Regulation of D-alanylation of lipoteichoic acid in *Streptococcus gordonii*

Nicole E. McCormick,1,2 Scott A. Halperin1,2,3 and Song F. Lee1,2,3,4

1Department of Microbiology and Immunology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
2Canadian Center for Vaccinology, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
3Department of Pediatrics, Faculty of Medicine, Dalhousie University, Dalhousie University and the IWK Health Center, Halifax, NS, Canada
4Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University and the IWK Health Center, Halifax, NS, Canada

D-Alanyl esters on lipoteichoic acid (LTA) are involved in adhesion, biofilm formation, resistance to cationic antimicrobial peptides, and immune stimulation. There is evidence that bacteria can modulate the level of D-alanyl esters on LTA in response to challenge, but the mechanism of regulation appears to be different among bacteria. In this study, expression of the *dlt* operon responsible for D-alanylation of LTA was examined in the commensal bacterium *Streptococcus gordonii*. *dlt* expression was assessed using the *dlt* promoter–*lacZ* reporter gene assay, LTA D-alanine content measurements and *dlt* mRNA quantification. The results showed that *dlt* expression was growth phase-dependent, with the greatest expression at the mid-exponential phase of growth. In contrast to *Staphylococcus aureus*, *dlt* expression in *Strep. gordonii* was not affected by the exogenous addition of Mg2+ or K+. Interestingly, *dlt* expression was upregulated under acidic conditions or when cells were stressed with polymyxin B, indicating that cell envelope stress may be a signal for *dlt* expression. In view of these results, mutants defective in the cell envelope stress LiaSR two-component regulatory system were constructed. The *liaS* and *liaR* mutants showed an increase in *dlt* expression over the parent strain at neutral pH. The mutants failed to respond to low pH and polymyxin B stress; *dlt* expression remained the same in the presence or absence of these stresses. These results suggest that *dlt* expression in *Strep. gordonii* is regulated by the LiaSR regulatory system in response to environmental signals such as pH and polymyxin B. The regulation appears to be complex, involving both repression and activation mechanisms.

INTRODUCTION

Lipoteichoic acid (LTA) is an amphiphilic polymer of polyphosphoglycerol or polyphosphoribitol anchored to the cytoplasmic membrane by a glycolipid. Each phosphoglycerol or phosphoribitol on this molecule may be modified by glycosylation or, more often, substituted with D-alanyl esters (Fischer, 1988; Fischer *et al.*, 1990). The *dlt* operon is responsible for the D-alanylation of LTA (Neuhaus & Baddiley, 2003). The operon consists of four genes, *dltA*, *dltB*, *dltC* and *dltD*. The *dltA* gene encodes the D-alanyl carrier protein ligase (Dcl), which activates the D-alanine and ligates it to the D-alanyl carrier protein (Dcp). The function of the protein encoded by *dltB* has not been experimentally established, but it is a transport protein that is thought to serve as a channel to secrete the unfolded D-alanyl Dcp. The *dltD* gene encodes a membrane-associated protein, which facilitates the binding of Dcp and Dcl for ligation of Dcp with D-alanine. Disruption of any one of the *dlt* genes will eliminate D-alanylation of LTA.

D-Alanylation confers a positive charge upon LTA and has been demonstrated to have a role in the regulation of autolytic activity (Fischer *et al.*, 1981), the binding of Mg2+ (Archibald *et al.*, 1973), intragenic coaggregation (Clemans *et al.*, 1999), biofilm formation (Fabretti *et al.*, 2006; Gross *et al.*, 2001), adherence to mammalian cells (Abachin *et al.*, 2002; Weidenmaier *et al.*, 2004), susceptibility to cationic antimicrobial peptides and phagocytic cells (Collins *et al.*, 2002; Henneke *et al.*, 2005; Kristian *et al.*, 2005; Poyart *et al.*, 2003), sensitivity to low pH (Boyd *et al.*, 1981).
et al., 2000), and modulation of immune stimulation (Chan et al., 2007; Morath et al., 2001). In several bacteria, dlt mutants display an attenuated virulence phenotype in animal models (Abachin et al., 2002; Kristian et al., 2005; Poyart et al., 2003).

There is evidence that bacteria can modulate the level of D-alanyl esters on LTA. An increase in the level of D-alanyl esters on LTA has been reported when metal cations, such as Mg$^{2+}$, Ca$^{2+}$, Na$^-$ and K$^+$, are present in the culture medium (Fischer & Rösel, 1980; Heptinstall et al., 1970; Kiriukhin & Neuhaus, 2001; Koch et al., 1985; Koprivnjak et al., 2006; Reusch & Neuhaus, 1971). An alteration in the enzymic activity of esterification and hydrolysis by these environmental conditions has been suggested as a mechanism for the modulation (Haas et al., 1984; Kiriukhin & Neuhaus, 2001), but transcriptional control of dlt expression has also been reported in three bacteria. In Bacillus subtilis, the dlt operon is transcribed from a δ-dependent promoter, with greatest transcription during exponential growth (Perego et al., 1995). As cells enter stationary phase and sporulation, dlt expression is downregulated by the Spo0A and AbrB sporulation proteins. Staphylococcus aureus is thought to utilize the AtlRS two-component regulatory system, which responds to the presence of divalent cations, such as Mg$^{2+}$ and Ca2, by transcriptionally repressing the dlt operon (Koprivnjak et al., 2006).

The cell envelope stress LiaSR two-component regulatory system is widespread among the Firmicutes (Jordan et al., 2006, 2008). LiaS is an intramembrane-sensing histidine kinase and believed to sense signals that perturb membrane damage. LiaR is the cognate response regulator. A putative membrane protein (LiaF) has been shown to function as an inhibitor of LiaRS-mediated signal transduction in B. subtilis. The genetic context of liaFSR is conserved in the Firmicutes, with liaF located directly upstream of liaSR orthologues. It has been demonstrated in several bacteria that LiaSR regulates responses to cell envelope stress caused by cationic antibiotics, oxidative agents and low pH (Gardete et al., 2006; Kuroda et al., 2003; Li et al., 2002; Martinez et al., 2007; Mascher et al., 2004; Suntharalingam et al., 2009).

We previously reported that a dltA mutant of Streptococcus gordonii is highly sensitive to cationic antimicrobial peptides (Chan et al., 2007), and our recent unpublished results showed that the mutant was also sensitive to acidic pH. Thus, it appears that D-alanylation and LiaSR confer some common phenotypes. In this study, we examined the regulation of dlt expression in Strep. gordonii and found that acidic pH and polymyxin B induced dlt expression. Mutants defective in LiaS or LiaR were not able to respond to these stresses.

METHODS

Bacteria and growth conditions. Strep. gordonii and Streptococcus mutans were cultured in brain heart infusion (BHI), TVG per millilitre: 5 mg glucose, 35 mg tryptone, 0.04 µg p-aminobenzoic acid, 0.2 µg thiamine-HCl, 1 µg nicotinamide and 0.2 µg riboflavin (Burne et al., 1999). HTVG (TVG containing 100 mM HEPES) or the chemically defined medium FMC (Terleckyj et al., 1975) at 37 °C and 5% CO2, without shaking. TVG and HTVG were adjusted to pH 7.8 with NaOH prior to autoclaving. When needed, 250 µg kanamycin ml$^{-1}$, 250 µg spectinomycin ml$^{-1}$ or 10 µg erythromycin ml$^{-1}$ was added to the media for cultivating Strep. gordonii. Escherichia coli was cultured in Luria–Bertani medium (1% tryptone, 0.5% yeast extract and 1% NaCl, w/v) containing 50 µg kanamycin ml$^{-1}$, 50 µg spectinomycin ml$^{-1}$ or 10 µg tetracycline ml$^{-1}$.

Construction of the P_\text{dltA-lacZ} fusion. The promoter region of the dlt operon (P_{dltA} dltA GenBank ID: 157075452) was amplified by PCR using Taq DNA polymerase (New England Biolabs) and the primer pair SL624/SL625 (Table 1). The 408 bp PCR product was digested with XbaI and KpnI, and ligated into the same sites upstream of the promotorless lacZ gene carried on pSL (Svytinski et al., 2007), resulting in the creation of the plasmid pP_{dltA LacZ}. The plasmid confirmed by restriction analysis and PCR was maintained in E. coli XL1-blue. Strep. gordonii strain DL1 was transformed with pP_{dltA LacZ} or pSL using the methods described by Homonylo-McGavin & Lee (1996). The resulting transformants were named NML1 and SL, respectively.

LacZ assay. The LacZ assay was performed as described previously (Tremblay et al., 2009). Preliminary experiments showed that Strep. gordonii SL produced no detectable LacZ activity, consistent with previous reports that pSL carrying the promotorless lacZ gene is incapable of producing LacZ (Svytinski et al., 2007; Tremblay et al., 2009). Thus, Strep. gordonii SL was omitted in subsequent experiments. The protein concentrations of samples were measured by the Bradford method, as modified by Spector (1978). LacZ activity was calculated as [(A$_{600}$ x 1000)/ (mg protein x incubation time)] and is reported in modified Miller units.

In experiments to test the effect of metal cations on dlt expression, the chemically defined FMC medium was used to avoid the potential addition of metal cations from ingredients of a complex medium. Stock solutions of MgCl$_2$ or KCl were added to the medium at the addition of metal cations from ingredients of a complex medium. Chemically defined FMC medium was used to avoid the potential addition of metal cations from ingredients of a complex medium. Stock solutions of MgCl$_2$ or KCl were added to the mid-exponential phase (OD$_{600}$ ~0.6) and LacZ activity was determined as described above.

LTA isolation and D-alanine content measurements. LTA was isolated from Strep. gordonii cell wall fractions by n-butanol extractions and hydrophobic interaction chromatography, as previously described (Chan et al., 2007; Mayer et al., 2009). The purified LTA gave a single band on a 15% SDS-PAGE gel stained with the cationic dye Stains-All (data not shown).

The purified LTA was lyophilized and the mass was determined. The D-alanine content of LTA samples was measured using the method of Peschel et al. (1999), with modifications as described previously (Chan et al., 2007). Briefly, D-alanyl esters were released from the LTA backbone by an alkaline treatment and detected by reacting with D-amino acid oxidase and 2,4-dinitrophenyl hydrazine. The amount of D-alanine in the sample was determined from a D-alanine standard curve and expressed with respect to the amount of LTA.
Table 1. Primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’–3’), restriction site*</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL525</td>
<td>GAATTAAACCAATGCTCCACCCGC</td>
<td>Reverse primer for 16S RNA</td>
</tr>
<tr>
<td>SL550</td>
<td>CTGGGCCAGGGCCGGGCAGCCTTTGTAAC</td>
<td>Forward primer for 16S RNA</td>
</tr>
<tr>
<td>SL551</td>
<td>CTCTGCCGGGGCTGCGGCAGAACATGAGAT</td>
<td>Reverse primer for 16S RNA</td>
</tr>
<tr>
<td>SL624</td>
<td>GGGGCCAGACTCCAATTTAGGGCCTGATG</td>
<td>Forward primer for dlr upstream fragment</td>
</tr>
<tr>
<td>SL625</td>
<td>GCTCTAGAATTCTGCAAGAAGGATAC</td>
<td>Reverse primer for dlr upstream fragment</td>
</tr>
<tr>
<td>SL658</td>
<td>TGCTTCCGCTTTTTGCTGGTT</td>
<td>Forward primer for dlr downstream fragment</td>
</tr>
<tr>
<td>SL659</td>
<td>CTTGGGCCGCTGCGGCAGCCTTTGTAAC</td>
<td>Reverse primer for dlr downstream fragment</td>
</tr>
<tr>
<td>SL660</td>
<td>CTGGGCCGCTGGCCGGCACATGTCATATTGATA</td>
<td>Forward primer for dlr upstream fragment</td>
</tr>
<tr>
<td>SL661</td>
<td>ATTCGACGCTCTTGGTACGG</td>
<td>Reverse primer for dlr downstream fragment</td>
</tr>
<tr>
<td>SL692</td>
<td>ACTAATACCTTCGCTGCTACAG</td>
<td>Forward primer for dlr upstream fragment</td>
</tr>
<tr>
<td>SL693</td>
<td>CTTGGGCCGCTGCGGCAGCCTTTGTAAC</td>
<td>Reverse primer for dlr downstream fragment</td>
</tr>
<tr>
<td>SL694</td>
<td>GGGGCCAGCCGCCACATGTCATATTGATA</td>
<td>Forward primer for 16S rRNA</td>
</tr>
<tr>
<td>SL695</td>
<td>ACAGGTAGCTTCTGGTAAAC</td>
<td>Reverse primer for 16S rRNA</td>
</tr>
<tr>
<td>SL697</td>
<td>ATTTATTGGGCGTAAAGCGAGC</td>
<td>Reverse primer for dlrA used in qRT-PCR</td>
</tr>
<tr>
<td>SL698</td>
<td>ATTATGGGCCGCTGGCTCAAGAC</td>
<td>Reverse primer for dlrA used in qRT-PCR</td>
</tr>
<tr>
<td>SL726</td>
<td>GCCGACTATGCATGACGCA</td>
<td>Forward primer for dlrA used in qRT-PCR</td>
</tr>
<tr>
<td>SL727</td>
<td>CCCTTGCACAGAAATGATGAT</td>
<td>Reverse primer for dlrA used in qRT-PCR</td>
</tr>
</tbody>
</table>

*Restriction site is underlined.

Quantitative real-time PCR (qRT-PCR). Total RNA was extracted from cells using the hot acid phenol method of Peterson et al. (2000), as described previously (Tremblay et al., 2009). Contaminating DNA was removed by digestion with amplification-grade DNase 1 (Invitrogen Life Technologies), and the resulting RNA was verified to be free of DNA by performing PCRs for 16S RNA using primers SL525/S67 (Table 1). cDNA was synthesized using random primers and SuperScript II reverse transcriptase (Invitrogen) following the manufacturer’s instructions.

qRT-PCR of dlr and 16S rRNA transcripts from the cDNA was performed using iTaq SYBR Green Supermix with ROX (Bio-Rad Laboratory) following the manufacturer’s instructions. 16S rRNA was chosen as the endogenous reference gene, as its expression is relatively stable, irrespective of growth conditions (Stipp et al., 2008). Duplicate reactions were performed for each sample. The primer pairs used for amplification of the dlr and 16S rRNA cDNA were SL726/SL727 (90% PCR efficiency) and SL525/SL679 (92%, respectively). qRT-PCRs were performed using a 7900 HT Fast Real-Time PCR system (Applied Biosystems) at 95°C for 3 min, followed by 40 cycles of 95°C for 30 s, 50°C for 30 s and 72°C for 1 min, and a final incubation at 72°C for 5 min. Fluorescence was measured during each annealing and elongation phase and the cycle threshold (Ct) value was calculated at a threshold of 0.2 using SDS 2.2.2 software (Applied Biosystems). A dissociation curve was also constructed following the qRT-PCR. The relative expression level of dlr was calculated using the ΔΔCt method (as described by Applied Biosystems [http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_042380.pdf]) using the 16S rRNA Gt values to normalize each sample for total RNA content.

RT-PCR. cDNA was synthesized as described above, and levels of 16S rRNA and dlrA transcripts were estimated by PCR with Taq DNA polymerase and primer pairs SL679/SL525 and SL672/SL727, respectively. PCRs were incubated at 95°C for 3 min, followed by 30 cycles of 95°C for 30 s, 50°C for 30 s and 72°C for 1 min, and a final 5 min extension at 72°C. The PCR products were analysed by gel electrophoresis.

Construction of the liaS and liaR mutants. To construct the liaS deletion cassette, the upstream (457 bp) and downstream (436 bp) fragments of liaS were amplified by PCR from Strep. gordonii DL1 chromosomal DNA using the primer pairs SL658/SL659 and SL660/SL661, respectively (liaS GenBank ID: 157075069). The 0.8 kb ermAM gene was amplified from Strep. mutans strain YDNT005 chromosomal DNA (Tremblay et al., 2009) using the primers SL550/SL551. The liaS PCR products were restricted with SfiI and ligated to the ermAM DNA separately. The ligated DNA was PCR-amplified to produce the 1.26 kb 5’ liaS ermAM and 1.24 kb ermAM3’ liaS DNA using the SL658/SL551 and SL550/SL661 primer pairs, respectively. The PCR products were mixed in a 1:1 ratio and further amplified by overlapping PCR using the primer pair SL658/SL661 to obtain the final 1.69 kb liaS::ermAM construct, which was introduced into Strep. gordonii NM1 via natural transformation (Homonyko-McGavin & Lee, 1996). Transformants were selected on erythromycin–kanamycin BHI agar. The mutant was verified to carry a 1.69 kb liaS::ermAM construct by PCR (data not shown).

The liaR mutant was constructed similarly to the liaS mutant. The regions upstream (466 bp) and downstream (332 bp) of liaR were amplified from DL1 chromosomal DNA by PCR with primer pairs SL692/SL693 and SL694/SL695, respectively (liaR GenBank ID: 157075406). The PCR products were ligated to ermAM, and the 1.6 kb ligated product was PCR-amplified using SL692 and SL695. The resulting liaR::ermAM construct was transformed into NM1 to obtain the liaR mutant. The mutant was verified by PCR with primer pair SL692/695 to carry the 1.6 kb liaR::ermAM, while the parent NM1 had the intact liaR (data not shown).

MIC assays. The MIC of polymyxin B for the parent strain and lia mutants was determined in 96-well polyprepolyene microplates by a microdilution method. Bacteria in BHI (50 μl, 10⁶ c.f.u.; final bacterial concentration 1 × 10⁶ c.f.u. ml⁻¹) were added to the wells, which contained 50 μl twofold-diluted polymyxin B. The starting concentration of polymyxin B was 800 μg ml⁻¹. Plates were incubated at 37°C for 24 h and examined visually for bacterial growth. The lowest concentration that inhibited growth was considered to be the MIC.

Polymyxin killing assays. BHI broth containing 400 μg polymyxin B ml⁻¹ was inoculated with the parent strain NM1 or the lia mutants at a concentration of 1 × 10⁶ cells ml⁻¹ in triplicate. Cultures were
incubated at 37 °C for 0, 2 and 4 h. Following incubation, survival was determined by plating in triplicate and counting the resulting colonies after incubation for 48 h.

Statistical analysis. Results were analysed by the two-tailed Student’s t test. A P value of ≤0.05 was considered to be significant.

RESULTS

dlt expression is growth phase-dependent

Expression of the *dlt* operon by *Strep. gordonii* through growth was initially assessed using the P_{dlt}–lacz reporter gene. LacZ activity increased with growth, with the greatest activity at mid-exponential phase (Fig. 1a). To confirm these results, d-alanine contents on LTA and *dlt* transcript levels were measured. Cells from the mid-exponential phase of growth contained the greatest amount of d-alanine on their LTA (Fig. 1b). In agreement with these results, cells from exponential phase produced higher levels of *dlt* mRNA than cells at the stationary growth stage (Fig. 1c). These results collectively indicate that *dlt* expression is growth phase-dependent, with higher expression during the exponential phase of growth.

dlt expression is not affected by Mg^{2+} and K^{+}

Earlier work in *Staph. aureus* has shown an increase in extracellular Mg^{2+} and Ca^{2+} correlated with repression of the *dlt* operon (Koprivnjak et al., 2006). Thus, the effect of cations on *dlt* expression in *Strep. gordonii* was investigated. There was no change in the LacZ activity of cells grown in the presence or absence of MgCl_{2} or KCl (Fig. 2), indicating that MgCl_{2} and KCl do not alter expression of lacZ from P_{dlt} and suggesting that the regulation of *dlt* expression in *Strep. gordonii* is different from that in *Staph. aureus*.

dlt expression is upregulated by acidic pH and polymyxin B

As a change in external pH is commonly encountered by *Strep. gordonii*, the effect of culture pH on *dlt* expression was examined in buffered (HTVG) and unbuffered (TVG) media. *Strep. gordonii* exhibited the same growth curve and attained the same extent of growth in the two media (data not shown). The pH of the HTVG culture showed an initial decrease from 7.8 to 6.9 and maintained this pH to the end of growth, whereas that of the TVG culture decreased rapidly to pH 4.5 (Fig. 3a). *dlt* expression was assessed by LTA d-alanine content and *dlt* transcript measurements of cells at mid-exponential growth (i.e. at 6 h of growth, OD_{600} of 0.6). Cells from the TVG culture contained a higher amount of d-alanine in their LTA than those from the HTVG culture (Fig. 3b). In agreement with the d-alanine results, cells from the TVG culture produced a greater level of *dlt* mRNA than those from the HTVG culture (Fig. 3b). These results suggest that *dlt* expression is upregulated in acid conditions.

Fig. 1. *dlt* expression by *Strep. gordonii* during growth. (a) Growth curve of *Strep. gordonii* NM1 in TVG (□) and LacZ activity (○) expressed by the P_{dlt}–lacz construct carried by NM1. (b) d-Alanine content of LTA isolated from NM1 grown to early (OD_{600} ~0.3), mid- (OD_{600} ~0.6), late-exponential (OD_{600} ~1.8) and stationary phases (OD_{600} ~2.0) of growth; *P<0.05. (c) RT-PCR of dltA and 16S rRNA from cells grown to the same growth phases as in (b). Results reported in (a) and (b) are means ± SD of triplicate cultures and are representative of two to three independent experiments.
We previously reported that the *Strep. gordonii* dlt mutant is more susceptible to cationic antimicrobial peptides (Chan et al., 2007); thus, it is conceivable that dlt expression may respond to polymyxin B stress. To test this, mid-exponential *Strep. gordonii* cells were exposed to a subinhibitory concentration of polymyxin B for 1 h and the level of dlt transcript was determined. Cells produced a higher level of dlt transcript when challenged with polymyxin B, suggesting that polymyxin B can upregulate the dlt operon (Fig. 3c).

dlt expression in the liaS and liaR mutants

The above results suggest that dlt expression is responsive to stress to the cell envelope; therefore, mutants defective in the cell envelope stress LiaSR two-component regulatory system were constructed. The mutants were verified to have the liaS or liaR gene inactivated by the *ermAM* cassette via PCR (data not shown). LTA D-alanine contents were measured and compared between the mutants and the parent strain. LTA from both the liaS mutant and the liaR mutant contained more D-alanine than that from the parent when grown in HTVG (Fig. 4a). This result was confirmed by qRT-PCR measurement of the dlt transcript (Fig. 4b).

Interestingly, the lia mutants produced the same level of D-alanylated LTA when grown in HTVG (neutral) and TVG (acidic) media, whereas the parent strain clearly produced more D-alanylated LTA in TVG medium than in HTVG medium (Fig. 4a). qRT-PCR experiments gave similar results, showing that the dlt mRNA levels were identical between media for the lia mutants, whereas that for the parent strain was substantially higher in TVG than in HTVG (Fig. 4c).

Our results showed that dlt expression is upregulated by polymyxin B; hence, it was logical to examine expression in

Fig. 2. Effects of Mg$^{2+}$ and K$^+$ on dlt expression. LacZ activity produced by *Strep. gordonii* NM1 grown to mid-exponential phase in the chemically defined FMC medium in the presence of the indicated concentrations of MgCl$_2$ (closed bars) or KCl (open bars). Results are means ± SD of triplicate cultures.

Fig. 3. dlt expression is upregulated by acidic pH and polymyxin B. (a) Culture pH of *Strep. gordonii* NM1 grown in HTVG (○) and TVG (●). (b) D-Alanine content of LTA and dlt mRNA levels from cells harvested at 6 h of growth (OD$_{600}$ 0.6, mid-exponential). Open and closed bars are HTVG and TVG cultures, respectively. (c) dlt expression by mid-exponential cells following 1 h incubation with (closed bars) or without (open bars) 50 μg polymyxin B ml$^{-1}$. Results are means ± SD of triplicate cultures and are representative of two or three independent experiments. ***P<0.001.
the lia mutants. Both lia mutants produced a similar level of dlt transcript in the presence or absence of polymyxin B, while the parent strain produced more dlt transcript when challenged by the antibiotic (Fig. 4d).

liaS and liaR mutants are more sensitive to polymyxin B than the parent strain

Given the results for the effect of LiaSR mutation on dlt expression, the susceptibility of the lia mutants to polymyxin B was tested. Both the liaS mutant and the liaR mutant were significantly more susceptible to killing by polymyxin B than the parent strain (Fig. 5). The MICs of polymyxin B for the parent, liaS and liaR strains were 400, 100 and 100 μg ml⁻¹, respectively.

DISCUSSION

In the present study, the expression and regulation of D-alanylation of LTA in Strep. gordonii was investigated.

Expression of dlt was growth phase-dependent, with higher expression during mid-exponential growth. This trend in dlt expression is also seen in B. subtilis, where the operon is negatively regulated by AbrB during the transition from vegetative growth to sporulation (Perego et al., 1995). Strep. gordonii does not undergo sporulation; however, the peak in dlt expression of both B. subtilis and Strep. gordonii coincides with the peak in metabolic activity and cell proliferation of mid-exponential phase, perhaps to ensure adequate D-alanylation when cell envelope, and thus LTA, biosynthesis is at its greatest.

The correlation between decreasing external pH and increasing LTA D-alanine content has been reported in Staph. aureus and B. subtilis (Ellwood & Tempest, 1972; MacArthur & Archibald, 1984). Our results indicate that this is also the case in Strep. gordonii (Fig. 3b). Our qRT-PCR results further indicate that the pH effect is at the transcriptional level, providing direct evidence of transcriptional upregulation of dlt at low pH. The increase in dlt expression at low pH may be a part of the acid tolerance...
response of Strep. gordonii. Our unpublished results show that the dlt mutant of Strep. gordonii is unable to grow below pH 6.0. Similarly, the dlt mutant of Strep. mutans loses the ability to grow at low pH (Boyd et al., 2000) and that of Streptococcus pyogenes is susceptible to vacuole acidification in neutrophils (Ganz, 2001). These findings collectively suggest that dlt upregulation may be a strategy employed by these bacteria for survival under conditions of low pH.

It has been documented that dltA mutants of several bacteria, including Strep. gordonii, show increased susceptibility to killing by cationic antimicrobial peptides (Chan et al., 2007; Kristian et al., 2005; Poyart et al., 2003). Our results advanced these findings by demonstrating that dlt transcription is upregulated by polymyxin B. This upregulation is likely to counter polymyxin B, or other cationic antimicrobial peptides, by adding more D-alanine to LTA. It is interesting to note that polymyxin B induced a smaller fold-increase in dlt mRNA levels under acidic conditions compared with neutral pH (Fig. 3c). The reason for this is likely due to the already high dlt expression at low pH. Nonetheless, the results do indicate that upregulation of dlt expression is responsive to the presence of both low pH and polymyxin B.

Our results further showed that the LiaSR two-component regulatory system plays a regulatory role in dlt expression. This statement is supported by the findings that inactivation of LiaS or LiaR resulted in an increase in dlt expression and the abolition of dlt upregulation by low pH and polymyxin B. The regulation of dlt expression by LiaSR appears to be complex. The increase in dlt expression by the lia mutants suggests that LiaSR represses dlt. The loss in response to low pH and polymyxin B suggests that LiaSR plays an activation role when these stimuli are present. Analysis of the dlt promoter region revealed an inverted repeat but not the putative "LiaR-binding motif" (Jordan et al., 2006). Gel shift assay results showed that LiaR purified from E. coli did not cause a mobility shift for the dltA promoter (data not shown). We have attempted to obtain a viable liaSR clone in E. coli but failed; hence, complementation experiments cannot be performed.

The lia mutants were more sensitive to polymyxin B than the parent strain. We previously showed that a dlt mutant of Strep. gordonii is more susceptible to polymyxin B, nisin, magainin II and human β-defensins than the parent strain (Chan et al., 2007). The inability to upregulate dlt expression likely contributed to the increased susceptibility to polymyxin B of the lia mutants. In the oral cavity, Strep. gordonii faces the challenge of other cationic antimicrobial peptides, such as human β-defensins. The ability to regulate D-alanylation may present a mechanism to counter the deleterious effects of these naturally occurring cationic antimicrobial peptides.

In conclusion, D-alanylation of LTA in Strep. gordonii is growth phase-dependent and is upregulated by low pH and polymyxin B. The cell envelope stress LiaSR two-component regulatory system appears to play a role in regulating dlt expression.

ACKNOWLEDGEMENTS

We thank Yi-Jing Li for her technical assistance. This study was supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Expression of dlt in Strep. gordonii

Edited by: T. J. Mitchell