Transcriptional regulation of the novobiocin biosynthetic gene cluster

Volker Dangel,1 Johannes Härle,1† Christiane Goerke,2 Christiane Wolz,2 Bertolt Gust,1 Jean-Luc Pernodet3 and Lutz Heide1

Correspondence
Lutz Heide
heide@uni-tuebingen.de

1Pharmaceutical Biology, Pharmaceutical Institute, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
2Institute for Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany
3Univ. Paris-Sud 11, CNRS, UMR 8621, Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France

Received 12 July 2009
Revised 10 September 2009
Accepted 10 September 2009

The aminocoumarin antibiotic novobiocin is a gyrase inhibitor formed by a Streptomyces strain. The biosynthetic gene cluster of novobiocin spans 23.4 kb and contains 20 coding sequences, among them the two regulatory genes novE and novG. We investigated the location of transcriptional promoters within this cluster by insertion of transcriptional terminator cassettes and RT-PCR analysis of the resulting mutants. The cluster was found to contain eight DNA regions with promoter activity. The regulatory protein NovG binds to a previously identified binding site within the promoter region located upstream of novH, but apparently not to any of the other seven promoters. Quantitative real-time PCR was used to compare the number of transcripts in a strain carrying an intact novobiocin cluster with strains carrying mutated clusters. Both in-frame deletion of the regulatory gene novG and insertion of a terminator cassette into the biosynthetic gene novH led to a strong reduction of the number of transcripts of the genes located between novH and novW. This suggested that these 16 biosynthetic genes form a single operon. Three internal promoters are located within this operon but appear to be of minor importance, if any, under our experimental conditions. Transcription of novG was found to depend on the presence of NovE, suggesting that the two regulatory genes, novE and novG, act in a cascade-like mechanism. The resistance gene gyrBR, encoding an aminocoumarin-resistant gyrase B subunit, may initially be co-transcribed with the genes from novH to novW. However, when the gyrase inhibitor novobiocin accumulates in the cultures, gyrBR is transcribed from its own promoter. Previous work has suggested that this promoter is controlled by the superhelical density of chromosomal DNA.

INTRODUCTION

Genome mining, i.e. the sequencing of bacterial genomes in search of novel biosynthetic gene clusters, is a promising new strategy for the discovery of bioactive substances, most importantly antibiotics (Wilkinson & Micklefield, 2007; Zerikly & Challis, 2009). The principal bottleneck for the success of this strategy is the step from sequence data, which can be readily obtained by highly automated procedures, to the production of the encoded secondary metabolites in sufficient quantities for pharmacological screening. This can be achieved, e.g. by heterologous expression of the gene clusters. For this purpose, an understanding of the regulation of the expression of bacterial secondary metabolic gene clusters is of great practical importance for future drug discovery.

The aminocoumarin antibiotic novobiocin is produced by Streptomyces caeruleus (syn. Streptomyces spheroides) and is a potent inhibitor of bacterial gyrase (Maxwell & Lawson, 2003). It has been licensed for the treatment of infections with Gram-positive pathogens in humans (Albamycin, Pfizer). The closely related aminocoumarins clorobiocin and coumermycin A1, produced by different Streptomyces strains, are even more potent antibacterials (Maxwell &
The biosynthetic gene clusters of all three antibiotics have been cloned and sequenced from the genuine producer strains, and their heterologous expression in Streptomyces coelicolor M512 has provided the basis for the generation of many new aminocoumarins by mutasynthesis and pathway engineering experiments (Heide et al., 2008; Li & Heide, 2005).

The novobiocin biosynthetic gene cluster spans 23.4 kb and consists of 20 coding sequences. The functions of these genes have been elucidated (Fig. 1) (Li & Heide, 2004, 2006). novH/IIJ and K are responsible for the synthesis of the aminocoumarin moiety, novQ and R are responsible for the generation of the prenylated 4-hydroxybenzoyl moiety, and novSTUV and W for the generation of the deoxysugar. The gene products of novL and novM catalyse the linkage of these three moieties. novN, novO and novP encode enzymes which catalyse tailoring reactions, i.e. the carbamoylation and methylation of the novobiocin skeleton. novF is probably responsible for the supply of 4-hydroxyphenylpyruvate (4HPP), a precursor of both aromatic moieties of novobiocin. gyrB encodes a resistance gene.

The coding sequences for novQ, novR and novS overlap, suggesting a translational coupling of these genes (Fig. 2). The same is true for novV and novW, as well as for novF and novK. The genes novH/IIJ, as well as novKLM, are separated by very short intergenic regions (1b). Large intergenic regions, suggestive of the presence of promoters, are found upstream of novE (180 bp intergenic region), novG (105 bp), novH (195 bp), novO (230 bp) and gyrB (376 bp) (Fig. 2). The promoter activities of the DNA regions upstream of gyrB and upstream of novE have been shown by Thiara & Cundliffe (1989) and by Dangel et al. (2008), respectively. Eusta´quio et al. (2005b) investigated the promoter situated upstream of novH, which contains the binding site for the positive regulator protein NovG. No NovG binding site is present in the large intergenic region upstream of novO (Eusta´quio et al., 2005b). In this study, we carried out additional electrophoretic mobility shift assays (EMSA) with NovE (data not shown), but also failed to show binding to the region upstream of novO.

Notably, all 20 genes of the novobiocin biosynthetic gene cluster are arranged in the same orientation and many, or even all, of them could therefore be transcribed as a single operon. Bioinformatic sequence analysis shows no rho-independent terminators within the entire cluster.

The gene clusters of novobiocin, chlorobiocin and coumermycin A₄ each contain a certain regulatory gene, termed novG, cloG or couG, respectively, which show sequence similarity to strR, a positive regulator of streptomyycin biosynthesis (Tomono et al., 2005). EMSAs have shown that NovG binds to a well-conserved inverted repeat located in the intergenic region between novG and novH (Eusta´quio et al., 2005b). This sequence is similar to the StrR binding sites in the streptomyacin cluster, and to the binding sites of the closely related Bbr in the balhimycin cluster (Shawky et al., 2007). These data suggest that NovG and its orthologues CloG and CouG act as positive regulators of the transcription of the genes located downstream of their respective binding sites, although direct experimental proof of this hypothesis has not been provided so far.

Besides novG, the novobiocin gene cluster contains only one additional putative regulatory gene, i.e. novE. Orthologues of novE are found in the biosynthetic gene clusters of chlorobiocin, coumermycin A₄, rubradin and lincomycin (cloE, couE, rubC4 and lmbU, respectively), but their function is as yet unknown. Inactivation of novE in a heterologously expressed novobiocin cluster leads to a strong reduction of novobiocin formation, and overexpression of novE leads to a twofold increase in production. Notably, inactivation of novE can be complemented by overexpression of novG (Dangel et al., 2008). This suggests a role for novE as a positive regulator of novobiocin biosynthesis, although its influence on transcription of biosynthetic genes has not been demonstrated so far. No DNA binding activity of the NovE protein to the DNA region upstream of novG has been found in EMSAs (Dangel et al., 2008).

In the present study, we investigated the transcriptional regulation of the novobiocin biosynthetic gene cluster. We present evidence that novE and novG act as transcriptional activators of novobiocin biosynthetic genes and that these two regulators act in a cascade-like mechanism.

METHODS

Bacterial strains, plasmids, cosmids and culture conditions. Supplementary Table S1 shows the bacterial strains, plasmids and cosmids used in this study. The REDIRECT technology kit for PCR targeting (Gust et al., 2003) was obtained from Plant Bioscience Limited.

Escherichia coli strains were cultivated in Luria–Bertani (LB) medium (Sambrook & Russell, 2001). S. coelicolor strains were routinely cultured in 300 ml baffled Erlenmeyer flasks containing a stainless steel spring and 50 ml yeast malt extract glucose (YMG) medium [1 % (w/v) malt extract, 0.4 % (w/v) yeast extract and 0.4 % (w/v) glucose (pH 7.3)]. Cultivation was carried out at 30 °C and 200 r.p.m. for 2 days. For preparation of protoplasts or isolation of genomic DNA, strains were grown in tryptone soya broth (TSB) medium (Kieser et al., 2000).

For analysis of secondary metabolite production and RT-PCR experiments, 1 ml YMG preculture was inoculated into 300 ml baffled flasks containing 50 ml chemically defined minimal (CDM) production medium (Kominek, 1972), and cells were cultivated at 30 °C and 200 r.p.m.

For quantitative RT-PCR (qRT-PCR) experiments, strains were cultivated in 24-square deepwell plates (Duetz et al., 2000). A 50 ml volume of YMG preculture, prepared as described above, was centrifuged (2772 g for 10 min). The cells were resuspended in 10 ml of 20 % (w/v) peptone (Bacto Proteose Peptone Number 3, Difco) and gently homogenized using a Potter homogenizer operated manually (B. Braun Biotech, Sartorius). The resulting mixture was divided into aliquots and stored at −70 °C. Frozen inoculum (2 × 10⁶ c.f.u.) was mixed with 80 ml CDM production medium, containing 0.6 % (w/v) siloxylated polyether EO/PO copolymer Q2-5247 (Dow Corning), and 3 ml of this mixture was placed into each well of the
Fig. 1. Functions of the gene products of the 17 genes novF and novHIJKLMNOPQRSTUVW in novobiocin biosynthesis.
24-square deepwell plates. Cultivation was carried out at 30 °C and 300 r.p.m.

Kanamycin (for Streptomyces, 15 μg ml⁻¹ in liquid medium and 50 μg ml⁻¹ in solid medium; for E. coli, 50 μg ml⁻¹), chloramphenicol (25–50 μg ml⁻¹), apramycin (50 μg ml⁻¹), carbenicillin (50–100 μg ml⁻¹) and thiostrepton (8 μg ml⁻¹) were used for selection of recombinant strains.

In order to avoid methyl-sensing restriction, the recombinant plasmids and cosmids were amplified in E. coli ET12567 before

Fig. 2. (a) RT-PCR detection of the transcripts of the novobiocin biosynthetic genes in the heterologous producer strain S. coelicolor M512(nov-BG1). (b–i) Insertion of the izaac transcriptional terminator cassette into different genes of the novobiocin cluster and RT-PCR analysis of the resulting mutants. (k) Location of promoter regions in the novobiocin biosynthetic gene cluster. gyrB⁴, novobiocin resistance gene. Numbers indicate the sizes of the intergenic regions (in bp).
transformation into S. coelicolor strains (MacNeil et al., 1992). The cultivation in production medium was carried out without addition of antibiotics.

DNA isolation, manipulation and cloning. Standard procedures for DNA isolation and manipulation were performed as described by Kieser et al. (2000) and Sambrook & Russell (2001). Genomic DNA was isolated from S. coelicolor strains by using the Kirby mix procedure (Kieser et al., 2000). Southern blot analysis was performed on Hybond-N nylon membranes (Amersham Biosciences) with a digoxigenin-labelled probe by using the DIG High Prime DNA Labelling and Detection Starter Kit II (Roche Molecular Biochemicals).

Plasmid construction. For the construction of pAE12, novG was amplified by PCR using pAE8 as template and the primer pair PG_for (5'-GAA GGT ACG GGA TCC CCA CGG-3') and PG_rev (5'-GTC AGG CGG TGT CCC GGT C-3'). The PCR was carried out in a 50 μl volume with 100 ng template, 0.2 mM dNTPs, 50 pmol each primer and 5 μl (v/v) DMSO using an Expand High Fidelity PCR system (Roche Molecular Biochemicals): denaturation at 94 °C for 2 min, then 30 cycles with denaturation at 94 °C for 45 s, annealing at 57 °C for 45 s, extension at 72 °C for 90 s, and a final elongation step at 72 °C for 5 min. After purification, the PCR product was ligated into pGEM-T to give pAE11. The insert of pAE11 was checked by nucleotide sequencing. The construction of pH1 and pAE12 is described in Supplementary Table S1. Plasmids were introduced into S. coelicolor M512(nov-BG1) by PEG-mediated protoplast transformation (Kieser et al., 2000).

Insertion of the aaac4 terminator cassette into cosmid nov-BG1 and heterologous expression of the modified cosmids. An apramycin-resistance cassette flanked by transcriptional terminators (aaac4) was used for replacement of the second codon of the genes novF, novP, novG, novH, novO, novP, novQ or novS by a Red-mediated recombination (Gust et al., 2003). This resulted in cosmids nov-JH1 to nov-JH6, nov-JH10 and nov-JH12. The cassette for replacement was generated by PCR using the primers listed in Supplementary Table S2. The PCR was performed in a 50 μl volume with 50 ng template (pPH1 digested with HindIII and SalI), 0.2 mM dNTPs, 50 pmol each primer and 5 μl (v/v) DMSO, using the Expand High Fidelity PCR system (Roche Molecular Biochemicals): denaturation at 94 °C for 2 min, then 10 cycles with denaturation at 94 °C for 45 s, annealing at 57 °C for 45 s, extension at 72 °C for 30 s, and a final elongation step at 72 °C for 5 min. After purification, the PCR product was ligated into pGEM-T to give pAE11. The insert of pAE11 was checked by nucleotide sequencing. The construction of pH1 and pAE12 is described in Supplementary Table S1. Plasmids were introduced into S. coelicolor M512(nov-BG1) by PEG-mediated protoplast transformation (Kieser et al., 2000).

Analysis of secondary metabolites. Analysis of novobiocin production by HPLC was carried out as described previously (Eustáquio et al., 2003).

RNA isolation and purification. For RT-PCR investigations, strains derived from S. coelicolor M512 were cultivated in 300 ml Erlenmeyer flasks as described above. After 72 h of cultivation the mycelia of 50 ml culture were collected by vacuum filtration. The cells were transferred to a 50 ml Falcon tube containing approximately 14 g 3.5–4.5 mm diameter glass beads and 15 ml modified Kirby mix (1 % (v/v) N-lauroylsarcosine, 6 % (w/v) sodium salicylate, 6 % (v/v) phenol (buffered to pH 8) in 20 mM Tris/HCl (pH 8.3)) and vortexed for 2 min. The cell suspension was sonicated six times for 30 s with 20 s intervals (Branson Sonifier 250). To this mixture an equal volume (15 ml) of phenol:chloroform:i-soamylalcohol (25:24:1) was added, followed by vortexing for 30 s and centrifugation (5000 g for 10 min at 4 °C). Clear supernatant was transferred to a clean 50 ml Falcon tube, mixed with an equal volume of 2-propanol and 0.1 volume of 3 M sodium acetate (pH 5.2), and left for 5 min at 20 °C. After centrifugation (5000 g for 20 min at 4 °C), the supernatant was discarded and the pellet was washed with 2 ml 70 % (v/v) ethanol. The pellet was dried and resuspended in 800 μl water. After resuspension, a DNase treatment was carried out with DNase 1 (10 U; Fermentas) according to the manufacturer’s instructions using 10 mM Tris/HCl (pH 7.5 at 25 °C), 2.5 mM MgCl2, 0.1 mM CaCl2 and RNase-free water. Subsequently, RNA was purified with the NucleoSpin RNA Clean-up kit (Macherey & Nagel) according to the manufacturer’s instructions and eluted from the column with 40 μl water. RNA was quantified by determination of A260. Integrity of RNA was checked by analysing 1 μg RNA on a 1.2 % agarose gel.

RT-PCR analysis. The reverse transcriptase reaction was carried out according to the ‘Protocol for First Strand cDNA Synthesis’ of Fermentas using 5 μg total RNA, 0.2 μg random hexamer primers, 50 mM Tris/HCl (pH 8.3 at 25 °C), 50 mM KCl, 4 mM MgCl2, 10 mM DTT, 20 U RiboLock RNase Inhibitor, dNTPs (10 mM each), RNase-free water and 200 U RevertAid M-MuLV reverse transcriptase (Fermentas). After the reverse transcriptase reaction, PCRs were carried out using the primers listed in Supplementary Table S2 in a 25 μl volume with 1 μl template (cDNA from the reverse transcriptase reaction described above), dNTPs (2.5 mM each), 50 pmol of each primer, 5 μl (v/v) DMSO, 10 mM Tris/HCl (pH 8.8 at 25 °C), 50 mM KCl, 0.08 % (v/v) Nonidet P40, 1.5 mM MgCl2 and 1 U Tag DNA polymerase: denaturation at 94 °C for 2 min, 26 cycles with denaturation at 94 °C for 30 s, annealing at 65.5 °C (novG and novS), 60.7 °C (novF, novH to novK, novO), 58 °C (novM, novP, novR, novU to novW), 56.2 °C (novL, novN, novT) or 55 °C (novE, novQ) for 15 s, extension at 72 °C for 10 s, and a final elongation step at 72 °C for 7 min. The PCR product was checked by analysing 2 μl of the PCR with 8 μl loading buffer [50 % (v/v) glycerol, 200 mM EDTA, 0.5 % xylene cyanol (Sigma)] on a 1.2 % agarose gel.

qRT-PCR analysis. qRT-PCR was carried out using the LightCycler RNA amplification kit SYBR Green 1 (Roche). Reaction mixtures were prepared using the primers listed in Supplementary Table S2 and following the manufacturer’s instructions; however, the MgCl2 concentration was reduced to 6.25 mM for investigations on novE, novF, novG, novH, novO and gyrB8, and to 12.5 mM for investigations on hrdB and novP. The reverse transcriptase reaction was carried out for 20 min at 50 °C. Subsequently, the following temperature profile was utilized for amplification: denaturation at 95 °C for 30 s, followed by 45 cycles at 95 °C for 1 s (temperature transition, 20 °C s⁻¹), 60 to 55 °C (novE, novG, novH and novO), 58 to 53 °C (hrdB and novQ), 56 to 52 °C (novF, novP and gyrB8) (step size, 0.7 °C; step delay, 1 cycle) for 10 s (temperature transition, 20 °C s⁻¹), and 72 °C for 13 s (temperature transition, 2 °C s⁻¹) with stepwise fluorescence acquisition at 60 to 55 °C, 58 to 53 °C and 56 to 52 °C in single mode. The number of copies of each sample transcript was then determined with the aid of LightCycler software and normalized to hrdB. The specificity of the PCR was verified by agarose gel electrophoresis on 2 % agarose gels.
EMSAs. The methods used for the EMSAs are described in the supplementary material.

Nucleotide sequence accession numbers (for information). The nucleotide sequences of the genes and DNA regions used in this study are available in the GenBank database under accession numbers AF170880 (novobiocin cluster), AF205854 (novobiocin resistance gene gyrbB^2) and NC_003888 (hrdB, locus tag SCO5820).

RESULTS

Insertion of transcriptional terminators and identification of promoter regions by RT-PCR analysis

A convenient method for the mapping of transcription units is the use of the Ω (omega) interposon, i.e. a DNA fragment containing an antibiotic resistance marker flanked by short inverted repeats which contain termination signals for transcription and translation (Prentki & Krisch, 1984; Raynal et al., 2006). Using Red/ET-mediated recombination (Gust et al., 2004), we inserted the 1.8 kb Ωaac cassette (Blondelet-Rouault et al., 1997) into the coding sequence of the genes novE, novF, novG, novH, novO and novS. In each case, the cassette was inserted between nucleotides 3 and 7 of the coding sequence of the gene, i.e. replacing the second codon of the coding sequence. The insertions were carried out using cosmids nov-BG1 as target (Eusta´quio sequence. The insertions were carried out using cosmid gene, i.e. replacing the second codon of the coding sequence of the genes novE, novF, novG, novH, novO and novS. The resulting cosmids with the inserted Ωaac cassettes were integrated into the genome of S. coelicolor M512 as described previously (Eusta´quio et al., 2005a). Southern blotting confirmed that in all integration mutants the entire cosmids had integrated site-specifically into the ΦC31 attachment site of the genomic DNA (data not shown).

When an S. coelicolor M512 strain carrying the intact novobiocin cluster was cultivated in production medium, RT-PCR experiments revealed the presence of transcripts for all genes of the novobiocin gene cluster (Fig. 2a). Controls without the reverse transcriptase confirmed that the detected signals were not due to contamination with genomic DNA.

Insertion of the Ωaac cassette into a transcription unit leads to termination of mRNA synthesis at the site of insertion. Transcription is reinitiated at the next active promoter sequence downstream of the Ωaac insertion site. As shown in Fig. 2(b, c and d), insertion of the Ωaac cassette into the second codon of novE, novF and novG led, as expected, to a complete abolition of the transcription of the affected genes themselves. In all three cases, however, transcripts of the adjacent gene, i.e. novF, novG and novH, respectively, were detectable, indicating the presence of promoter regions upstream of the latter genes. In contrast, insertion of Ωaac into novH led to a complete abolition of the transcription of novHIJKLMN, indicating that all of these genes are part of a single transcription unit (Fig. 2e). Transcripts were detected, however, for novO and the genes downstream thereof, indicating the presence of a promoter region upstream of novO.

This finding prompted us to generate three additional mutant strains, carrying Ωaac insertions in novO, novP and novQ. In the first two cases, transcripts of the adjacent genes, i.e. novP and novQ, were detected (Fig. 2f, g), indicating that promoter sequences are located upstream of these genes. As shown by the subsequent qRT-PCR experiments (see below), only small amounts of transcripts are generated from the promoters upstream of novO, novP and novQ. Therefore, only weak bands are seen for most genes downstream of novQ, and transcripts of novUVW are below the detection limit. In the strain with the Ωaac insertion in novQ, transcription of the following genes was completely abolished, indicating that novQ forms a transcription unit with these genes (Fig. 2h). This was confirmed by the insertion of Ωaac into novS, resulting in a complete abolition of the transcription of novSTUVW (Fig. 2i).

Therefore, our experiments showed that promoter regions are located upstream of novF, novG, novH, novO, novP and novQ. Experimental evidence for the promoter activity of the DNA regions upstream of novE and gyrbB^2 has been published previously (Dangel et al., 2008; Thiara & Cundliffe, 1989). Therefore, it can be concluded that at least eight DNA regions with promoter activity are present within the novobiocin cluster (Fig. 2k).

Fig. 2(h) appears to show a small amount of transcript for novV. However, we do not suggest that an additional promoter is present upstream of novV, as this band was only visible in this single experiment and not others, e.g. in Fig. 2(i).

The 16 genes from novH to novW are transcribed predominantly as a single polycistronic mRNA

Insertion of the Ωaac cassette into novH led to the complete termination of the transcription of novHIJKLMN (see above). Consistently, the strain carrying this insertion (hereafter called strain ΩnovH) did not produce any detectable amounts of novobiocin (<0.2 mg l$^{-1}$), while a strain carrying the intact cluster produced 51 mg novobiocin l$^{-1}$. The genes novQR, situated further downstream of novH, direct the biosynthesis of the prenylated 4-hydroxybenzoate moiety, also referred to as ‘ring A’ of novobiocin (Pojer et al., 2003a, b). If novQ and novR were well expressed in the ΩnovH strain, we would expect an accumulation of the ring A moiety (see Fig. 1). However, the ΩnovH strain accumulated only marginal amounts of ring A (<0.3 mg l$^{-1}$). This suggested that in the ΩnovH strain, novQ and novR are only transcribed to a low extent. We confirmed this speculation by qRT-PCR experiments, comparing the numbers of transcripts of novG, novH, novP and novQ in S. coelicolor M512(nov-BG1), carrying the intact cluster, with those in S. coelicolor M512(nov-JH4),
carrying the \(\Delta novH \) cluster. In the latter strain the number of transcripts of \(novH \) was reduced to \(<1\%\) in comparison with the former strain, but also the transcripts of \(novP \) and \(novQ \) were reduced to \(3\%\) in comparison with the former strain (Supplementary Fig. S1). This can be explained by the hypothesis that transcription of \(novO, novP \) and \(novQ \) (and of the genes located downstream thereof) is mainly controlled by the promoter located upstream of \(novH \), which initiates a large transcript containing all 16 genes from \(novH \) to \(novW \), while the promoter regions upstream of \(novO, novP \) and \(novQ \) have only minor relevance to the amounts of transcripts formed.

qRT-PCR investigations of the influence of \(novE \) and \(novG \) on the transcription of the novobiocin biosynthetic gene cluster

In order to investigate the influence of \(novE \) and \(novG \) on the transcription of the genes within the novobiocin cluster, we carried out qRT-PCR experiments. Suitable primer pairs were chosen for each of the eight genes located downstream of putative promoter sequences within the novobiocin cluster, i.e. \(novE, novF, novG, novH, novO, novP, novQ \) and \(gyrB^R \). Reaction conditions, i.e. annealing temperature and MgCl\(_2\) concentrations, were optimized for each primer pair until a linear relationship between the logarithm of the mRNA concentration and the cycle number was obtained over a concentration range of at least two orders of magnitude. The \(hrdB \) transcript, encoding the principal sigma factor of \(S. coelicolor \), was used as an internal standard, and the number of transcripts for each sample was normalized to \(hrdB \).

qRT-PCR analysis was then carried out, comparing the number of transcripts in three different strains. One strain carried the intact novobiocin cluster, and the two other strains carried clusters in which either \(novE \) or \(novG \) had been inactivated by an in-frame deletion (Dangel et al., 2008; Eustaquier et al., 2005b).

We first determined the time-course of novobiocin production (Fig. 3a). Only traces of novobiocin were detected within the first 48 h after inoculation, while the highest novobiocin production rate was observed between 72 and 96 h after inoculation. In contrast, dry cell weight increased between 24 and 72 h after inoculation (Siebenberg et al., 2009), confirming the earlier observation that novobiocin production starts at the transition from growth phase to stationary phase (Kominek, 1972).

As may be expected, the highest amounts of transcripts for the novobiocin biosynthetic genes \(novH, novO, novP \) and \(novQ \) were detected immediately before the onset of novobiocin production, i.e. 48 h after inoculation (Fig. 3e–h). Thereafter, the amount of transcripts decreased, but they were still clearly detectable after 72 and 96 h, i.e. in the early stationary phase. Expression of all four genes was perfectly synchronous, which is in accordance with the hypothesis that all these genes are transcribed as a single operon. During the active growth phase, i.e. 32 h after inoculation, hardly any transcripts were found for these four genes.

In contrast, transcripts for the two putative regulators \(novE \) and \(novG \) could clearly be detected at 32 h after inoculation, indicating that the expression of the regulatory genes (especially \(novE \)) is initiated earlier than the expression of the biosynthetic enzymes (Fig. 3b, d).

For the resistance gene \(gyrB^R \), a first maximum of transcripts was detected after 48 h, i.e. synchronous with the expression of \(novH \) and \(novOPQ \). It is tempting to speculate that this may be caused by co-transcription of \(gyrB^R \) with the genes from \(novH \) to \(novW \) on a single mRNA. In sharp contrast to \(novH \) and \(novOPQ \), however, the amount of transcripts for \(gyrB^R \) increased again after 72 h, i.e. at the time when novobiocin concentration started to rise. This is in accordance with the results of Thiara & Cundliffe (1989), who cloned the promoter region of \(gyrB^R \) into a promoter probe vector and showed (by expression in \(Streptomyces lividans \) TK24) that the promoter was induced by cultivation in the presence of novobiocin. Thiara & Cundliffe suggested that this induction is mediated by the change of superhelical density of chromosomal DNA (i.e. loss of negative supercoils), caused by the gyrase inhibitor novobiocin.

In contrast to the strain with the intact cluster, the two strains with in-frame deletions in the putative regulators \(novE \) and \(novG \) showed only marginal novobiocin production (Fig. 3a). Seven days after inoculation, the strain with the intact cluster had accumulated 45 mg novobiocin l\(^{-1}\) in this experiment, whereas the \(\Delta novE \) and \(\Delta novG \) strains had produced less than 0.4 mg l\(^{-1}\). The amounts of transcripts for the novobiocin biosynthetic genes \(novH \) and \(novOPQ \) were dramatically reduced in the \(\Delta novE \) and \(\Delta novG \) strains in comparison with the strain with the intact cluster (Fig. 3e–h), proving that \(novE \) and \(novG \) act as transcriptional regulators in novobiocin biosynthesis. Notably, \(novG \) transcription was also strongly reduced in the \(\Delta novE \) strain: at 48 h after inoculation, the amount of transcript was only 5% of that observed in the strain with the intact cluster (Fig. 3d). This suggests that \(novG \) expression is largely, though not entirely, dependent on the presence of \(novE \). In contrast, \(novE \) expression was still quite high in the \(\Delta novG \) strain (Fig. 3b), suggesting that \(novE \) expression is not dependent on \(novG \).

The predicted gene product of \(novF \) shows high sequence similarity to prephenate dehydrogenases and is therefore expected to supply 4HPP, the common precursor of both the prenylated 4-hydroxybenzoate moiety and the amino-coumarin moiety of novobiocin (Fig. 1). Transcription of \(novF \) is remarkably similar to that of \(novE \) in the strain with the intact cluster and in the \(\Delta novG \) strain (Fig. 3c), which indicates either close co-regulation or even co-transcription of both genes.
Fig. 3. qRT-PCR analysis of *S. coelicolor* M512(nov-BG1) containing the entire novobiocin biosynthetic gene cluster, *S. coelicolor* M512(nov-VD2) containing the novE-defective cluster and *S. coelicolor* M512(nov-AE10) containing the novG-defective cluster. (a) Production of novobiocin. (b–i) qRT-PCR analysis of the expression of selected genes of the novobiocin biosynthetic gene cluster.
Construction of an optimized novG expression vector for novobioacin overproduction

The results described above suggest that control of transcription from the promoter upstream of novH is the central mechanism for regulation of novobioacin biosynthesis. We tried to utilize this knowledge in order to increase novobioacin yields.

Transcription from the promoter upstream of novH is positively regulated by the DNA-binding protein NovG. The NovG binding site has been identified in the intergenic region between novG and novH. The palindromic sequence of this binding site (Fig. 4a) begins 2 bp downstream of the novG stop codon, i.e. 194 bp upstream of the novH start codon (Fig. 4a).

Using a previously constructed novG expression vector, pAE8 (Eustáquio et al., 2005b), we could increase novobioacin production in the heterologous novobioacin production strain 2.9-fold in comparison with the empty vector control. However, pAE8 contained not only the coding sequence of novG but also 135 bp of the intergenic region downstream of novG, i.e. it included the NovG binding site (Fig. 4b). We speculated that this was not an optimal construct to increase novobioacin production, since much of the translated NovG protein would bind to the NovG binding site in the multicopy plasmid pAE8, leaving only a fraction of the produced NovG available for binding within the novobioacin cluster. Therefore, we constructed a new novG expression plasmid, named pAE12, which contained just 1 bp of the intergenic region downstream of novG, and therefore did not contain the NovG binding site (Fig. 4c). Otherwise, this plasmid was identical to pAE8. Transformation of this plasmid into a heterologous expression strain carrying the intact novobioacin cluster resulted in 8.4-fold overproduction of novobioacin compared with the empty vector control. This is the most effective genetic method for the stimulation of novobioacin production identified so far.

DISCUSSION

The present study provides evidence for the role of novE and novG in the transcriptional regulation of novobioacin biosynthesis.

qRT-PCR experiments showed that effective transcription from the promoter upstream of novH depends on the presence of novG (Fig. 3). Transcription from this promoter may result in a large polycistronic mRNA containing all 16 genes from novH to novW which together direct all steps of novobioacin biosynthesis from glucose 1-phosphate and 4-HPP or tyrosine (Fig. 1). Possibly, even the resistance gene gyrBR is included in this transcript, extending it to a size of 20 kb. Transcripts of this size are not unusual in secondary metabolic gene clusters, as the coding sequences of modular polyketide synthase or non-ribosomal peptide synthase genes often span even larger DNA regions (Fischbach & Walsh, 2006).

Within the suggested large operon starting with novH, RT-PCR had indicated the presence of internal promoters upstream of novO, novP and novQ. Internal promoters within operons have been identified previously in Streptomyces, e.g. galP2, a low-level constitutive promoter internal to the galactose operon in S. lividans and S. coelicolor A3(2) (Westpheling & Brawner, 1989). A recent study (Laing et al., 2006) suggests that in S. coelicolor (in contrast to E. coli and Bacillus subtilis), expression levels of the individual genes of an operon decrease with increasing distance from the transcription start, and suggests that the frequently encountered internal promoters ensure adequate transcription of the terminal genes of an operon. Under our experimental conditions, however, transcription from the internal promoters upstream of novO, novP and novQ was low in the ΩnovH strain, and these promoters may not have a significant role in novobioacin biosynthesis.

For the first time, to our knowledge, our study shows that effective transcription of novG depends on the presence of novE (Fig. 3d). This suggests a cascade-like regulation mechanism of novE and novG, i.e. novE triggers transcription of novG, which in turn triggers transcription of the novobioacin biosynthetic genes. Consistent with this hypothesis, novobioacin formation in a novE-defective mutant could be restored by an intact copy of novG, while novobioacin formation in a novG-defective mutant remained low even after expression of novE (Dangel et al., 2008).

While we could prove that novE positively regulates transcription of novG, the precise mechanism of this regulation is as yet unknown. We could not demonstrate binding of the NovE protein to the DNA region upstream of novG (Dangel et al., 2008). Further proteins may be involved in the regulation by NovE. Also, the mechanism which controls transcription of novE is unknown. It should be noted, however, that novE contains a TTA codon, which is rare in Streptomyces. Expression of novE therefore depends on the expression of the gene for the UUA-specific
tRNA bldA, which appears to be involved in the regulation of secondary metabolism in streptomycetes (Chandra & Chater, 2008).

Notably, our RT-PCR results did not allow us to distinguish between low and high expression of the biosynthetic genes. Only the subsequent qRT-PCR revealed a correct picture of the amount of transcripts of the genes of novobiocin biosynthesis.

All experiments in the present study were carried out in a heterologous producer strain, which carries the novobiocin gene cluster integrated into the ΦC31 attachment site of the chromosome. As described for the genuine producer strain (Kominek, 1972), novobiocin production in the heterologous producer strain started at the transition from the growth phase to the stationary phase, suggesting that novE and novG expression was regulated in a similar timely fashion as in the genuine novobiocin producing strain. The mechanism that triggers expression of novE and novG remains to be elucidated for both strains.

ACKNOWLEDGEMENTS

We thank Alessandra Eustáquio for the construction of pAE12, Katrin Flinspach, Marc Burian and Vittoria Biasanzio for their help in qRT-PCR experiments, and Tilmann Weber for help in the bioinformatic analysis of the novobiocin biosynthetic gene cluster. This work was supported by grants from the European Commission (IP 003224 ActinoGEN) and from the Deutsche Forschungsgemeinschaft (SFB766).

REFERENCES

Edited by: C. W. Chen