Membrane topology of conserved components of the type III secretion system from the plant pathogen *Xanthomonas campestris* pv. vesicatoria

Carolin Berger,1† Guillaume P. Robin,2 Ulla Bonas1 and Ralf Koebnik1,2

1Institute of Biology, Department of Genetics, Martin-Luther-University, 06099 Halle, Germany
2Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia–CNRS–IRD, UMR 5096, IRD Montpellier, France

Type III secretion (T3S) systems play key roles in the assembly of flagella and the translocation of bacterial effector proteins into eukaryotic host cells. Eleven proteins which are conserved among Gram-negative plant and animal pathogenic bacteria have been proposed to build up the basal structure of the T3S system, which spans both inner and outer bacterial membranes. We studied six conserved proteins, termed Hrc, predicted to reside in the inner membrane of the plant pathogen *Xanthomonas campestris* pv. vesicatoria. The membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV was studied by translational fusions to a dual alkaline phosphatase–β-galactosidase reporter protein. Two proteins, HrcU and HrcV, were found to have the same membrane topology as the *Yersinia* homologues YscU and YscV. For HrcR, the membrane topology differed from the model for the homologue from *Yersinia*, YscR. For our data on three other protein families, exemplified by HrcD, HrcS and HrcT, we derived the first topology models. Our results provide what is believed to be the first complete model of the inner membrane topology of any bacterial T3S system and will aid in elucidating the architecture of T3S systems by ultrastructural analysis.

INTRODUCTION

Type III secretion (T3S) systems have evolved in Gram-negative bacteria to assemble flagella, secrete extracellular proteins, and deliver so-called effector proteins into the cytoplasm of eukaryotic cells. Nonflagellar T3S systems are important pathogenicity determinants and essential for the interaction of most Gram-negative bacterial pathogens with their eukaryotic hosts (Cornelis, 2006; Pallen *et al.*, 2005). T3S systems that transport proteins in a one-step process across the two bacterial membranes and the host plasma membrane directly into the host cell’s cytoplasm have been identified in animal pathogens, e.g. *Yersinia* spp., *Salmonella* spp., *Shigella* spp. and *Escherichia coli* (Coburn *et al.*, 2007), and in most plant pathogens, e.g. *Pseudomonas syringae*, *Ralstonia solanacearum*, *Erwinia* spp. and *Xanthomonas* spp. (Büttner & Bonas, 2006; McCann & Gutman, 2008). Moreover, several symbiotic bacteria also express T3S systems (Preston, 2007).

Nonflagellar T3S systems are encoded by 20–25 genes (Cornelis, 2006). Many structural components are conserved among pathogenic and symbiotic bacteria, and are strictly required to build up a functional secretion system. Nine components of the apparatus are conserved between nonflagellar T3S systems and the flagellar export apparatus (He *et al.*, 2004; Nguyen *et al.*, 2000). The broadly conserved proteins are believed to localize in the cytoplasm or constitute the inner ring structure of the secretion apparatus. Among them are six predicted integral inner membrane proteins forming the inner core of the T3S system, which probably acts as a secretion pore (Aizawa, 2001; Pührer *et al.*, 2004; Tampakaki *et al.*, 2004). The flagellar counterparts of five of them, FlhA, FlhB, FliP, FliQ and FliR, have been shown to constitute the flagellar export apparatus (Fan *et al.*, 1997; Minamino & Macnab, 2000). The related nonflagellar T3S proteins also show manifold interactions with each other, thus suggesting similar multiprotein complexes for the flagellar and nonflagellar T3S systems (Creasey *et al.*, 2003). This conclusion is supported by low-resolution electron microscopy, which demonstrates that the morphology of the nonflagellar T3S apparatus is remarkably similar to that of the flagellar...
Nonflagellar T3S has been studied best in *Yersinia* species, and the corresponding components are termed the *lcr* (low calcium response), *ysc* (*Yop* secretion) and *yop* (*yersinial outer protein*) genes (Cornelis, 2006). Nevertheless, structural information is still very limited, which holds particularly true for the six inner membrane components YscV, YscU, YscT, YscS, YscR and YscD. The YscV (formerly LcrD) protein influences type III effector secretion and is related in sequence to the *Salmonella* inner membrane protein FlhA. Both YscV and FlhA are predicted to have seven transmembrane helices, with a cytoplasmic N terminus and a periplasmic C terminus (Melen et al., 2003). These predictions are in contrast to experimental data that support a cytoplasmic location of the C-terminal domain of FlhA and YscV (Minamino & Macnab, 2000b; Plano et al., 1991). FlhA associates with FlhB (Zhu et al., 2002), which is related to the YscU protein. YscU, like FlhB, is thought to have four transmembrane helices followed by a cytoplasmic domain (Allaoui et al., 1994; Minamino et al., 1994). FlhB controls the substrate specificity and switches to the export of late structural subunits of the flagellum upon completion of early flagellar structures (Ferris & Minamino, 2006; Fraser et al., 2003). This transition is accompanied by a proteolytic cleavage event in the C-terminal cytoplasmic domain of FlhB (Minamino & Macnab, 2000a). YscU plays a similar role in the nonflagellar T3S system (Edqvist et al., 2003; Lavander et al., 2002). Proteolytic cleavage in the C-terminal cytoplasmic domain of YscU has been found to be necessary for *Yop* translocator secretion (Sorg et al., 2007). YscR, YscS and YscT are predicted to reside in the inner membrane with multiple transmembrane helices (Fields et al., 1994; Ghosh, 2004), and the flagellar counterparts, FliP, FliQ and FliR, have been experimentally identified in the inner membrane (Ohnishi et al., 1997). YscD has also been found in the inner membrane (Plano & Straley, 1995), and shares a low level of sequence conservation with its homologues PrgH, MxiG and HrcD (formerly HrpQ in *P. syringae*) (Ghosh, 2004; Pühler et al., 2004). The YscD/HrpQ protein family (InterPro: IPR012843; http://www.ebi.ac.uk/interpro/IEntry?ac=IPR012843) is thought to form a multimeric ring, with each subunit being anchored in the inner membrane by one transmembrane helix (Moraes et al., 2008).

To date, only a few high-resolution structures of T3S components have been solved, mainly restricted to soluble proteins or extramembranous domains of membrane proteins (Deane et al., 2008; Fadouloglou et al., 2004; Moraes et al., 2008; Zarivach et al., 2008). However, there is no high-resolution structural information available for any of the membrane-embedded protein domains, and knowledge about how they assemble into a multiprotein complex in the bacterial membrane is very limited. Because of the difficulties of deriving high-resolution models of membrane proteins, alternative strategies have been developed to obtain structural information at lower resolution, such as the position of transmembrane helices within the polypeptide chain and their orientation in the membrane (van Geest & Lolkema, 2000).

In this study, we applied genetic tools to determine the membrane topology of the conserved inner membrane proteins of a T3S system, using the well-characterized plant pathogen *Xanthomonas campestris* pv. vesicatoria as a model (Gürlebeck et al., 2006).

In our laboratory, we study the causal agent of bacterial spot disease on pepper and tomato, *X. campestris* pv. vesicatoria, which causes important economic losses in growing regions with a warm and humid climate. It has therefore being recommended for regulation as a quarantine pest by the European and Mediterranean Plant Protection Organization (http://www.eppo.org/QUARANTINE/listA2.htm). The interaction between *X. campestris* pv. vesicatoria and its host plants has been established as a model system for the molecular and genetic analysis of pathogenicity and plant resistance (Böttner & Bonas, 2006; Gürlebeck et al., 2006). Basic pathogenicity is determined by a plant-inducible 23 kb *hrp* (hypersensitive reaction and pathogenicity) gene cluster which encodes a T3S system (Bonas et al., 1991; Weber et al., 2007). Most genes of the *hrp* gene cluster are absolutely required for T3S in *vitro* as well as translocation of effector proteins into plant cells (Huguet et al., 1998; Rossier et al., 1999, 2000). Eleven *hrp* genes which encode components of the T3S apparatus are also conserved in animal pathogens, and have been renamed *hrc* genes (*hrp* conserved), using the same letter code as the archetypical *ysc* homologue (Bogdanove et al., 1996; Pühler et al., 2004; Weber et al., 2005). The expression of the *hrc* gene cluster is regulated by environmental signals and involves two regulatory proteins, HrpG and HrpX (Koebnik et al., 2006; Wengelnik & Bonas, 1996; Wengelnik et al., 1996b). Extracellular key components of the *X. campestris* pv. vesicatoria T3S system are the Hrp pilus and the translocon, which together serve as a conduit for protein translocation from the bacterium into the plant host cell (Böttner et al., 2002; Weber et al., 2005). Recently, type III-specific chaperones and substrate specificity control proteins have been identified in our laboratory (Lorenz et al., 2008a, b). To gain novel insights into the molecular functionality of the T3S apparatus, we aimed at determining the membrane topology of all known inner membrane proteins. For this purpose, we performed a transposon mutagenesis leading to dual alkaline phosphatase–β-galactosidase (PhoA–LacZ) reporter fusions (Alexeyev & Winkler, 2002). Enzymic and molecular characterization of the fusion proteins allowed us to derive at high resolution models of the membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV.
Dual indicator plates for the mixture transformed into final concentrations: 100
eqimolar amounts of the transposon donor plasmid (pMA814)
achieved using EZ : : TN transposase (Epicentre Technologies).
gene) were mixed with 1
carries the mini-Tn
http://mic.sgmjournals.org 1965
Mapping of Tn
METHODS

Bacterial strains and growth conditions. E. coli cells were
cultivated at 37 °C in lysogenic broth (LB) medium (Bertani, 1951).
X. campestris pv. vesicatoria cells were cultivated at 28 °C in PSA medium (1 % peptone, 1 % sucrose, 0.1 % glutamic acid). Since the wild-type X. campestris pv. vesicatoria strain 85-10 produces large amounts of exopolysaccharides, the exopolysaccharide-negative strain 85E was used (Wengelnik et al., 1996a). Plasmids were introduced into E. coli TOP10 cells (Invitrogen) and into E. coli S17-1 (Simon et al., 1983) by electroporation. pBBR1-MCS5 constructs were transferred into X. campestris pv. vesicatoria strain 85E by biparental conjugation with E. coli S17-1 as donor.

In vitro transposon mutagenesis. Coding sequences for HrcD, HrcR, HrcS, HrcT, HrcU and HrvC were amplified by PCR from genomic DNA of X. campestris pv. vesicatoria strain 85-10 (Bonas et al., 1989; Thieme et al., 2005) using PfuDNA polymerase (Stratagene), and cloned into pCR 2.1-TOPO (Invitrogen). For primer sequences, see Supplementary Table S1. Inserts with the correct DNA sequence were subcloned into pGL2 (Guzman et al., 1995), which contains the PBAD promoter, the activity of which can be induced with 0.2 % L-arabinose. For transposon mutagenesis, plasmid pMA814, which carries the mini-Tn5 transposon derivative Tnpholac1 (Alexeyev & Winkler, 2002), was used. Tnpholac1 contains the dual phoA–lacZx reporter gene and a kanamycin-resistance gene, flanked by 19 bp inverted repeats. When fused to an ORF, the PhoA–LacZx reporter will be preceded by 13 amino acids (LSLIHISWPMGPG) in front of Proh of the mature PhoA protein.

In vitro transposition into pBAD derivatives containing hrc genes was achieved using EZ::TN transposase (Epicentre Technologies). Equimolar amounts of the transposon donor plasmid (pMA814) and the target plasmid (pBAD2 derivative with the respective hrc gene) were mixed with 1 μl transposase in EZ::TN reaction buffer (final volume 10 μl). After 2 h at 37 °C, the reaction was stopped and the mixture transformed into E. coli TOP10 cells. Transformants were plated on dual indicator plates and grown for 24 h at 37 °C.

Mapping of Tnpholac1 insertions. Transposon insertion sites were mapped by colony PCR (Supplementary Table S1). Based on fragment size, plasmid DNA was isolated from representative clones using the QIAprep Spin Miniprep kit (Qiagen). The transposon insertion sites were sequenced using the BigDye terminator sequencing kit on an ABI Prism 310 Genetic Analyzer (Applied Biosystems).

Construction of site-specific reporter fusions. To obtain site-specific reporter fusions, plasmid pDT was constructed. The Pβl Tnpholac1 fragment from pMA814 was cloned downstream of the PBAD promoter of pBAD24, and the resulting plasmid was digested with NodII and religated, thus removing the kanamycin-resistance gene and yielding plasmid pDT. The hrc gene fragments of interest were amplified by PCR using gene-specific primers (Supplementary Table S1) and cloned in-frame in front of the phoA–lacZx reporter using NheI and XbaI. Expression resulted in chimeric proteins consisting of the Hrc fragment, a 20 amino acid linker (SRVDLQPLSLIHISWPMGPG), and the PhoA–LacZx reporter starting at position Proh of the mature PhoA protein.

PhoA reporter assays in Xanthomonas. To perform reporter assays in X. campestris pv. vesicatoria, hrcR reporter fusions were subcloned into a broad-host-range plasmid derived from pBBR1-MCS5 (Kovach et al., 1995). BamHI–SacI fragments from pBAD reporter constructs were introduced into the pBBR1-MCS5 derivative downstream of a modified hrpX gene (A. Krüger and R. Koebnik, unpublished results), thus forming an operon fusion. This plasmid led to expression of a double-tagged HrpX protein from X. campestris pv. vesicatoria strain 85-10, with an N-terminal hexahistidine tag and a C-terminal Strep-tag II (IBA BioTAGnology). Upon conjugation into X. campestris pv. vesicatoria strain 85E, clones were selected on kanamycin/gentamicin plates and subsequently streaked on indicator plates. After 5 days of cultivation, bacteria were resuspended in 5 ml sterile water and assayed for coloration.

Bioinformatics predictions. Common algorithms were used for membrane topology predictions, using default parameters: TopPred II (http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html) (von Heijne, 1992), TMHMM version 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0v/) (Krogh et al., 2001), HMMTOP version 2.0 (http://www.enzim.hu/hmmtop/) (Tusnady & Simon, 2001), MEMSAT version 3 (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, 2007), PHDhtm (http://www.predictprotein.org/) (Rost et al., 2004) and Phobius (http://phobius.cgb.ki.se/) (Käll et al., 2004).

RESULTS AND DISCUSSION

Bioinformatics prediction of the membrane topology of six Hrc proteins

Several algorithms are available to predict the topology of membrane proteins (Ellofsson & von Heijne, 2007). Since combined predictions are more reliable than single predictions (Ikeda et al., 2002; Nilsson et al., 2000), we applied six internet-based algorithms (TopPred, TMHMM, HMMTOP, MEMSAT, PHDhtm and Phobius) (Fig. 1) to predict the membrane topology of the predicted inner membrane proteins HrcD, HrcR, HrcS, HrcT, HrcU and HrvC from the X. campestris pv. vesicatoria T3S system. In no case did the six algorithms predict the same number of transmembrane segments (TMSs). Similarly, for most extramembranous regions, different locations, i.e. in the cytoplasm or periplasm, were predicted. Also, the hidden Markov model-based algorithms TMHMM, HMMTOP and Phobius differed in their predictions. TMHMM was less sensitive: it did not predict any TMS in HrcD, missed TMS 1 of HrvC and the predicted TMS II of HrcT, and failed to predict two TMSs instead of only one at about amino acid residues 280–320 of HrvC. Surprisingly, TMHMM and HMMTOP often predicted opposite orientations of the protein within the membrane (HrcD, HrcS, most of HrcT and HrvC, and the C-terminal soluble domain of HrvC). Phobius, which has been designed to differentiate between TMSs and signal sequences of the general secretion pathway, predicted a signal sequence instead of a TMS at the N-terminal regions of HrcD and HrcR. Hence, from predictions, it remained unclear whether or not the N-terminal region is processed by the leader peptidase. PHDhtm, a two-layer neural network, tended to predict shorter TMSs than the other algorithms.

http://mic.sgmjournals.org
Fig. 1. Bioinformatics predictions and experimentally derived membrane topology of conserved inner membrane proteins of the X. campestris pv. vesicatoria T3S system. Six algorithms were applied to predict the membrane topology of HrcD, HrcR, HrcS, HrcT, HrcU and HrcV. For HrcT and HrcV, TopPred predicted two and four different models, respectively. For comparison, the experimentally derived topology models (EXP.) are shown at the top. Transmembrane segments are shown in white, periplasmic regions in blue and cytoplasmic regions in red. Predicted signal sequences are indicated in green. The cytoplasmic NPTH motif of HrcU, corresponding to the strictly conserved cleavage site within the YscU/FlhB protein family, is indicated in yellow. The cytoplasmic FHIPEP motif of HrcV is indicated in purple.
probably due to the second layer which aims at correcting for too-long TMS lengths. MEMSAT, which uses multiple sequence alignments to recognize topology models by expectation maximization, tended to predict two short TMSs instead of one long TMS for extended regions of high hydrophobicity (two TMSs for TMS I of HrcS and two extra TMSs for HrcT). In summary, no unambiguous topology model was predicted for any of the six selected Hrc proteins.

Isolation of reporter fusions to inner membrane Hrc proteins

Because of the difficulties of obtaining reliable topology predictions we studied the membrane topology of six Hrc proteins by reporter fusions, using Tnpholac1-based mutagenesis in *E. coli* (Alexeyev & Winkler, 2002). The simultaneous use of two reporter enzymes, alkaline phosphatase (PhoA) and β-galactosidase (*LacZ*), allows enzymic readouts for both periplasmic and cytoplasmic localization at each fusion point.

Coding sequences for the six predicted inner membrane proteins HrcD, HrcR, HrcS, HrcT, HrcU and HrcV from *X. campestris* pv. vesticatoria were cloned under the control of an arabinose-inducible P*BAD* promoter and mutagenized by Tnpholac1 *in vitro*. After selection on plates containing the chromogenic substrates X-Phos and Rose-Gal, four types of colonies were obtained. Blue colonies, indicating PhoA activity, correspond to hybrid proteins with a fusion site in or close to a periplasmic region of the Hrc protein. Red colonies were due to LacZ activity and suggested a fusion in or close to a cytoplasmic domain. White colonies, which were obtained predominately, were likely due to out-of-frame fusions of the reporter genes with the *hrc* gene, to have an insertion of the reporters in the opposite direction to the *hrc* gene, or to harbour the reporters somewhere else in the mutagenized plasmid. Occasionally, purple colonies were observed. In these cases, the fusion point might be located within a TMS, thus allowing only some but not all reporter moieties to be translocated to the periplasm (Alexeyev & Winkler, 2002). Preliminary studies had shown that out-of-frame fusions tended to display an erratic behaviour, probably due to translation reinitiation in the vicinity of *lacZa*. Therefore, we only analysed colonies with intense coloration.

Generally, many different, randomly distributed fusion points were obtained for the six Hrc proteins, thus allowing us to build precise topology models. In all, we selected nine different translationally in-frame Tnpholac1 fusions in *hrcD*, 26 in *hrcR*, nine in *hrcS*, 25 in *hrcT*, 21 in *hrcU* and 32 in *hrcV* (Fig. 2), and labelled them with the number of the amino acid residue after which the fusion occurred. To close gaps in regions where no fusions were obtained, site-specific fusions were constructed, i.e. after positions S*50*, L*80* and P*86* in HrcS, after positions Q*119*, S*223* and I*229* in HrcT, and after position S*134* in HrcU (see Methods).

Model building

For model building, we took advantage of the bioinformatics prediction of candidate TMSs (Fig. 1). We considered all potential TMSs which were predicted by at least one algorithm. However, predictions of pairs of TMSs which corresponded to only one experimentally supported TMS (TMS I and TMS II of HrcS, and TMS III–VI of HrcT, as predicted by MEMSAT) were not considered. When several algorithms predicted a TMS, we defined those amino acid residues as the core of the TMS that were predicted by all algorithms (Supplementary Fig. S1). Since the core sizes varied between five and 20 amino acids, we normalized all TMSs to a reasonable length of 20 or 21 residues necessary to span the lipid bilayer by adding equal numbers of amino acids to both sides of the core. TMSs are counted from the N to the C terminus of the protein by roman numbers: TMS I, TMS II, etc.

The theoretical topology models were then compared with our experimental data which localized the hydrophilic stretches of the polypeptide chain either in the cytoplasm or in the periplasm. Predicted TMSs were not considered when the enzymic activities of fusions at both sides of a predicted TMS did not support their existence. Often, fusions with LacZ or PhoA activity were found too close to each other to be separated by a complete TMS, suggesting that the fusion sites were located within the TMS. This finding was not surprising, since it has been demonstrated before that an incomplete TMS in N*in*–C*out* orientation can be sufficient to transport a downstream protein segment across the membrane (Boyd *et al.*, 1987; Calamia & Manoil, 1990; Pourcher *et al.*, 1996; Ujwal *et al.*, 1995). This is probably especially true in our experimental system, in which the reporter fusion adds a short stretch of amino acids with elevated hydrophobicity (LSLIHI) due to the inverted repeat of the mini transposon (see Methods). Hence, fusions within the N-terminal third of an N*in*–C*out* TMS are expected to have LacZ activity, while fusions in the C-terminal two-thirds can lead to PhoA activity. Analogously, fusions within or at the C-terminal end of an N*out*–C*in* TMS often have PhoA activity. This is probably due to missing downstream topogenic information, which holds the reporter moiety back in the cytoplasm (van Geest & Lolkema, 2000). In these cases, we therefore scrutinized the sequence context for the presence of topogenic signals, i.e. positively charged amino acids (von Heijne, 1986).

HrcD contains a single N-terminal transmembrane helix followed by a periplasmic protein domain

We first studied the 221 amino acid HrcD protein (formerly HrpD5) (Fig. 2 and Supplementary Fig. S1), which originally was predicted to have 312 amino acids when we started the project (Huguet *et al.*, 1998). Later we found that the formerly predicted start codon was located upstream of the transcriptional start site, as determined by rapid amplification of 5′ complementary DNA ends (5′-RACE) experiments (Weber *et al.*, 2007). As a con-
sequence, a new translational start codon was defined for hrcD that is located 91 codons downstream of the previously predicted start site. The new start codon is preceded by a possible Shine–Dalgarno sequence and would result in a 24 kDa protein. Support for this prediction comes from the expression of a C-terminally hexahistidine-tagged HrcD in X. campestris pv. vesicatoria, which allows the purification of a 25 kDa protein (Weber et al., 2007). However, probably due to N-terminal modification of the protein, the N-terminal amino acid sequence could not be determined (C. Berger & R. Koebnik, unpublished results). Based on the first prediction, we have used the 312 codon sequence of hrcD for plasmid construction and transposon mutagenesis. Since in this case the first 91 codons do not contain any stretch of hydrophobic amino acids sufficient to span the lipid bilayer, all conclusions from the longer sequence are also valid for the shorter one. Indeed, we had obtained six fusions within the first 91 codons which all led to red colonies, indicating the absence of a putative TMS in this region (data not shown). Therefore, we will refer to the refined numbering throughout this work.

We selected nine different in-frame hrcD::TnphoA1 mutants, one red, one purple and seven blue colonies (Fig. 2). The red colony had a fusion after position R25, indicating that the N terminus of HrcD is located in the cytoplasm. For the purple colony, the fusion site was found...
HrcR is a four-transmembrane-helix protein with a central periplasmic domain

For hrcR, we selected seven red and 18 blue TnphoA fusions (Fig. 2 and Supplementary Fig. S1). All fusions upstream of position G56 resulted in red colonies, suggesting a cytoplasmic location of this region. Since all six algorithms predict a hydrophobic, membrane-interacting segment within the first 37 amino acid residues (Fig. 1), we are confident about the presence of an N_out–C_in TMS (TMS I) in this region, for which, however, experimental proof cannot be obtained by our approach. The Phobius algorithm suggested that the candidate TMS I is a signal sequence which is removed by the leader peptidase. If this is the case, one would expect that fusions immediately downstream of the processing site would lead to PhoA activity. However, fusions at V26 and V31 resulted in red colonies. Moreover, bioinformatics analyses (Phobius) of 20 randomly chosen HrcR homologues with less than 85% pairwise identity, including YscR from Yersinia pestis, did not predict a classical signal sequence for any of them (data not shown). Thus, the N-terminal hydrophobic segment likely corresponds to a TMS and not to a signal sequence.

Five of six algorithms predicted an opposite orientation of the protein in the membrane and only TopPred supports our model of HrcR. This situation is reminiscent of topology studies with the HrcR homologue from Y. pestis, YscR. Based on six TnphoA fusions, of which only one fusion at amino acid residue 45 gave rise to high PhoA activity, Fields et al. (1994) proposed four TMSs for YscR, with both protein termini residing in the cytoplasm. Thus, there are two alternative models for members of the YscR/HrcR protein family with opposite orientation in the membrane, a situation that is not without precedent (von Heijne, 2006). Still, this finding is surprising, since HrcR and YscR share 50% sequence identity. Because of the high density of transposon insertions in hrcR and the double enzymic readout for all the fusion proteins we are confident that our HrcR model is correct. Our model is also supported by two PhoA fusions in the central loop of HrcR (formerly HrpT) from R. solanacearum (Van Gijssegem et al., 1995), corresponding to positions S84 and V90 of HrcR from X. campestris pv. vesicatoria.

To exclude any artefacts that might originate from the use of E. coli, we transferred six representative HrcR fusions into X. campestris pv. vesicatoria. Reporter fusions were cloned into a broad-host-range plasmid downstream of a constitutively expressed hprX derivative. This plasmid complemented an hprX mutant and activated the expression of hprX-dependent hpr operons (A. Krüger, G. P. Robin and R. Koebnik, unpublished results). On indicator plates for PhoA activity, we observed bluish colonies with fusions after positions N79, E98 and T150 (Supplementary Fig. S2). In contrast, fusions after positions N51, A171 and T185 led to the same greenish colonies as the strain with the ‘empty’ hprX plasmid, most likely due to low background activity of the endogenous phoA gene and the yellow pigment xanthomonadin (Supplementary Fig. S2). Since xanthomonads expressing the LacZ Ω fragment in a strain without endogenous β-galactosidase are not available, we could not determine the LacZ activity of the reporter fusions. In summary, we observed the same topology in E. coli.
coli and in X. campestris pv. vesicatoria regardless of the presence or absence of other Hrc proteins, including the HrcI/HrcD ring as a molecular platform for T3S apparatus assembly (Yip et al., 2005; Spreter et al., 2009).

HrcS has at least one transmembrane helix and a periplasmic C terminus

HrcS, with only 86 amino acids, is the smallest inner membrane Hrc protein. The topology model for HrcS derived from nine transposon insertions shows only one TMS (Fig. 2 and Supplementary Fig. S1). The insertions A_{13}, L_{16}, V_{20} and S_{21} had LacZ activity, thus being compatible with a cytoplasmic location of the N terminus. Although insertions A_{31} and V_{38} lie close together, they led to LacZ and PhoA activity, respectively. The two amino acid residues are separated by a hydrophobic stretch (GLLIF), and are thus probably located in the N- and C-terminal halves of a TMS. Three additional fusions after positions S_{50}, L_{50} and P_{86} in HrcS were constructed in pDT and resulted in high PhoA activity. The same phenotype has been observed with PhoA fusions after position S_{50} of HrcS (formerly HrpU) of R. solanacearum (Van Gijsegem et al., 1995), corresponding to position S_{50} of HrcS from X. campestris pv. vesicatoria. In contrast to the experimental data, all algorithms predicted two or three TMSs with different orientations in the membrane (Fig. 1). Only the N-terminally located predicted TMS fits well to our data because experimental support for the existence of a second (or third) TMS in the C-terminal part of the protein is missing. However, we cannot entirely rule out the possibility that the N-terminal TMS (in N_{in}–C_{out} orientation) exports the reporter in the V_{38} and S_{50} fusions, leading to PhoA activity. But when more amino acid residues of HrcS are present in the fusion protein, the N-terminal TMS might adopt the opposite orientation (N_{out}–C_{in}) and a second TMS (N_{in}–C_{out}) might be formed. This scenario would be compatible with the predictions of TMHMM and Phobius. In any case, the C terminus of HrcS is located on the periplasmic side, as suggested by the two fusions after positions L_{80} and P_{86}.

HrcT contains an N-terminal transmembrane anchor followed by a large periplasmic domain

Our experimental data suggest that the 276 amino acid HrcT protein is an integral membrane protein with only one TMS close to the N terminus which serves as a membrane anchor (Fig. 2 and Supplementary Fig. S1). This conclusion is based on 25 PhoA–LacZx fusions. All six fusions before amino acid F_{33} resulted in high LacZ activity, while all 19 fusions behind amino acid D_{42} resulted in high PhoA activity. Because we did not isolate any Tnpholac1-based fusion between positions S_{92} and L_{137} and between positions D_{186} and A_{234}, we constructed three additional site-specific fusions after positions Q_{119}, S_{223} and L_{229}. Since these constructs also resulted in high PhoA activity we conclude that HrcT contains a large periplasmic domain, starting at approximately amino acid T_{39} (Supplementary Fig. S1).

Surprisingly, this model is in sharp contrast to bioinformatics predictions, which consistently predicted five to eight TMSs for HrcT (Fig. 1). The N terminus is predicted, except for one of the two TopPred models, to be in the periplasm. Since we considered all the rules of van Geest and Lolkema, i.e. a minimum of one fusion in each predicted extra-membraneous domain and at least one fusion for every 30 amino acid residues in regions of intermediate hydrophobicity (van Geest & Lolkema, 2000), and obtained a positive readout (i.e. high PhoA activity) for all fusions downstream of position D_{42}, we believe that HrcT contains a large C-terminal periplasmic domain.

HrcU has an N-terminal membrane-embedded domain and a C-terminal cytoplasmic domain

For the 357 amino acid HrcU protein, we isolated 21 different PhoA–LacZx fusions (Fig. 2 and Supplementary Fig. S1). Fusions with PhoA activity were restricted to the N-terminal 210 amino acid residues, indicative of a membrane-embedded domain in the N-terminal protein region. Our data are in agreement with four TMSs in this region, as predicted by all algorithms except TMHMM, which did not predict the first TMS. The insertions A_{33} and F_{76}, resulting in red and blue colonies, respectively, are probably both located in the first TMS. Insertions N_{10} and R_{208}, although leading to PhoA activity, are probably located on the cytoplasmic side of the membrane close to the C-terminal end of an N_{out}–C_{in} TMS (Fig. 1). Scrutiny of the amino acid sequence context revealed that both residues are followed by two or three basic amino acids within the next 10 residues, which might have a topogenic function (Supplementary Fig. S1) (von Heijne, 1986). From this we conclude that missing downstream topogenic information is responsible for this atypical, but not unexpected, behaviour (van Geest & Lolkema, 2000). Because Tnpholac1 mutagenesis did not lead to fusions supportive of TMS II and TMS III, we constructed a site-specific fusion after position S_{134}. As expected, this fusion resulted in high LacZ activity, thus confirming the four-TMS model for the N-terminal 205 amino acid residues.

All four reporter fusions downstream of amino acid R_{208} gave rise to high PhoA activity, indicative of a large cytoplasmic protein domain (Fig. 2 and Supplementary Fig. S1). Our model of HrcU is corroborated by a model of YscU from Yersinia enterocolitica which is based on 10 PhoA fusions (Alaoui et al., 1994). Thus, both proteins share a large C-terminal cytoplasmic domain with a conserved proteolytic cleavage site which plays a role in substrate specificity switching (Lavander et al., 2002; Minamino & Macnab, 2000a). HrcU cleavage has been observed by immunoblot analysis, suggesting a similar but distinct mechanism of substrate specificity control (C. Berger & R. Koebnik, unpublished results; Lorenz et al., 2008b).
HrcV is a two-domain membrane protein with a large cytoplasmic domain in the C-terminal region

For hrcV, we selected 15 red and 17 blue Tn *pholac*1 mutants (Fig. 2 and Supplementary Fig. S1). Within the N-terminal half of the 640 amino acid HrcV protein we observed clusters of reporter fusions with either LacZ or PhoA activity along the polypeptide chain, indicative of a large membrane-embedded domain. These data are in agreement with the presence of eight TMSs (TMS I to TMS VIII), as predicted by most algorithms (Fig. 1 and Supplementary Fig. S1). According to the positive-inside rule and the presence of two positively charged amino acids (R2 and R3), the N terminus was expected to reside in the cytoplasm. This was also predicted by all six algorithms (Fig. 1). Not unexpectedly, several fusions within the N-terminal half of an N*-C* out TMS (i.e. after positions A17, V19, L70 and T202) showed PhoA activity. Our model places the diagnostic FHIPEP motif (PROSITE accession no. PS00994) into the second cytoplasmic loop between TMS IV and TMS V, as proposed for FlhA (Fig. 1) (McMurry et al., 2004).

Except for one fusion (L371, see below), all fusions downstream of amino acid R31 in HrcV led to LacZ activity, suggesting that HrcV possesses a large C-terminal cytoplasmic domain of approximately 320 amino acids. The localization of this domain varied in the predictions (Fig. 1). A C-terminal TMS at amino acid positions 531–551, which was predicted only by TopPred, is unlikely because the downstream reporter fusion after position D389 led to LacZ activity. Moreover, the corresponding region of the flagellar homologue, FlhA, has been purified and crystallized without detergent, supporting a soluble protein domain (Saijo-Hamano et al., 2004, 2005). A cytoplasmic location of the C-terminal domain of the YscV/FlhA protein family is also supported by the finding that the C-terminal domain of FlhA interacts with the cytoplasmic proteins Flj, FljH and FljL (Minamino & Macnab, 2000b). Moreover, FlhA has been shown to interact with the C-terminal domain of FlhB, the HrcU homologue (Zhu et al., 2002). Similar findings have been obtained in our laboratory using a bacterial two-hybrid system (Dmitrova et al., 1998), showing that the soluble domain of HrcV (HrcV322-645) interacts with itself and with the soluble domain of HrcU (HrcU265-357) (C. Berger & R. Koebnik, unpublished results). Thus, the large C-terminal domain of HrcV is localized in the cytoplasm.

The reporter fusion after position L371, which led to PhoA activity, is of special interest. To include this particular fusion into the model, an upstream N*-C* out TMS (TMS IX) would have to be postulated. We believe that the fairly hydrophobic sequence L371SMRLSPQALL371, which is just upstream of the L371 fusion point, has the potential to form a TMS when fused to a few additional hydrophobic amino acids (LSLIHI) derived from the PhoA–LacZ reporter (Supplementary Fig. S1). Hence, an artificial TMS might be formed upon fusion after L371, leading to the export of the reporter, and the presumed TMS IX is likely absent in the wild-type protein. In support of this, a comparison of HrcV homologues from 14 different genera shows that a fairly hydrophobic sequence is not conserved in this region of the polypeptide chain (Supplementary Fig. S3). Thus, the fusion after position L371 most likely led to an experimental artefact and illustrates the importance of careful analysis of all the fusion constructs.

The HrcV homologue from *Y. pestis*, YscV (formerly LcrD), has been studied by Tn *phoA* mutagenesis, leading to a model of YscV with eight TMSs and a large cytoplasmic C-terminal domain (Plano et al., 1991). The last TMS of YscV, TMS VIII, is predicted between amino acids 330 and 347; however, this region is fairly hydrophilic and not likely to form a TMS. We therefore suggest that TMS VIII resides between positions F301 and L320 in YscV, which corresponds to positions F399 and L318 in HrcV (TMS VIII). This model would explain the PhoA activity of YscV fusions L297 and V304 (Plano et al., 1991). The PhoA activity of two fusions at the C-terminal end of TMS VIII (G317 and L320 of YscV) could be explained by the lack of downstream topogenic information, i.e. the conserved Arg-Lys motif at amino acid residues 322 and 323 (van Geest & Lolkema, 2000).

Validity of the PhoA–LacZ reporter fusion approach to study the membrane topology of inner membrane proteins

Our experimental approach relied on the assumption that inner membrane proteins can be studied individually upon heterologous expression in *E. coli* although they are normally part of a multiprotein complex, i.e. the T3S apparatus. The validity of the gene fusion approach for a heterologous protein of a multiprotein complex has been demonstrated for the L-subunit of the photosynthetic reaction centre from *Rhodobacter sphaeroides* (Yun et al., 1991). Gene fusions with high PhoA activity were shown to be in regions of the polypeptide known to be at or near the periplasmic surface, as defined by the high-resolution X-ray structure. Later, several proteins of heterologous multiprotein complexes have been studied by reporter fusions expressed in *E. coli*, e.g. the pro-sigma(K) processing complex of *Bacillus subtilis* and components of the type IV secretion system of *Helicobacter pylori* (Green & Cutting, 2000; Hofreuter et al., 2003). As an example of special interest, we studied the membrane topology of HrcR in *E. coli* and in *X. campestris* pv. vesicatoria. All six reporter fusions adopted the same topology in both species, thus validating the approach of heterologous expression in *E. coli*.

The reporter fusion approach also relies on the assumption that C-terminal truncations of the protein under study do not affect its native topology, i.e. the formation and orientation of TMSs. This assumption appears to be justified because dozens of membrane proteins have been studied this way and many topology models were later confirmed by other biochemical approaches or high-resolution structures (van Geest & Lolkema, 2000). However, a few studies indicate
that fusion proteins can occasionally display an anomalous behaviour with respect to membrane topology (for a detailed discussion, see van Geest & Lolkema, 2000). For instance, it is possible that more C-terminal transmembrane helices can influence the topology of more N-terminal transmembrane helices (Ota et al., 1998; van Geest & Lolkema, 1996). Such pitfalls guided the formulation of rules to optimize the reporter approach, as summarized by van Geest & Lolkema (2000). It has been suggested that experimental support for a topological model requires a minimum of one fusion in each extra-membranous domain. If the protein contains amino acid stretches of intermediate hydrophobicity that cannot unambiguously be predicted as membrane spanning, fusions should be made approximately every 30 residues. The use of PhoA as a reporter protein is advantageous because a positive result (i.e. enzymic activity) requires the export of the mature reporter enzyme moiety into the periplasm, while the use of LacZ as a cytoplasmic reporter may also give an enzymic activity as a result of artefacts, such as jamming of the export machinery. Throughout our study, we followed the rules of van Geest & Lolkema (2000). We are thus confident that our topology models are correct.

Concluding remarks

Electron microscopy experiments have unravelled the morphology of some nonflagellar T3S systems (Blocker et al., 2001; Kubori et al., 1998; Marlovits et al., 2004), but a detailed understanding of the structural characteristics, organization and precise molecular organization of T3S systems is still lacking. Here, we present what is believed to be the first complete model of the inner membrane topology of a T3S system, which is based on a bioinformatics consensus prediction and experimentally derived constraints, including 129 different enzymically active reporter fusions. Our models validate and revise older models of T3S membrane proteins and will be instrumental for further model building, using X-rays, NMR and high-resolution microscopy.

ACKNOWLEDGEMENTS

We thank Hannelore Espenhahn for excellent technical assistance, Anjje Krüger (Martin-Luther-University, Halle) for providing the hrp'pBBR1-MCS5 derivative, Philipp Franken for comments on the manuscript, and Ernst Weber for fruitful discussions. We are very grateful to Mikhail F. Alexeyev and Herbert H. Winkler (University of South Alabama) for the Taphloca mutagenesis system. This work was funded in part by grant KO 1686/3-2 from the Deutsche Forschungsgemeinschaft to R.K.

REFERENCES

Edited by: C. A. Boucher