microbial Genetics Research Unit, Hammersmith Hospital, Ducane Road, London, W. 12

(Accepted for publication 8 July 1967)

SUMMARY

Bacteria carrying an R factor conferring resistance to low concentrations of streptomycin frequently give highly resistant variants. Resistance to high concentrations of streptomycin can arise in a sensitive bacterium either from a single mutation or as the result of successive mutations in different genes (Demerec, 1948; Hsu & Herriott, 1961). The resistance genes may be either in the chromosome or in an R factor.

METHODS

R₁ (Meynell & Datta, 1966) confers resistance to sulphonamide, streptomycin, chloramphenicol, kanamycin and ampicillin. The bacteria in which it was tested were *Escherichia coli*, K₁₂ strains 15-3 pro⁻met⁻ and 16-2 pro⁻his⁻try⁻ (Clowes & Rowley, 1954), and the defined media and methods used for R factor transfer were as described in Pearce & Meynell (1968).

Isolation and detection of R⁻ segregants. Unlike the F factor (Hirota, 1960), R₁ is not eliminated by growth in acridine broth, and since it carries an ampicillin-resistance gene, which determines the production of penicillinase (Datta & Kontomichalou, 1965), R⁻ bacteria cannot be isolated by the penicillin-screening method in the ordinary way (Watanabe & Fukasawa, 1961). Nevertheless, the screening technique could be successfully applied when cephalosporin, a penicillin which is relatively insensitive to penicillinase, was substituted for ampicillin. An overnight broth culture of R₁⁺ bacteria was diluted in fresh broth to a concentration of 10⁴ bacteria/ml. and incubated for 2 hr until the bacteria were growing exponentially; chloramphenicol was then added to 25 µg./ml. and the culture re-incubated for 1 hr. At this time, cephalosporin (Cephaloridine, Glaxo) was added to 20 µg./ml. and the culture further incubated for 4 hr, after which the number of viable bacteria was found to be 0·3-0·05% of that present when the cephalosporin was added. Dilutions were spread on nutrient agar plates which were incubated overnight; next day R⁻ clones were detected as penicillinase-negative colonies by the starch–iodine method (Foley & Perret, 1962, modified by Hennessey; T. Hennessey, personal communication). For this method, the plates were overlaid with 3 ml. of 0·6% water agar containing 0·3 ml. of a 2% solution of starch; and when the layer had set, 3 ml. of a mixture of 3·2 M-potassium iodide and

* Present address: New Zealand Dairy Research Institute, P.O. Box 1204, Palmerston North, New Zealand.
0.08 M-iodine solutions containing 100 mg./ml benzylpenicillin was poured on the surface. In 2–3 min., all the R\(^+\) colonies were surrounded by a white halo, and it was possible very quickly to subculture R\(^-\) clones before all the bacteria were killed. When strain \(\text{J}53\) (R\(^1\)) and three streptomycin-resistant mutants, H\(\text{J}53\), H\(\text{J}54\) and H\(\text{J}55\) were treated in this way, penicillinase-negative colonies amounted to 22, 13, 23 and 85\%, respectively.

RESULTS AND DISCUSSION

R\(^1\) conferred only low-level resistance to streptomycin and growth was inhibited on nutrient agar by concentrations exceeding streptomycin 20 \(\mu\)g./ml. It was therefore surprising to find in crosses with R\(^1\)\(^+\) donor strains (Pearce & Meynell, 1968) that on defined medium containing streptomycin 250 \(\mu\)g./ml., a 0.1 ml. inoculum of a broth culture of *Escherichia coli* K12 strain \(\text{J}53\) (R\(^1\)) gave about 500 medium-sized colonies as well as many more smaller ones. The presence of the R factor was responsible for the appearance of these colonies, since a similar inoculum of either strain \(\text{J}53\) before infection or an R\(^-\) segregant of strain \(\text{J}53\) (R\(^1\)) gave no growth. The colonies produced by strain \(\text{J}53\) (R\(^1\)) contained bacteria with various degrees of increased streptomycin-resistance. Thus the limited streptomycin-resistance conferred by R\(^1\) was evidently enough to allow the inoculated bacteria to multiply in the presence of streptomycin at 250 \(\mu\)g./ml. to a population density where resistant mutants appeared.

The degree of streptomycin resistance of the variants was determined by streaking one loopful of a fully grown broth culture across a series of plates of defined medium containing graded concentrations of streptomycin increasing by steps of \(\sqrt{2}\) from 1 \(\mu\)g./ml. to 16,384 \(\mu\)g./ml., the degree of resistance being recorded as the highest concentration of streptomycin which permitted confluent growth (Reeve, 1966). This method had the advantage of giving a sharp end-point, although the estimated degree of resistance was higher than that obtained by assessing the numbers and appearance of individual colonies. As others have noted (Tzagaloff & Umbreit, 1963; Gundersen, 1965b) on defined medium the bacteria grew in the presence of higher concentrations of streptomycin than on nutrient agar.

Mutation to a low degree of streptomycin resistance occurs comparatively often (Demerec, 1948) and, if the mutated chromosomal gene acted synergistically with the resistance determinant of the R factor, a highly resistant organism would result. Several variants of greater resistance were isolated as individual colonies on plates where growth was no longer confluent. Table 1 shows that R\(^-\) segregants of H\(\text{J}53\) grew only on streptomycin 22.4 \(\mu\)g./ml. and, when the R factor was transferred to the sensitive strain 16-2, all of 5 individual R\(^+\) recipient colonies showed only the usual degree of resistance, i.e. to 128 \(\mu\)g./ml. Thus the variant, H\(\text{J}53\), derived from strain \(\text{J}53\) (R\(^1\)) and resistant to streptomycin 2048 \(\mu\)g./ml. was the product of a sensitive bacterium mutating to resistance to only 22.4 \(\mu\)g./ml. while carrying an R factor conferring no more than its original resistance to 128 \(\mu\)g./ml. Again, when the R factor was introduced into H\(\text{J}56\), a mutant of \(\text{J}53\) resistant to streptomycin 128 \(\mu\)g./ml., the result was a culture resistant to as much as 11,500 \(\mu\)g./ml. Thus, the resistance genes on the chromosome and the R factor clearly co-operated to produce a bacterium of disproportionately high overall resistance. To see whether the conditions for mutation to high-level streptomycin-resistance could be reproduced equally well when the determinant for low-level resistance was in the chromosome instead of in the R factor,
Streptomycin resistance in R\(^+\) bacteria

I75 a mutant of J5-3 whose resistance level was as nearly as possible the same as that conferred by R\(_I\) was isolated on streptomycin agar. This mutant, H56, gave confluent growth, like J5-3 (R\(_I\)), on concentrations of streptomycin up to 128 \(\mu\)g./ml. and when 0.1 ml. volumes of overnight broth cultures of the two strains were plated in parallel on defined medium containing streptomycin 250 \(\mu\)g./ml., both gave about 70 full-sized colonies of bacteria later shown to be resistant to streptomycin 16,000 \(\mu\)g./ml. The similar behaviour of the mutant and the R\(^+\) strain in increasing the rate at which highly resistant variants arose strongly suggested that the function of the R factor was simply to confer an initial degree of resistance. In each case, a further mutation of the kind that occurs relatively frequently and confers only a small degree of resistance on

<table>
<thead>
<tr>
<th>Strain or variant</th>
<th>Obtained</th>
<th>Resistance to streptomycin ((\mu)g./ml.)</th>
<th>Further procedure</th>
<th>Resulting resistance to streptomycin resistance ((\mu)g./ml.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J5-3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H56</td>
<td>J5-3</td>
<td>128</td>
<td>Infection with R(_I)</td>
<td>H56 (R(_I)) 11,500</td>
</tr>
<tr>
<td>J5-3 (R(_I))</td>
<td>J5-3</td>
<td>128</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H55</td>
<td>J5-3 (R(_I))</td>
<td>180</td>
<td>Curing of R(_I)</td>
<td>H69 22.4</td>
</tr>
<tr>
<td>H53</td>
<td>J5-3 (R(_I))</td>
<td>2048</td>
<td>Curing of R(_I)</td>
<td>H67 22.4</td>
</tr>
<tr>
<td>H54</td>
<td>J5-3 (R(_I))</td>
<td>2867</td>
<td>Curing of R(_I)</td>
<td>H68 22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transfer of R(_I) to J6-2</td>
<td>16-2 (R(_I)) (5 isolates) 128</td>
</tr>
</tbody>
</table>

a sensitive bacterium then results in a highly resistant organism. There still remained some slight difference between J5-3 (R\(_I\)) and the mutant H56, which may perhaps only have reflected a difference in the mechanism of resistance (Okamoto & Suzuki, 1965), for while the plates inoculated with the R\(^+\) strain had by 48 hr developed a large number of tiny colonies, no such colonies appeared on the plates spread with the mutant.

R\(_I\) confers resistance to streptomycin 128 \(\mu\)g./ml., but, at the same time, it can be seen greatly to increase the rate of appearance of highly streptomycin-resistant variants. Gundersen (1963, 1965\(a\)) and Ginoza & Painter (1964) observed what may be the same phenomenon, which was attributed to 'genetic instability' resulting from a 'mutator gene' present on an episome. The particular episome studied by Gundersen itself gave resistance to low concentrations of streptomycin (Gundersen, 1965\(a\)), and Ginoza & Painter (1964) noted that the apparently mutagenic effect of R factors was limited to drugs where the R factor already conferred some degree of resistance. The chromosomal mutation was not in the gene where high-level resistance is ordinarily acquired by a single mutational step (Gundersen, 1963); and in the bacterial variants examined by Ginoza & Painter (1964) two genes, one present in the R factor and the
other in the chromosome, and each of which singly confer resistance to streptomycin 25 µg./ml., co-operated to give an organism resistant to 1000 µg./ml. Ginoza & Painter concluded from this result that the chromosomal gene was acquired as a direct result of genetic recombination between chromosome and R factor. On the other hand, the similar rates of mutation to high-level resistance in bacteria carrying R1 or a chromosomal mutation giving the same degree of resistance implies rather that the R factor acts simply by providing an initial degree of resistance sufficient for the bacterial population to reach a concentration at which one of the comparatively frequent mutations which ordinarily gives low degrees of resistance can occur. When the bacterium already carries one resistance determinant, either an R factor or chromosome, the synergistic action of the two resistance genes produces an organism which is highly resistant.

One of us (L. E. P.) is indebted to the New Zealand Dairy Research Institute for a Fellowship held during the course of this investigation.

REFERENCES

GUNDERSEN, W. B. (1965b). Reduced streptomycin killing in E. coli carrying the mu-factor in its extrachromosomal state. Acta path. microbiol. scand. 65, 627.

