Different strategies of osmoadaptation in the closely related marine myxobacteria *Enhygromyxa salina* SWB007 and *Plesiocystis pacifica* SIR-1

Jamshid Amiri Moghaddam, Nils Boehringer, Amal Burdziak, Hans-Jörg Kunte, Erwin A. Galinski and Till F. Schäberle

Correspondence

T. F. Schäberle

till.schaeberle@uni-bonn.de

1Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany

2Institute of Microbiology & Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany

3Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany

Received 5 December 2015
Accepted 29 January 2016

INTRODUCTION

Micro-organisms living in a highly osmotic environment have to deal with the problem that water follows the osmotic gradient. Cells unable to cope with osmotic stress will become dehydrated. This will eventually disrupt cellular metabolism, and so is used in food conservation by pickling. One strategy to thrive in such environments involves the production of so-called osmolytes to maintain osmotic equilibrium across the cytoplasmic membrane. Osmolytes are organic compounds of low molecular mass that have no influence on cellular metabolism and are non-toxic. Therefore, these highly water-soluble molecules are also called compatible solutes (Brown, 1976; Held et al., 2010). Bacteria accumulate many different organic osmolytes in response to hypertonicity, including some amino acids, e.g. proline and glutamate, and some specialized compatible solutes, e.g. betaine and ectoine (da Costa et al., 1998; Burg & Ferraris, 2008). Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinencarboxylic acid) was discovered first in *Ectothiorhodospira halochloris* (Galinski, et al. 1985) and later on in many bacterial species (Severin et al., 1992; Roberts, 2005). The derivative hydroxyectoine was first discovered in *Streptomyces parvalus* (Inbar & Lapidot, 1988), before its presence was proven in a wide range of bacteria, and recently also in *Archaea* (Widderich et al., 2015). These molecules either are synthesized *de novo* or are taken up from the medium. The biosynthesis is well studied and the underlying genes are known (Sadeghi et al., 2014). In addition to their role in osmoregulation, compatible solutes are known to stabilize cell components under abiotic stress conditions, e.g. temperature, desiccation or oxidative stress. Their properties render them interesting for application in biotechnological research, e.g. for the stabilization of cryocultures/proteins, and as additives for PCR enhancement. Owing to the same effect, they are also applied in formulations of fragile drugs and medical products. Furthermore, compatible solutes display some biological effects. Thus, ectoine was reported to act as an anti-inflammatory upon particle-induced lung inflammation (Sydlik et al., 2009), and inhibited the aggregation of β-amyloid peptides that are
involved in senile diseases (Kanapathipillai et al., 2005). Ectoine is already on the market, owing to its moisturizing and protecting properties, in different skin care and cosmetic products, e.g. sun blockers (Kunte et al., 2014).

Despite the relatively moderate osmotic stress of marine habitats, which usually provide a salt concentration of about 3 % NaCl, the chance of finding producers of organic osmolytes is high. Marine Vibrio species, for example, are known for their ability to produce ectoine. In recent years the first halophilic myxobacteria, which are not able to grow in the absence of NaCl, have been isolated. Their terrestrial counterparts instead grow without salt and can usually not grow at NaCl concentrations higher than 1.0 %. However, both have the ability to lyse a variety of bacteria and fungi to obtain nutrients. The few genera of halophilic marine myxobacteria isolated to date, i.e. Haliangium, Plesiocystis and Enhygromyxa (Fudou et al., 2002; Iizuka et al., 2003a, b; Schäberle et al., 2010), are of special interest, owing to their ability to produce unprecedented natural products like the antibiatically active salimabromide (Felder et al., 2013a).

This study of the closely related marine myxobacteria Enhygromyxa salina SWB007 and Plesiocystis pacifica SIR-1 is aimed at investigating their osmo-adaptation mechanisms using analytical experiments and comparative genomics.

METHODS

Bacterial strains. *Enh. salina* SWB007 (from the strain collection of the Institute for Pharmaceutical Biology, University of Bonn) was isolated from marine sediments from the German coastline near Prerow (Felder et al., 2013a, b). *Ple. pacifica* SIR-1 (DSM 14875, type strain) was isolated from a Japanese coastal sea grass (Zostera) (Iizuka et al., 2003a). *E. coli* BKA13 is a derivative of *E. coli* MKH13 (Haardt et al. 1995) and cannot synthesize the compatible solute trehalose (*AotsB, otsA*). Like its parental strain, *E. coli* BKA13 is missing all transporters for compatible solute accumulation and the genes for the conversion of choline into glycine betaine: genotype Δ(*put*PA)101 Δ(*pro*)2 Δ(*proU*)608 betTBA.

Generation of otsB gene deletion. DNA sequences upstream and downstream from the gene *otsB* were joined by applying the splicing-by-overlap-extension (SOE) PCR technique (Horton et al., 1989) using a set of specific primers (Table S1, available in the online Supplementary Material). The resulting PCR fragments were ligated into temperature-sensitive plasmid pMAK705 (Hamilton et al., 1989) and transferred into *E. coli* by transformation. After cultivation for 24 h at 30 °C, mutants carrying chromosomally integrated pMAK705 were selected on Luria–Bertani (LB) medium containing chloramphenicol (50 μg ml⁻¹) at 43 °C. These mutants were then cultivated in LB liquid medium; chloramphenicol-sensitive *otsB* mutants, arising after double cross-over, were identified on LB solid medium by *in situ* PCR.

Media and growth conditions. To prepare a medium for the marine myxobacteria with no background of organic osmolytes, first an *E. coli* BKA13 culture was prepared. To this end, *E. coli* BKA13 cells were grown in the minimal medium MM63 including 0.5 % NaCl (Larsen et al., 1987; Grammann et al., 2002) for 20 h, with shaking at 37 °C. The OD₆₀₀ was measured and the culture was precipitated by centrifugation for 10 min at 8873 g. The cell pellet was washed twice with tap water and subsequently resuspended in tap water and used for the preparation of ASW-Coli medium as described below. The amount of tap water used for resuspension was calculated by the following equation: (OD₆₀₀ × initial culture volume)/50.

Enh. salina SWB007 and *Ple. pacifica* SIR-1 were grown in ASW-Coli medium containing 75 % artificial seawater (ASW) and 3 % *E. coli* BKA13 suspension in MilliQ water. The pH of the medium was adjusted to 7.5 with NaOH. After sterilization by autoclaving, the medium was supplemented with trace element solution (1 ml l⁻¹) and vitamin B₁₂ (1 ml l⁻¹). Standard ASW (100 %) contains KBr (0.1 g l⁻¹), MgCl₂,₆H₂O (10.61 g l⁻¹), CaCl₂,₂H₂O (1.47 g l⁻¹), KCl (0.66 g l⁻¹), SrCl₂,₆H₂O (0.04 g l⁻¹), Na₂SO₄ (3.92 g l⁻¹), NaHCO₃ (0.19 g l⁻¹) and H₂BO₃ (0.03 g l⁻¹). The trace element solution consists of 10 mg ZnCl₂, 50 mg MnCl₂,₄H₂O, 5 mg H₂BO₃, 5 mg CuSO₄, 10 mg CoCl₂, 2.5 mg SnCl₂,₂H₂O, 2.5 mg LiCl, 10 mg KBr, 10 mg KI, 5 mg Na₂MoO₄,₂H₂O and 2.6 g Na₂EDTA,₂H₂O dissolved in 11 distilled water; NaCl was added to reach the desired final concentration, and the solution was sterilized by filtration. Stock solution of vitamin B₁₂ was 0.5 mg ml⁻¹ cyanocobalamine in water; the solution was sterilized by filtration. To determine the salt tolerance range of *Enh. salina* SWB007, 100 ml Erlenmeyer flasks containing 30 ml ASW-Coli medium with different NaCl concentrations (from 0 to 5 % NaCl in 0.5 % steps) were prepared. The cultures were inoculated with 100 μl of dispersed fresh fruiting bodies. The dispersed fruiting body suspension was prepared beforehand by manually collecting fruiting bodies from another liquid culture using a pipette. Growth was determined by measuring the decrease in OD₆₀₀, since the *E. coli* cells served as prey and were lysed by the myxobacteria, which resulted in clearing of the medium.

For identification of compatible solutes, the myxobacteria were grown in 5 l Erlenmeyer flasks containing 11 ASW-Coli medium with 0.5 and 3 % NaCl for *Enh. salina* SWB007, and 1.0 and 3.5 % NaCl for *Ple. pacifica*, respectively. Two independent experiments were performed and the mean values are given in Table 1. Incubation was performed at 30 °C at 140 r.p.m., using rotary shakers. After lysis of all *E. coli* cells (4 days, except for *Enh. salina* in 3.5 % NaCl medium, which was incubated for 5 days), the fruiting bodies were collected and precipitated by centrifugation at 17 000 g for 1 min. The supernatant was discarded and the pellet was freeze-dried using a lyophilizer (Christ Beta 1-16; Martin Christ).

Extraction of intracellular solutes. The extraction of cytoplasmic solutes was performed following the Bligh & Dyer extraction method, as modified by Galinski & Herzog (1990). In brief, 500 μl Bligh & Dyer solution (10/5/4, by volume, methanol/chloroform/demineralized H₂O) was added to 30 mg dry material. After shaking for 5 min, 130 μl chloroform and 130 μl demineralized H₂O were added and the mixture was shaken again for 5 min. Finally, the mixture was centrifuged at 8000 g for 3 min and the hydrophilic top layer, containing the compatible solutes, was separated for subsequent analyses.

HPLC and LCMS analysis for compatible solutes and free amino acids. The aqueous phase was analysed by HPLC using a refractive index detector RI-71 (Shodex) and a UV detector UV1000 (Thermo Scientific) with the following HPLC conditions: column, LiChrospher 100-NH₂ 5 μm (Merck); isocratic flow of 80 % acetonitrile and 20 % water at 1 ml min⁻¹. The samples were diluted 1:4 with the solvent before measurement. Additionally, reference compounds were run to identify the compatible solutes. The evaluation was performed with ChromQuest5 (ThermoQuest).
Table 1. Content of compatible solutes and free amino acids in *Enh. salina* SWB007 and *Ple. pacifica* SIR-1

<table>
<thead>
<tr>
<th>Osmolytes/amino acid</th>
<th>Enh. salina</th>
<th>Ple. pacifica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5%</td>
<td>3%</td>
</tr>
<tr>
<td>Hydroxyectoine (µmol g⁻¹)</td>
<td>ND</td>
<td>97.56</td>
</tr>
<tr>
<td>Betaine (µmol g⁻¹)</td>
<td>ND</td>
<td>48.38</td>
</tr>
<tr>
<td>Glutamine (µmol g⁻¹)</td>
<td>6.91</td>
<td>49.92</td>
</tr>
<tr>
<td>Glutamate (µmol g⁻¹)</td>
<td>76.75</td>
<td>272.63</td>
</tr>
<tr>
<td>Glycine (µmol g⁻¹)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Alanine (µmol g⁻¹)</td>
<td>ND</td>
<td>40.94</td>
</tr>
<tr>
<td>Proline (µmol g⁻¹)</td>
<td>ND</td>
<td>11.99</td>
</tr>
<tr>
<td>Hydroxyproline (mg g⁻¹)</td>
<td>ND</td>
<td>15.42</td>
</tr>
<tr>
<td>Betaine (mg g⁻¹)</td>
<td>ND</td>
<td>5.31</td>
</tr>
<tr>
<td>Glutamine (mg g⁻¹)</td>
<td>1.01</td>
<td>7.30</td>
</tr>
<tr>
<td>Glutamate (mg g⁻¹)</td>
<td>11.29</td>
<td>40.11</td>
</tr>
<tr>
<td>Glycine (mg g⁻¹)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Alanine (mg g⁻¹)</td>
<td>ND</td>
<td>3.65</td>
</tr>
<tr>
<td>Proline (mg g⁻¹)</td>
<td>ND</td>
<td>1.38</td>
</tr>
</tbody>
</table>

*Chromatograms are given in Figs S1–S6. ND, Not detected.

RESULTS

Generation and characterization of the otsB-deletion mutant *E. coli* BKA13

Marine myxobacteria are usually cultivated using a medium containing autoclaved baker’s yeast. Such media are not suitable for the analysis of osmoregulated compatible solute synthesis because compatible solutes originating from yeast cells can be accumulated by the myxobacteria and falsify the results. Therefore, we established a novel medium – named ASW-Coli – which is based on *E. coli* cells as sole food source.

E. coli can synthesize the compatible solute trehalose *de novo* and can convert choline to glycine betaine. If provided with the medium, *E. coli* is able to transport and amass a variety of different compatible solutes, such as ectoine, proline and glycine betaine, with the help of the transporters ProP and ProU (Milner et al., 1988; May et al., 1989). In order to feed myxobacteria without contaminating compatible solutes, we designed the trehalose-free *E. coli* strain BKA-13, which is based on *E. coli* MHK-13 (Haardt et al., 1995). *E. coli* MHK13 is devoid of the compatible solute transporters ProP and ProU and the proline transporter PutP. Like its parental strain, MC4100 (Casadaban, 1976; Peters et al., 2003), MHK13 is unable to transport and convert choline into glycine betaine (betTIBA). Strain MHK13 still possesses the genes otsB and otsA for trehalose synthesis. To obtain a trehalose-free *E. coli*, we deleted the gene otsB, which encodes trehalose-6-phosphate phosphatase. The DNA regions upstream and downstream of otsB were joined by applying the SOE-PCR technique. The resulting AotsB fragment was cloned into the temperature-sensitive plasmid pMAK705, which facilitated the selection for AotsB mutants. The gene otsB overlaps with ORF otsA, which is located downstream of otsB. By deleting otsB (in-frame null mutation), 26 bp of the 5’ region of otsA were removed as well (AotsB otsA) (Fig. 1).

The newly designed AotsB mutant BKA-13 was further characterized, and compared to MHK-13. Both strains were cultivated on minimal medium containing 2.0, 2.5, 2.7, 2.8 and 3.0 % NaCl. While strain MHK-13 grew at all salinities within 2 days, strain BKA-13 failed to grow on medium containing 2.8 and 3.0 % NaCl. On medium with 2.7 % NaCl, small colonies of strain BKA-13 were only visible after 6 days of incubation. Cell extract of *E. coli* BKA-13 was further analysed by HPLC for the presence of trehalose. No trehalose was detectable in any of the BKA-13 cells grown in up to 2.5 % NaCl.

Growth and salt tolerance of myxobacteria

The salt tolerance ranges of the two myxobacterial strains *Enh. salina* SWB007 and *Ple. pacifica* SIR-1 were determined in ASW-Coli medium. To enable a fast and reliable method for growth determination, an indirect measurement was performed; such a method was required since the myxobacteria rapidly form fruiting bodies instead of...
disperse growth. Thus, the decrease in OD₆₀₀ was measured. OD₆₀₀ is directly related to lysis and consumption of the prey cells. Therefore, a decrease in OD₆₀₀ indicates growth of Enh. salina SWB007 or Ple. pacifica SIR-1.

Enh. salina SWB007 was able to grow in media containing 0.5 to 3 % NaCl. The fastest lysis rate of the prey cells was in the salinity range 0.5 to 2 % (Fig. 2). After 7 days all E. coli cells were consumed and orange-coloured fruiting bodies appeared. Cultures supplemented with 2.5 and 3 % NaCl took 2 days longer to achieve similar results. With 0 % NaCl the culture initially seemed to grow, but after 4 days the OD₆₀₀ increased again. In cultures containing more than 3 % NaCl no growth was observed.

Ple. pacifica SIR-1 showed no growth in medium containing 0.5 % NaCl. The lower limit was 1 % NaCl and growth was observed up to a concentration of 4 % NaCl in ASW-Coli medium. However, the growth was decelerated and therefore a concentration of 3.5 % NaCl was used for subsequent analyses.

Identification of the compatible solutes of Enh. salina SWB007 and Ple. pacifica SIR-1

Both strains, Enh. salina SWB007 and Ple. pacifica SIR-1, could grow in a relatively high NaCl concentration range, i.e. 0.5–3 % NaCl for Enh. salina SWB007 and 1–4 % NaCl for Ple. pacifica SIR-1. Such a range is usually an indication that the organisms use the organic osmolyte strategy to deal with the salt stress of the environment. To prove this hypothesis, we identified the compatible solutes produced by these organisms under different salt concentrations. Thus, two 1 l cultures of each strain were grown in ASW-Coli medium: (i) 0.5 and 3 % NaCl for Enh. salina SWB007 and (ii) 1 and 3.5 % NaCl for Ple. pacifica SIR-1. These cultures were incubated until total clearing of the medium before the cells were harvested. In total, 92.9 mg (0.5 % NaCl) and 134.3 mg (3 % NaCl) dry cell mass were obtained from Enh. salina SWB007, and 180 mg (1 % NaCl) and 251 mg (3.5 % NaCl) from Ple. pacifica SIR-1 cultures. Subsequently, 30 mg dried cell masses were extracted and the aqueous phase was analysed by HPLC. Clear differences indicating accumulation of organic osmolytes were observed in Enh. salina SWB007 grown in 0.5 and 3 % NaCl (Fig. 3). The new peaks at high salt concentration were putatively identified as betaine and hydroxyectoine, by comparison to standard substances. To confirm these results, HPLC-MS experiments followed. These confirmed the presence of betaine and hydroxyectoine, as well as minor amounts of ectoine (Fig. 4). The most abundant compatible solute was hydroxyectoine. The peak at 20 min retention time, which also increased with salinity, however, could not be identified. The peak that eluted at 12 min was not dependent on the salt concentration, since it was present in both the 0.5 and the 3 % NaCl cultures at the same order of magnitude.

In contrast, the HPLC analysis of Ple. pacifica SIR-1 cultures grown in medium supplemented with either 1 or 3.5 % NaCl revealed no differences concerning the specialized osmolytes (Figs S1 and S2) when analysed under these conditions. Interestingly, this closely related organism...
did not produce any of the typical organic osmolytes, e.g. betaine, ectoine or hydroxyectoine, even at a high salt concentration.

Free amino acid analysis

In addition to specialized compounds, common substances like amino acids may also serve as compatible solutes. Thus, the content of free amino acids in the cells was determined using FMOC/ADAM HPLC analysis, revealing significant changes (Table 1).

Enh. salina SWB007 grown under high-salt conditions accumulated the amino acids alanine, glutamate, glutamine and proline (Table 1, Figs S5 and S6). The level of glutamine increased sevenfold and the level of glutamate fourfold at elevated salinity. Furthermore, alanine and proline were accumulated whereas both amino acids were below the detection limit under low-salt conditions. Free amino acid analysis of *Ple. pacifica* SIR-1 revealed the accumulation of alanine, glutamate, glutamine, glycine and proline at high salinity (Table 1, Figs S3 and S4). The level of glutamate showed a ninefold increase compared with the level at low salinity (296 µmol g⁻¹ versus 33 µmol g⁻¹). Alanine, glutamine, glycine and proline were also significantly accumulated under high-salt conditions, while they were below the detection limit at low-salt conditions. Glycine was identified as the second major amino acid, contributing 28 % of the *Ple. pacifica* SIR-1 organic osmolyte pool. Comparing the two strains, one common feature could be detected, i.e. glutamate was the major player, making up 52 and 66 % of the total organic osmolyte pool in *Enh. salina* SWB007 and *Ple. pacifica* SIR-1, respectively. In *Enh. salina* SWB007, alanine and glutamine followed, with amounts between 40 and 50 µmol g⁻¹, comprising 19 % of the organic osmolyte pool. In *Ple. pacifica* SIR-1 in contrast these two amino acids were only present in minor amounts, comprising 2.6 % of the organic osmolyte pool. In contrast, glycine was identified as the second major amino acid used by *Ple. pacifica* SIR-1, resulting in a proportion of 28 % within the organic osmolyte pool. Proline was accumulated by both organisms only in minor amounts, contributing less than 3 % to the organic osmolytes.

Genome sequencing, annotation and bioinformatics analysis for compatible solutes biosynthesis

To elucidate the reason for the observed differences between these closely related myxobacterial strains, *in silico* analysis of the genomes was performed. The available draft genome of *Ple. pacifica* SIR-1 was screened in respect of gene clusters associated with betaine, ectoine and hydroxyectoine biosynthesis. However, no such gene cluster was identified, supporting the previous results. Instead, many solute transporters such as the Na⁺/proline...
(solute) symporter (GenBank accession numbers EDM75864.1, EDM79015.1, EDM74523.1, EDM80875.1, EDM77400.1), proton/sodium:glutamate symporter (EDM74633.1), sodium:alanine symporter (EDM78123.1), choline/glycine betaine transporter (EDM75025.1) and many ABC transporters were detected in the genome.

In *Enh. salina* SWB007, biosynthetic gene clusters for the organic osmolytes had been expected, owing to the confirmation of these compounds in the extracts. The draft genome of strain SWB007 was screened for the presence of genes corresponding to organic osmolyte synthesis. Hence, a gene locus associated with ectoine biosynthesis was identified (accession number KU237243). In addition to *ectA, ectB, ectC* and *ectD* (Fig. 5, Table 2), further ORFs putatively coding for enzymes involved in organic osmolyte biosynthesis and for osmolyte transporters are present in this gene cluster, i.e. a sensor histidine kinase (*ectR*) and an aspartokinase (*ectAsk*). These genes represent the complete biosynthetic gene cluster for the synthesis of the osmolyte hydroxyectoine. Comparison of this gene cluster to reported ectoine/hydroxyectoine gene loci revealed that *Enh. salina* SWB007 possesses a specific gene order (Fig. 6). A putative regulatory gene, i.e. *ectR*, was found in about one-quarter of the putative ectoine/hydroxyectoine producers (Widderich et al., 2016). The functional association of an *ectR* gene with ectoine biosynthesis was first demonstrated in the halotolerant alkaliphilic *Methylomicrobium alcaliphilum*. This cluster, including *ectR*, shows the highest overall identity to *Enh. salina* SWB007 (Fig. 6). However, the grade of homology varies between the different genes; *ectA, ectB* and *ectC* show 35–56 % identity at the protein level, while *ectR* has only about 10 % identity. This might be an indication that the regulatory mechanism differs from that of *Met. alcaliphilum*, in which it acts as a transcriptional repressor (Overbeek et al., 2014).

Fig. 3. Comparison of the compatible solute content of *Enh. salina* SWB007 in medium containing either 0.5 or 3 % NaCl. Black line, 0.5 % NaCl; red line, 3.0 % NaCl. Betaine and hydroxyectoine were present in cells grown in 3 % NaCl, while in 0.5 % NaCl these substances were not detectable. The peak at 20 min (**) could not clearly be assigned. The peak at 12 min (*) was present in both cultures in a similar amount, and therefore this peak was not dependent on the salt concentration. The peak at 6 min, which was only detectable in the refractive index plot, corresponds to NaCl. AU, Absorbance units.
Of special interest are the two methyltransferases (MTs), i.e. glycine/sarcosine N-MT (GS-MT) and sarcosine/dimethylglycine N-MT (SD-MT), and a \textit{betT} homologue, which follow directly downstream of the ectoine-related genes, oriented in the same direction. These MTs are required for betaine synthesis from glycine, while \textit{betT} codes for the transporter. Thus, the genes corresponding to the biosynthesis of betaine and hydroxyectoine are clustered together.

DISCUSSION

Marine myxobacteria, e.g. \textit{Enh. salina} strains, are becoming more and more the focus of research owing to their biosynthetic potential (Felder \textit{et al.}, 2013a, b). To adapt these slow-growing organisms to growth under laboratory conditions, insights into their ecology, e.g. analysis of their salt tolerance mechanism, will be beneficial. To overcome the hurdle that \textit{Enh. salina} strains are routinely grown in media containing a yeast cell suspension, which provides an unfavourable background, the medium ASW-Coli, based on \textit{E. coli} BKA13 instead of baker’s yeast as nutrient source, was developed. This enabled the growth of marine myxobacteria to be followed by measuring \(\text{OD}_{600}\). Hence, the OD decrease due to the consumption of the \textit{E. coli} cells by the predatory bacteria was measured. The values for the salt tolerance of these strains (0.5–3 \% NaCl for \textit{Enh. salina} SWB007; 1–4 \% NaCl for \textit{Ple. pacifica} SIR-1) determined with this method are in accordance with previous results (Iizuka \textit{et al.}, 2003a; Schäberle \textit{et al.}, 2010). Such a relatively high degree of flexibility to environmental salt concentrations indicates an adaptation strategy involving organic osmolyte accumulation, rather than the salt-in strategy (Sleator & Hill, 2002). At high salt concentrations, a total of 521 mmol g\(^{-1}\) solutes was detected in \textit{Enh. salina} SWB007. The biggest part of this consisted of glutamate (52 \%), followed by hydroxyectoine and betaine, which accumulated to 19 and 10 \%, respectively. Hence, glutamate, hydroxyectoine and betaine seem to be the main players in osmo-adaptation of \textit{Enh. salina}. A comparison to marine \textit{Vibrio fischeri} species revealed that the observed total solute pool falls within expectations (451 mmol g\(^{-1}\) for \textit{Vib. fischeri} DSM 7151). Here too, the major compound was glutamate (approximately 50 \%), followed by ectoine (approximately 24 \%) (Schmitz & Galinski, 1996). Accumulation of both glutamate and hydroxyectoine is fully congruous with metabolism and

![Fig. 4. HPLC-MS analysis of compatible solutes produced by \textit{Enh. salina} SWB007. On the left side, the UV chromatogram (a), as well as the extracted ion counts (EIC) for betaine (b), ectoine (c) and hydroxyectoine (d), are given. AU, Absorbance units. On the right side, the mass spectra of betaine (m/z 118.09, [M+H]\(^+\)) (b), ectoine (m/z 143.08, [M+H]\(^+\)) (c) and hydroxyectoine (m/z 159.08, [M+H]\(^+\)) (d) are shown. The different adducts are indicated.](http://mic.microbiologyresearch.org)
The preferential accumulation of hydroxyectoine is widespread among halophilic bacteria, and compared with ectoine it provides better protection against various stress conditions, especially desiccation and heat (Lippert & Galinski, 1992; Louis et al., 1994; Tanne et al., 2014). In the intertidal zones of the littoral environment, desiccation is at least a temporary stress factor. This might explain why the organism favours hydroxyectoine as compatible solute.

The preferential accumulation of hydroxyectoine has also been observed in other salt-stressed bacteria, such as Streptomyces coelicolor A3(2) and Virgibacillus salexigens (Sadeghi et al., 2014). Recently the ability to synthesize hydroxyectoine was also demonstrated in the acidophilic Acidiphilium cryptum, which displays only limited salt tolerance (Moritz et al., 2015). The authors concluded that hydroxyectoine, besides osmoadaptation, may serve other, hitherto unknown, functions.

In Ple. pacifica SIR-1, the total amount of solutes detected was 445 μmol g⁻¹. The major solute at high salt concentrations was also glutamate, contributing 66% of the composition, followed by the amino acid glycine, constituting 28%. Thus, Ple. pacifica SIR-1, the closest relative to the Enhygromyxa clade, did not produce any of the well-established compatible solutes under high-salt conditions. This marine myxobacterium instead accumulated the amino acids glutamate, glycine and proline. Glycine and proline can be enzymically synthesized or may be taken up from the environment. The accumulation of glutamate as primary response was the same as in Enh. salina SWB007. However, glycine has so far not been reported as a major bacterial osmolyte. The few reports available refer to its osmotic use in marine mussels and ciliates, in combination with alanine and taurine in the former and alanine and proline in the latter (Kaneshiro et al., 1969; Ellis et al., 1985). It is worthy of note that glycine has been applied empirically for protein stabilization during freeze–thawing of phosphate buffer systems and as a bulking agent during lyophilization of monoclonal antibodies (Pikal-Cleland et al., 2002; Meyer et al., 2009).
Therefore, the fact that glycine is one of the dominant amino acids in \textit{Ple. pacifica} deserves further investigation.

In accordance with the above observations, a gene locus associated with solute biosynthesis could be identified in \textit{Enh. salina} SWB007 (Fig. 5a). The biosynthesis of ectoine and hydroxyectoine has been firmly established for many micro-organisms (Sadeghi et al., 2014). Accordingly, a biosynthetic hypothesis was deduced for hydroxyectoine and betaine in \textit{Enh. salina} (Fig. 5b, c).

It is striking that only hydroxyectoine is accumulated and not the direct precursor ectoine. Thus, the EctD-catalysed step has to be very efficient. In \textit{Streptomyces rimosus} it was shown that the effect of salinity on ectD transcription level is threefold more prominent on ectD transcription level than on ectC (Sadeghi et al., 2014). Furthermore, it was suggested that the localization of ectD at the 3'-end of the ectABCD mRNA contributes positively to its stability. A putative regulator, encoded by ectR, is clustered with the ectABCD genes. EctR is expected to be responsible for the regulation of hydroxyectoine synthesis, dependent on natural stimuli. It was shown previously that in Gram-negative and Gram-positive bacteria the genes are induced by osmotic or temperature stress (Widderich et al., 2016). The presence of genes for several different osmolyte transporters in the genome can be regarded as a complementary mechanism for osmo-adaptation in \textit{Enh. salina} SWB007. A Na\(^+\)/proline symporter is encoded

<table>
<thead>
<tr>
<th>ORF</th>
<th>Gene</th>
<th>Length (bp)</th>
<th>Highest homology</th>
<th>Identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ectR</td>
<td>1899</td>
<td>Histidine kinase (\textit{Marichromatium purpuratum} 984)</td>
<td>43.3</td>
</tr>
<tr>
<td>2</td>
<td>orf2</td>
<td>126</td>
<td>Uncharacterized protein (\textit{Sorangium cellulosum})</td>
<td>61.3</td>
</tr>
<tr>
<td>3</td>
<td>orf3</td>
<td>153</td>
<td>Outer-membrane protein and related peptidoglycan-associated (lipoprotein) (\textit{Comamonadaceae bacterium} A1)</td>
<td>52.6</td>
</tr>
<tr>
<td>4</td>
<td>ectAsk</td>
<td>1458</td>
<td>Aspartate kinase (\textit{Rhodothermus marinus} SG0.5JP)</td>
<td>46.6</td>
</tr>
<tr>
<td>5</td>
<td>ectA</td>
<td>537</td>
<td>Diaminobutyrate acetyltransferase (\textit{Alkalilimnicola ehrlichii})</td>
<td>53.7</td>
</tr>
<tr>
<td>6</td>
<td>ectB</td>
<td>1335</td>
<td>Diaminobutyrate aminotransferase apoenzyme (\textit{Streptomyces} sp. SM8)</td>
<td>63.4</td>
</tr>
<tr>
<td>7</td>
<td>ectC</td>
<td>381</td>
<td>L-ectoine synthase (\textit{Pontibacillus yanchengensis})</td>
<td>59.2</td>
</tr>
<tr>
<td>8</td>
<td>ectD</td>
<td>897</td>
<td>Ectoine hydroxylase (\textit{Castellaniella defragrans} 65)</td>
<td>57.8</td>
</tr>
<tr>
<td>9</td>
<td>solute transporter</td>
<td>1446</td>
<td>SSS sodium solute transporter superfamily (\textit{Rubinisphaera brasiliensis})</td>
<td>58.5</td>
</tr>
<tr>
<td>10</td>
<td>mep</td>
<td>633</td>
<td>UPF0056 membrane protein (\textit{Lyngbya sp. strain PCC 8106})</td>
<td>53.8</td>
</tr>
<tr>
<td>11</td>
<td>GSMT</td>
<td>861</td>
<td>SAM-dependent methyltransferase (\textit{Thioploca ingrica})</td>
<td>71.4</td>
</tr>
<tr>
<td>12</td>
<td>SDMT</td>
<td>864</td>
<td>Dimethylglycine methyltransferase (\textit{Marichromatium purpuratum} 984)</td>
<td>54.3</td>
</tr>
<tr>
<td>13</td>
<td>betT</td>
<td>1530</td>
<td>Choline transporter (\textit{Sphingomonas} sp. Ant20)</td>
<td>56.6</td>
</tr>
</tbody>
</table>

Table 2. Genes encoded in the gene locus putatively corresponding to organic osmolytes biosynthesis in \textit{Enh. salina} SWB007
directly downstream of ectD, and such transporters can mediate the accumulation of organic osmolytes, e.g. betaine, ectoine and proline, at high osmotic pressure (Wood, 2006). Furthermore, two N-methyltransferase genes are clustered with the hydroxyectoine gene locus of

Enh. salina SWB007 (Fig. 5a). It can be assumed that these genes are linked to betaine biosynthesis (Waditee et al., 2003). Downstream of these two methyltransferase genes, there is a gene putatively coding for the high-affinity betaine/carnitine/choline transporter, BetT. In contrast, none of the established compatible solutes was detected in *Ple. pacifica* SIR-1. This is in accordance with the genome analysis, providing no gene cluster corresponding to their biosynthesis. However, the presence of many osmolyte transporters and symporters indicates that this bacterium is reliant on uptake to cope with salt stress. Such an uptake of osmolytes, e.g. amino acids, as a major source for a predatory bacterium, which lyses prey cells and thereby creates for itself a source of these molecules. It is therefore at present unclear whether the marked increased glycine level (28% of total solutes) is a result of uptake or genuine osmoregulated biosynthesis.

ACKNOWLEDGEMENTS

We are very grateful to Dr Marianne Engeser and her team for the high-resolution HPLC-MS measurements. We also thank Erhard Bremer (Philips University, Marburg) for kindly providing *E. coli* MKH13. This work was supported by the Ministry of Science, Research and Technology of Iran (scholarship to J.A.M.) and the German Federal Ministry of Education and Research (BMBF).

REFERENCES

Different strategies of osmoadaptation

Edited by: C. Dahl

http://mic.microbiologyresearch.org