The *Candida albicans* phosphatase Inp51p interacts with the EH domain protein Irs4p, regulates phosphatidylinositol-4,5-bisphosphate levels and influences hyphal formation, the cell integrity pathway and virulence

Hassan Badrane,† M. Hong Nguyen,† Shaoji Cheng,† Vipul Kumar,† Hartmut Derendorf,† Kenneth A. Iczkowski and Cornelius J. Clancy

1Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
2Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
3North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
4Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
5Department of Pathology, University of Colorado Health Science Center, Aurora, CO, USA

INTRODUCTION

The yeast *Candida albicans* is an opportunistic pathogen that causes a wide range of cutaneous, mucosal and systemic diseases in susceptible hosts. In causing diverse diseases, *C. albicans* does not depend upon the expression of a dominant virulence factor (Calderone & Fonzi, 2001). Rather, the pathogenesis of candidiasis requires the coordination of multiple processes in a manner that optimizes proliferation, invasion and tissue damage within a given *in vivo* environment (Mahan et al., 2000; Staib et al., 2000). Several properties of *C. albicans* that contribute to...
virulence have been characterized, including niche-specific regulation of central metabolic pathways, adhesion to host cells, secretion of hydrolytic enzymes, iron sequestration, phenotypic switching and morphogenesis (i.e. reversible transitioning between single-cell blastospores and filamentous pseudohyphae or hyphae) (Barelle et al., 2006; Calderone & Fonzi, 2001; Cheng et al., 2007; Fradin et al., 2003; Lorenz et al., 2004; Rubin-Bejerano et al., 2003).

Morphogenesis, in particular, has been extensively studied as a determinant of virulence. The disease-causing capacity of mutant \textit{C. albicans} strains that are unable to switch between yeast and hyphal morphologies is generally attenuated (Calderone & Fonzi, 2001; Kumamoto & Vinces, 2005). The identification of proteins and protein complexes that might be responsible for coordinating the multiple cellular processes that contribute to efficient morphogenesis has become an active area of research (Brand et al., 2007; Hausauer et al., 2005; Li et al., 2005; Martin & Konopka, 2004; Oberholzer et al., 2006; Walther & Wendland, 2004; Zheng et al., 2003).

In previous reports, we identified \textit{C. albicans} Irs4p as a protein that is reactive with antibodies in the sera of patients with candidiasis (Badrane et al., 2005; Nguyen et al., 2004). We showed that disruption of \textit{IRS4} results in abnormalities of cell wall integrity and chitin distribution, impaired hyphal formation during contact with solid agar and within murine kidneys, and attenuated virulence during disseminated candidiasis. Irs4p consists of 638 amino acids and contains a predicted epidermal growth factor substrate 15 homology (EH) domain. EH domains are highly conserved eukaryotic protein-binding regions that target the amino acid motif Asn-Pro-Phe (NPF) and form the framework of the EH network, an extensive protein interaction network that coordinates pathways regulating cell wall biogenesis and other cellular processes (de Beer et al., 1998; Confalonieri & Di Fiore, 2002; Salcini et al., 1997; Santolini et al., 1999; Tang et al., 2000). \textit{C. albicans} Irs4p is the sole homologue of the duplicated \textit{Saccharomyces cerevisiae} proteins Irs4p and Tax4p, which were recently shown to bind and activate Inp51p, a phosphatidylinositol-(4,5)-bisphosphate \([\text{PI(4,5)P}_2]\) 5-phosphatase (Morales-Johansson et al., 2004). Levels of \text{PI}(4,5)\text{P}_2 are elevated in both \textit{S. cerevisiae} \text{irs4/tax4} and \textit{inp51} null mutants. These strains, however, do not exhibit readily apparent phenotypes unless they are constructed in the presence of mutations to other phosphatases or disturbances in the cell integrity pathway (Böttcher et al., 2006; Morales-Johansson et al., 2004; Singer-Kruger et al., 1998; Stefan et al., 2002, 2005; Stolz et al., 1998a, b).

Like \textit{S. cerevisiae} \textit{INP51}, \textit{C. albicans} \textit{INP51} encodes a synaptojanin-like protein with a C-terminal 5-phosphatase domain and an N-terminal \text{Sac}I-like domain. \textit{C. albicans} Inp51p also possesses an NPF motif, suggesting that it is likely to be targeted by the EH domain of Irs4p. In the present study, we tested the hypothesis that \textit{C. albicans} Inp51p and Irs4p interact and regulate levels of \text{PI}(4,5)\text{P}_2. In addition, we investigated the effects of \textit{INP51} disruption on cell wall integrity, chitin distribution, hyphal formation and virulence during murine disseminated candidiasis. Finally, we determined whether Inp51p and Irs4p regulate activation of the cell integrity pathway.

METHODS

Strains, media, growth conditions and transformation. \textit{C. albicans} strains used or constructed in this study are described in Table 1 (Badrane et al., 2005; Fonzi & Irwin, 1993; Gillum et al., 1984). The \textit{inp51} null mutant strains were created using the \text{TAT1} flipper method (details below), and \textit{C. albicans} \text{SC5314} served as reference wild-type strain. The \textit{irs4} null mutant had been created previously using the ura-blaster method (Badrane et al., 2005), and \textit{C. albicans} CAI-12 was used as reference wild-type strain. All strains were routinely grown in yeast peptone dextrose (YPD) liquid medium (1% yeast extract, 1% bactopeptone, 2% \%[\text{o}]-glucose), or on YPD agar or Sabouraud dextrose agar (SDA) at 30°C. To induce hyphal formation in liquid media, \textit{C. albicans} strains grown overnight on YPD were subcultured into liquid YPD supplemented with 5 or 10% fetal calf serum (FCS) or liquid RPMI-1640 (Sigma-Aldrich) at 37°C. To induce hyphal formation on solid media, overnight-grown \textit{C. albicans} were spotted on Spider medium, Medium 199 (M-199) (Gibco–BRL, adjusted to pH 7.5), modified Lee’s, and YPD medium supplemented with 5% FCS and grown at 37°C. To evaluate growth under embedded conditions, ~100 \textit{C. albicans} cells subcultured at early exponential phase were mixed into 20 ml molten YPD, YPD + 5% FCS, YPD-reverse [BASF pluronic polyol F-127, kindly provided by the Fungal genetics Stock Center (FGSC); www.fgsc.net]. Spider or M-199 agar, and incubated for 3 days at 30 or 37°C. Reverse agar is a lock polymer of polyoxypolyethylene and polyoxyethylene that can be used as a replacement for conventional agar in solid media. For targeted homologous recombination in \textit{C. albicans}, we used either transformation by electroporation (Reuss et al., 2004) or the lithium/cesium acetate protocol provided with the Alkali–Cation Yeast kit (QBiogene).

Yeast two-hybrid system and co-immunoprecipitation. \textit{C. albicans} IRS4 was subcloned into pAlter-1 for use with the Altered Sites II \textit{in vitro} mutagenesis system (Promega). We substituted five CTG codons with TCT for correct translation in \textit{S. cerevisiae}. These CTG codons encode serine residues at positions 101, 125, 361, 414 and 429. \textit{C. albicans} \textit{INP51} has only one CTG codon (encoding a serine residue at position 856), which we did not substitute. The Matchmaker two-hybrid system 3 (Clontech) was used to test the interaction between Irs4p and Inp51p in \textit{S. cerevisiae}, as per the manufacturer’s instructions. Briefly, \textit{C. albicans} \textit{IRS4} and \textit{C. albicans} \textit{INP51} were subcloned in pGBK7 and pGADT7-Rec, respectively, and plasmids were extracted and co-transformed, using the lithium acetate protocol, in strain AH109 (\textit{Trp}+, \textit{Leu}+, \textit{Ade}−, \textit{His}−). Transformants were plated in SDA medium without Trp, Leu, Ade and His. The interaction was confirmed using the Profound c-myc tag IP/Co-IP kit (Pierce) after co-transcription/translation using \text{TnT} T7 Quick for PCR DNA (Promega). Primers were designed to introduce optimal signals for \textit{in vitro} transcription/translation and to amplify \textit{IRS4} and \textit{INP51} tagged with c-Myc and haemagglutinin (HA), respectively. \text{TnT} T7 was used as per manufacturer recommendations along with EasyTag L-[\text{35S}]methylthionine (Perkin Elmer) to generate labelled Irs4p-c-Myc and Inp51p-HA. Since expression of the full-length \textit{INP51} resulted in low yields, a C-terminal fragment encompassing the last 475 residues of Inp51p was amplified and tagged with HA (Inp51p-C-HA). Samples (10μl) of each of the labelled products were mixed and incubated at room temperature with gentle shaking for 1 h; then, 10μl of anti-c-Myc or anti-HA antibody-coupled agarose was added to the mixture and incubated at

http://mic.sgmjournals.org
that introduced appropriate restriction sites. These fragments were amplified by PCR using primers that flanked the ends of the targeted gene. The resulting plasmid was extracted and linearized with restriction enzymes. The non-coding sequence was amplified and used as F1 for gene reinsertion. In parallel, the full gene with 1 kb of downstream non-coding sequence was amplified and used as F2 for gene reinsertion. All positive events of homologous recombination and excision were confirmed by Southern blotting. Transformants were grown on selective medium plates containing 200 μg/ml of 5-fluoroorotic acid (5-FOA) for 3–4 days, and grown overnight in maltose-based medium to induce excision of the disruption cassette. Homologous recombination events were confirmed by Southern blotting. Post-screening plasmids were isolated, and the inserts were sequenced by Sanger sequencing. The plasmid cassette was then used to complement the strains. To ensure that the complementation events were specific, the complemented strains were screened for positive excisions to enable the strain for another round of disruption. Each of the following experiments was performed in triplicate.

Gene disruption. The SAT1 flipper tool was used for INP51 gene disruption (Reuss et al., 2004). Briefly, fragments at the 5′ (F1) and 3′ (F2) ends of the targeted gene were amplified by PCR using primers that flanked the appropriate restriction sites. These fragments were subcloned into pSFS-2A between KpnI and XhoI, and SacII and SacI sites, respectively. In parallel, the full gene with 1 kb of downstream non-coding sequence was amplified and used as F1 for gene reinsertion. The resulting plasmid was extracted and linearized with KpnI and SacI, and introduced into competent C. albicans cells by electroporation. Transformants were grown on selective medium plates containing 200 μg/ml of streptomycin and chloramphenicol. The sample analysis was performed using an HPLC system consisting of a quaternary pump (Series 200, Perkin Elmer) and a manual injector with 5 ml stainless steel loop (Rheodyne). Chromatographic separation was achieved on a Partisphere SAX column (5 μm, 4.6 mm × 25 cm, Whatman) for 2–3 days, and then screened by PCR. Positive transformants were grown overnight in maltose-based medium to induce excision of the plasmid cassette, plated on selective medium plates for 3–4 days, and screened for positive excisions to enable the strain for another round of targeted recombination. All positive events of homologous recombination and excision were confirmed by Southern blotting.

Myo-[2-3H]inositol labelling, extraction of inositol lipids, and HPLC of deacylated lipids. For phosphoinositide analysis, we followed a procedure reported elsewhere (Dove et al., 2004). Briefly, cells were harvested by centrifugation, and the pellets were resuspended in 500 μl of 1× PBS containing 10% glycerol. The sample analysis was performed using an HPLC system consisting of a quaternary pump (Series 200, Perkin Elmer) and a manual injector with 5 ml stainless steel loop (Rheodyne). Chromatographic separation was achieved on a Partisphere SAX column (5 μm, 4.6 mm × 25 cm, Whatman) for 2–3 days, and then screened by PCR. Positive transformants were grown overnight in maltose-based medium to induce excision of the plasmid cassette, plated on selective medium plates for 3–4 days, and screened for positive excisions to enable the strain for another round of targeted recombination. All positive events of homologous recombination and excision were confirmed by Southern blotting.

SDS and calcofluor white. Cultures from overnight grown cells were subcultured in YPD liquid medium with 1% glucose until the exponential phase and diluted to OD_{600} 0.1. Samples (4 μl) of undiluted and serial 10-fold dilutions of each culture were spotted onto YPD plates containing calcofluor white (40 μg ml^{-1}) or SDS (0.02%). The plates were incubated at 30 °C for 72 h.
Zymolyase. Exponentially grown C. albicans cells at OD₅₉₉ = 0.8 were incubated with 100 µg zymolyase 20T ml⁻¹ (Sigma-Aldrich) in 10 ml Tris-HCl, pH 7.5. An aliquot was removed at timed intervals and the OD₅₉₉ was measured. The OD₅₉₉ was plotted against time of incubation.

Caspofungin. Sensitivity to caspofungin (Merck Research Laboratories) was measured in a 48-well microtitre plate. Organisms grown overnight in YPD at 30 °C were diluted to OD₆₀₀ = 0.1 in YPD. Caspofungin was added at concentrations ranging from 0.075 to 20 µg ml⁻¹ and transferred to the microtitre plate (800 µl per well). The plate was incubated at 30 °C with shaking at 250 r.p.m. and OD₅₉₉ was measured every hour.

Staining of chitin. C. albicans cells were grown either as a suspension in YPD liquid culture to exponential phase or embedded in solid medium for 3 days. Cells were washed three times for staining and imaging. For chitin staining, cells were incubated for 5 min at room temperature in 0.1 mg calcofluor white ml⁻¹, and then washed three times in cold PBS (1 x) (3.2 mM Na₂HPO₄, 0.5 mM KH₂PO₄, 1.3 mM KCl, 135 mM NaCl, pH 7.3). Slides were viewed in a Zeiss Axioskop2 microscope equipped for epifluorescence, using the appropriate filter for each fluorescent compound, and images were digitized with a camera connected to Epilab software, at x1000 magnification.

Murine disseminated candidiasis and histopathology. Groups of 10–12 seven-week-old male ICR mice (Harlan-Sprague) were inoculated by intravenous injection of the lateral tail vein with 1 x 10⁶ c.f.u. C. albicans. For mortality studies, mice were followed until they were moribund, at which point they were sacrificed, or for 42 days. Survival curves were calculated according to the Kaplan–Meier method using the Prism program (GraphPad Software) and compared using Newman Keuls analysis; a P value of < 0.05 was considered significant. For tissue burden, mice were infected as above with 5 x 10⁵ c.f.u. Mice (6–8 per group per time point) were sacrificed 24 h and 4 days post-inoculation, and their kidneys were aseptically removed. The kidneys were weighed, homogenized in 2 ml sterile PBS (1 x) (3.2 mM Na₂HPO₄, 0.5 mM KH₂PO₄, 1.3 mM KCl, 135 mM NaCl, pH 7.3), and serial dilutions were plated on SDA plates containing pipericillin (60 µg ml⁻¹) and amikacin (60 µg ml⁻¹). The plates were incubated at 30 °C for 48 h, after which the number of c.f.u. was determined. Values were expressed as log₁₀(c.f.u. per gram kidney). The differences in kidney burden between strains were determined by the Wilcoxon rank sum test; a P value < 0.05 was determined to be statistically significant.

For staining of C. albicans cells recovered from murine kidneys, aliquots from homogenized kidneys were fixed in formalin, washed in cold water and stained with calcofluor white as described above. Samples were visualized under a fluorescence microscope to search for C. albicans hyphae. Histopathology was performed by a pathologist blinded to the experimental design. Kidneys were collected 4 days post-inoculation, and fixed with formalin and embedded in paraffin, after which thin sections were prepared and stained with periodic acid–Schiff (Churukian et al., 1986; Churukian & Schenk, 1977). For each strain, kidneys from three mice were chosen for image analysis. TIF images were captured of all the tissue on each of the slides. The images were analysed on a Windows XP PC using the public domain National Institutes of Health (NIH) image program Image J (http://rsb.info.nih.gov/ij/image/) developed at the NIH. For each image, outline splines were traced around the total area(s) of tissues, and another series of outline splines was traced around the area(s) involved in acute inflammation. At least 20 images for each kidney were analysed. The percentage of the total area with the inflammation was calculated and expressed as mean ± SD. Values were compared by t test.

Protein extraction and Western blotting. C. albicans cells were grown to mid-exponential phase in YPD medium, then harvested and centrifuged at 4 °C, and processed as previously described (Navarro-Garcia et al., 1998). Protein concentration was determined using the Bio-Rad Protein Assay and equal amounts of proteins (usually 150–200 µg per lane) were loaded. After SDS-PAGE migration and transfer to a nitrocellulose membrane, Mkc1p was detected with either an anti-Mkc1p (kindly provided by Jesús Pla, Universidad Complutense de Madrid) or the anti-phospho-p44/42 MAP kinase (Thr202/Tyr204) antibody (Cell Signaling Technology).

RESULTS

C. albicans Irs4p and Inp51p physically interact

Our first objective was to determine whether C. albicans Inp51p interacts with Irs4p. As an initial step, we adapted a yeast two-hybrid system (Matchmaker two-hybrid system 3; Clontech), in which the Inp51p (bait) and Irs4p (prey) interaction would activate expression of ADE2, HIS3 and MEL1 (x-galactosidase) reporters in S. cerevisiae strain AH109. Such experiments are complicated by C. albicans non-canonical codon usage, in which CTG codons encode serine instead of leucine. To account for this, we substituted five CTG codons in C. albicans IRS4 with TCT to match universal codon usage. C. albicans INP51 and the modified IRS4 were subcloned into pGBK7-Rec (binding domain vector, expressing TRP1 as a selection marker) and pGAD77 (activation domain vector, expressing LEU2), respectively. Co-transformation of S. cerevisiae AH109 (auxotroph for Trp and Leu) with both plasmids yielded viable transformants on SDA (Trp[−], Leu[−], Ade[−], His[−]) medium, as did the positive control plasmids carrying SV40 large T antigen-HA and murine p53-c-Myc. In this system, the adenine and histidine nutritional selection markers add a level of stringency that minimizes false positives, as S. cerevisiae AH109 transformants containing both pGBK7-Rec and pGADT7 vectors will only grow on SDA (Trp[−], Leu[−], Ade[−], His[−]) medium if the tested proteins interact physically. Moreover, the transformants were positive for x-galactosidase activity, as indicated by the presence of blue colonies in the presence of X-x-gal. As negative control, co-transformation of AH109 with pGADT7 carrying the modified IRS4 and pGBK7-Rec carrying INP51 in the reverse orientation did not yield transformants on SDA (Trp[−], Leu[−], Ade[−], His[−]) medium, since the ADE2 and HIS3 reporters were not activated. As anticipated, the negative control was able to grow on SDA (Trp[−], Leu[−], Ade[−], His[−]) medium. Upon the addition of X-x-gal to this medium, the large T antigen/p53 positive control and Inp51/Irs4 co-transformants clearly grew as blue colonies, whereas the negative control co-transformants did not (see Supplementary Fig. S1).

To verify the Inp51p-Irs4p interaction that was suggested by the yeast two-hybrid results, we performed co-immunoprecipitation experiments following co-transcription/translation. We initially amplified complete ORF sequences of IRS4 and INP51 from their plasmids so that
the resulting fragments encompassed optimal signal sequences for in vitro transcription and translation, as well as c-Myc and HA tags, respectively. Expression of the full-length INP51, however, resulted in low yields. For this reason, the C-terminal fragment encompassing the last 475 residues of Inp51p (Inp51p-C) was then amplified, and sufficient yield was obtained after in vitro expression (Fig. 1a). The in vitro expression products were mixed, and both Irs4p-c-Myc and Inp51p-C-HA were immunoprecipitated using either anti-c-Myc or anti-HA antibodies (Fig. 1b). As positive controls, SV40 large T antigen-HA and murine p53-c-Myc were co-immunoprecipitated using either of the two antibodies, consistent with the anticipated interaction between these proteins. As negative controls, Irs4p-c-Myc was mixed with SV40 large T antigen-HA and Inp51p-C-HA with p53 c-Myc. Upon immunoprecipitating the first mixture with anti-HA, only large T antigen was pulled down (Fig. 1b). Likewise, only p53 was pulled down when the second mixture was immunoprecipitated with anti-c-Myc.

The predicted sequence of C. albicans Inp51p reveals a C-terminal NPF motif at residue 965. To determine whether the region of Inp51p that includes the NPF motif is responsible for the interaction with Irs4p, we expressed Inp51p-C-ΔNPF-HA, which has a deletion of the last 22 amino acids including the NPF motif. This truncated version of Inp51p-C no longer showed the interaction with Irs4p-c-Myc (Fig. 1b). Sufficient expression of Inp51p-C-ΔNPF-HA was confirmed by immunoprecipitation with anti-HA antibody (Fig. 1b).

Irs4p and Inp51p negatively regulate levels of PI(4,5)P2

To determine whether C. albicans Inp51p and Irs4p regulate PI(4,5)P2, we measured intracellular phosphoinositide levels for isogenic null mutant and complemented strains using HPLC (Dove et al., 1997). In our previous study, using the ura-blaster method, we created an irs4 null mutant strain, which was then complemented with the full

Fig. 1. C. albicans Irs4p and Inp51p interact physically. (a) IRS4 and INP51-C (C-terminal fragment) were cloned into vectors conferring T7 modules for in vitro expression in addition to c-Myc and HA tags, respectively. Cassette were PCR-amplified and expressed in vitro using the co-transcription/translation TnT system in the presence of [35S]methionine (see Methods), and separated by SDS-PAGE. SV40 large T antigen-HA and murine p53 c-Myc genes encode interacting proteins that were used as a positive control in co-immunoprecipitation experiments. (b) Products of in vitro expression from candidate genes for interaction were mixed, then immunoprecipitated with anti-c-Myc (lanes 1, 3, 5 and 7) or anti-HA (lanes 2, 4, 6 and 8) antibodies. Irs4p-c-Myc and Inp51p-C-HA were co-immunoprecipitated by either of the two antibodies, consistent with a physical interaction between them (lanes 1 and 2). The physical interaction was no longer apparent when Irs4p was mixed with Inp51p-C-ΔNPF-HA, a truncated version of Inp51p-C-HA in which 22 amino acids (including the NPF motif) at the C terminus were removed (lanes 3 and 4). As negative controls, Inp51p-C-HA was mixed with p53-c-Myc and Irs4p-c-Myc was mixed with large T antigen HA. As anticipated, anti-c-Myc immunoprecipitated only p53-c-Myc and anti-HA immunoprecipitated only large T antigen (lanes 5 and 6). As positive control, large T antigen HA and p53-c-Myc were co-immunoprecipitated using either of the two antibodies (lanes 7 and 8).
IRS4 ORF (Badrane et al., 2005). In this study, we used the SAT1 flipper technique for targeted homologous recombination to successively knock out both alleles of INP51, creating the null mutant strain inp51_2KO. The full gene with 1 kb downstream non-coding DNA was then reinserted in the null mutant background (creating strain 2KO_Rein51), and all recombination events were verified using Southern blotting (see Supplementary Fig. S2). For both genes, the null mutant and complemented strains showed growth rates that were indistinguishable from those of wild-type strains when cultured in YPD media.

We were able to detect four different phosphoinositides in all strains: phosphatidylinositol 3-phosphate (PI3P), phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and PI(4,5)P2. Under routine growth conditions, PI4P was the major peak (7.1 % of total signal), followed by PI(4,5)P2 (4.9 %), PI3P (2.7 %) and PI(3,5)P2 (<0.1 %). The number and relative distribution of phosphoinositides was similar to that of S. cerevisiae, with significantly lower levels of PI(3,5)P2 than the others (Bonangelino et al., 2002; Morales-Johansson et al., 2004). In both C. albicans inp51 and irs4 null mutant strains, we observed a significant increase in PI(4,5)P2 levels to approximately twice the levels of wild-type strains (Fig. 2a). Levels of PI(4,5)P2 were re-established to wild-type levels in the irs4 null mutant complemented with one copy of IRS4. The complementation was partial upon reintroduction of one copy of INP51 to the inp51 null mutant, indicating a possible dosage effect. The null mutants did not show any significant changes in the three other detected phosphoinositides (Fig. 2b).

![Graph](a)

![Graph](b)

Fig. 2. Disruption of IRS4 or INP51 increases intracellular levels of PI(4,5)P2. Cells were grown at 30 °C in the presence of myo-[2-3H]inositol, lipids were extracted, deacylated and separated by HPLC, and relative levels of phosphoinositides were quantified. CAI-12, irs4 and Re-IRS4 are wild-type, null mutant (irs4Δ/irs4Δ) and complemented strains (irs4Δ/IRS4) for IRS4. SC5314, inp51 and Rein51 are wild-type, null mutant (inp51Δ/inp51Δ) and complemented strains (inp51Δ/INP51) for INP51. (a) The y axis represents PI(4,5)P2 levels (3H c.p.m.) and the x axis shows the respective strains. Asterisks indicate that PI(4,5)P2 levels of both irs4 and inp51 null mutants were significantly higher than those of corresponding wild-type strains (P<0.01, t test). The PI(4,5)P2 levels of the IRS4-complemented strain are similar to those of CAI-12. The INP51-complemented strain, on the other hand, showed levels that were significantly lower than those of the null mutant but higher than those of SC5314 (P<0.05). (b) Disruption of IRS4 or INP51 does not affect intracellular levels of other phosphoinositides.
Disruption of INP51 leads to cell wall defects, impaired contact-induced hyphal formation and abnormal chitin distribution

We next assessed the effects of INP51 disruption on cell wall integrity, hyphal formation and chitin distribution. The inp51 null mutant strain (inp51_2KO) was more susceptible to the cell wall-active agents calcofluor white, SDS, zymolyase and caspofungin than the wild-type (C. albicans SC5413) and complemented strains (data not shown). When compared with the wild-type strain during growth on the surface of solid agar or embedded within agar, the null mutant was impaired in hyphal formation. The ability to form hyphae was restored upon complementation with one copy of INP51 (2KO_Rei-INP51) (Fig. 3). Like the irs4 null mutant, the inp51 mutant was indistinguishable from strain SC5314 when grown under hyphal-inducing conditions in liquid media (5 and 10% FCS, data not shown). Finally, calcofluor white staining of inp51 mutant cells grown under embedded conditions revealed abnormal distribution of chitin along the hyphal walls (Fig. 4). No defects in chitin distribution were detected in yeast, hyphal or pseudohyphal cells among our strains when grown in YPD liquid media at 30 or 37 °C (data not shown). For each of the phenotypes tested, the effects of disrupting INP51 were identical to those previously observed with IRS4 disruption (Badrane et al., 2005). Moreover, similar results were obtained using independently created inp51 null mutant and complemented strains.

INP51 contributes to the pathogenesis of disseminated candidiasis

We assessed the contribution of INP51 to the pathogenesis of disseminated candidiasis by studying multiple end points in intravenously infected mice. First, we infected groups of 8–12 ICR mice via the lateral tail vein with 1 × 10⁶ c.f.u. per mouse and followed survival over 42 days. As expected, SC5314 killed all mice by 7 days (Fig. 5). In contrast, null mutant strains (inp51_2KO) killed only one-third of mice by the end of the study (P<0.001). The complemented strain killed all mice within 8 days (P<0.001 versus null mutant).

Next, we quantified viable C. albicans within the kidneys of non-moribund mice 24 h and 4 days after intravenous inoculation of 5 × 10⁷ c.f.u. per mouse (groups of 6–8 mice per time point). At both time points, the kidneys of mice infected with wild-type and complemented strains exhibited significantly higher C. albicans concentrations than those of mice infected with the null mutant strain (Table 2).

Finally, we performed histopathological evaluations on the kidneys recovered after day 4 from three mice infected with each isolate. The extent of inflammation was significantly greater for the kidneys of mice infected with the wild-type strain compared with the null mutant, as measured on thin section images by a pathologist blinded to the experimental design (Table 2). The complemented strain yielded intermediate results. Extended filamentous morphologies of both wild-type and complemented strains were clearly evident within areas of acute inflammation (Fig. 6). The null mutant, on the other hand, was difficult to locate within areas of inflammation, and filamentous forms were rarely identified. The null mutant also demonstrated abnormal chitin distribution along the hyphal walls upon calcofluor white staining of cells recovered from infected kidneys, consistent with the findings during in vitro embedded growth (Fig. 7).

The cell integrity pathway is overactivated in irs4 and inp51 mutants

The C. albicans cell integrity pathway was recently shown to be necessary for hyphal formation during contact with solid agar but not in liquid media (Kumamoto, 2005). The regulation of PI(4,5)P₂ levels by S. cerevisiae Ire4p–Inp51p potentially plays a role in repressing the cell integrity pathway, but only in the presence of mutations to other negative regulators of the pathway (Bickle et al., 1998; Morales-Johansson et al., 2004). To determine if the cell integrity pathway was affected in our irs4 and inp51 mutant strains, we assayed the phosphorylation of Mkc1p, a MAP kinase that is phosphorylated upon activation of the pathway. Under conditions in which the pathway is known to be inactive in wild-type cells (growth as yeast in liquid
YPD medium at 30 °C (Navarro-Garcia et al., 1998), it was also inactive in the mutant strains (Fig. 8a). As anticipated, the pathway was activated in wild-type strains during embedded growth and in the presence of 10 mM H₂O₂ (Kumamoto, 2005; Navarro-Garcia et al., 1998). We also demonstrated activation of the pathway in the wild-type strain grown under hyphae-inducing conditions in liquid media (YPD + 10% FCS, 37 °C). Under each of the activating conditions, excess phosphorylated Mkc1p accumulated in both mutant strains, consistent with pathway overactivation (Fig. 8a, b). This overactivation was greater in the *irs4* mutant than in the *inp51* mutant. It is of note that the expression of Mkc1p did not differ between wild-type and mutant strains for any of the conditions.

DISCUSSION

In the present study, we demonstrated that *C. albicans* Irs4p and Inp51p physically interact and regulate PI(4,5)P₂ homeostasis. Targeted disruption of either *IRS4* or *INP51* resulted in significantly increased levels of PI(4,5)P₂ but no changes in PI3P, PI4P or PI(3,5)P₂ levels, consistent with results reported for the corresponding *S. cerevisiae* null mutants (Morales-Johansson et al., 2004). At the same time, *C. albicans* *irs4* and *inp51* null mutant strains exhibited phenotypes that have not been reported in *S. cerevisiae*, including impaired contact-induced hyphal formation, increased sensitivity to cell wall-active drugs and attenuated virulence. Moreover, the cell integrity

Fig. 4. Disruption of *INP51* results in an abnormal distribution of chitin in the *C. albicans* cell wall. Calcofluor white staining of wild-type (SC5314) and the complemented (2KO_Rei-INP51) strains during embedded growth reveals a normal distribution of chitin along the cell wall and at septae. In the *inp51* null mutant, on the other hand, there are numerous abnormal accumulations of chitin along the hyphal cell wall (indicated by arrowheads).

Fig. 5. Disruption of *INP51* attenuates mortality during murine disseminated candidiasis. Mice infected via the lateral tail vein with the *inp51* null mutant (INP51_2KO) strain survived significantly longer than mice infected with wild-type (SC5413) or complemented (2KO_Rei-INP51) strains (P<0.001).
pathway was overactivated in the C. albicans irs4 and inp51 mutants in response to stress and hyphal-inducing stimuli, whereas the S. cerevisiae mutants only demonstrate such overactivation in the presence of mutations to other negative regulators of the pathway (Morales-Johansson et al., 2004). The abnormal phenotypes of the C. albicans null mutants were reversed upon reintroduction of the respective genes and the accompanying reductions in PI(4,5)P2 levels. Taken together, our findings suggest that the interacting C. albicans proteins Irs4p and Inp51p are important in coordinating cellular processes that contribute to invasive growth and virulence under conditions of cell wall tension, such as those encountered within solid agar or during tissue invasion.

It is likely that Irs4p and Inp51p mediate their cellular effects, at least in part, through negative regulation of PI(4,5)P2 levels. PI(4,5)P2 is one of several phosphoinositides that play structural roles in membrane biogenesis and have emerged in the past decade as membrane sensors and second messengers (Daum et al., 1998). PI(4,5)P2 and other phosphoinositides are synthesized in different cell compartments by phosphatidylinositol kinases and phosphatases, and they have the ability to interact with specific domains of target proteins (Sprong et al., 2001). Because phosphoinositides are rapidly modified by headgroup phosphorylation–dephosphorylation, they can transiently and locally activate or deactivate signalling pathways. In so doing, they coordinate diverse processes, including cell wall organization, cell signalling, cytoskeleton regulation, and endocytic and exocytic trafficking (Martin, 1998; Lemmon, 2003). It is of note that efficient hyphal formation depends upon the careful coordination of these cellular processes. As such, dysregulation of PI(4,5)P2 is consistent with cell wall abnormalities, impaired hyphal formation and attenuated virulence, as seen in our mutants. In interpreting our

Table 2. Tissue burdens and areas of acute inflammation within murine kidneys

<table>
<thead>
<tr>
<th>Strain</th>
<th>Tissue burdens [log(c.f.u. per gram kidney)]</th>
<th>Inflammation (percentage area)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>4 days</td>
</tr>
<tr>
<td>Wild type</td>
<td>4.97 ± 0.41</td>
<td>5.52 ± 0.41</td>
</tr>
<tr>
<td>inp51 mutant</td>
<td>4.16 ± 0.33†</td>
<td>4.22 ± 0.29δ</td>
</tr>
<tr>
<td>Complemented strain</td>
<td>5.08 ± 0.42</td>
<td>5.13 ± 0.23</td>
</tr>
</tbody>
</table>

*The percentage of the total area with the inflammation expressed as mean ± SD.
†P=0.001 versus both wild-type and complemented strain.
§P<0.0001 and =0.001 versus wild-type and complemented strain, respectively.
§P=0.03 and 0.09 versus wild-type and complemented strain, respectively.

Fig. 6. The inp51 null mutant causes significantly less disease within the kidneys of mice during disseminated candidiasis than the complemented or wild-type strains. Mice infected with the respective strains were sacrificed on the fourth day of disseminated candidiasis and kidneys were harvested. (a) The null mutant was extremely rare to absent within areas of inflammation. Rare filamentous forms of the null mutant were identified. The arrow points to a yeast (appearing red) within an area of inflammation (periodic acid–Schiff; ×400 magnification). (b) The complemented strain was evident as clumps of extended filaments (appearing red) within widespread areas of acute inflammation in both tubules and glomeruli (arrow) (periodic acid–Schiff stain; ×400 magnification). Filamentous forms were abundant (arrow). Similar results were obtained with strain SC5314 (not shown). Bars, 60 μm.
results, it is important to recognize that global cellular levels of phosphoinositides, as measured in this study, might be less relevant to the observed phenotypes than local subcellular derangements.

Our data support a model in which Irs4p binds the NPF motif of Inp51p. We used a yeast two-hybrid system that we adapted to account for C. albicans non-canonical codon usage to demonstrate a likely interaction between full-length Irs4p and Inp51p. We then confirmed our findings by co-immunoprecipitating Irs4p (Irs4p-c-Myc) and the C terminus of Inp51p (Inp51p-C-HA). Deletion of the NPF motif from Inp51p (Inp51p-C-ΔNPF-HA) failed to co-immunoprecipitate with Irs4p-c-Myc. It is of note that Irs4p contains an EH domain between residues 532 and 627, which is a highly conserved eukaryotic signalling module that binds NPF motifs (de Beer et al., 1998; Confalonieri & Di Fiore, 2002; Salcini et al., 1997; Santolini et al., 1999; Tang et al., 2000). In future studies, we will use site-directed mutagenesis to conclusively demonstrate that the Irs4p–Inp51p interaction is mediated by the EH domain and NPF motif, respectively, and that the interaction is directly responsible for the regulation of PI(4,5)P2 levels.

The attenuation of virulence seen with the disruption of INP51 was evident from multiple end points during intravenously disseminated candidiasis in mice, including mortality, tissue burdens and inflammation. Interestingly, the wild-type C. albicans strain caused significantly higher burdens of infection and larger areas of inflammation than the null mutant within the kidneys after 4 days of disseminated candidiasis, whereas the complemented strain showed trends toward intermediate results. These observations were consistent with the relative levels of PI(4,5)P2 for the strains, suggesting a possible dose effect on

Fig. 7. The abnormal chitin distribution is also expressed in vivo. Mice were infected via the lateral tail vein with either wild-type or inp51 null mutant (INP51_2KO) strains, and sacrificed at day 4 post-infection. They were dissected, kidneys were harvested and homogenized in saline solution, and an aliquot was stored in formalin. Samples were washed in cold water, stained with calcofluor white, washed again and visualized under a fluorescence microscope to search for C. albicans hyphae. In addition to the expected staining of the hyphal cell walls and septae, the null mutant hyphae exhibit abnormal staining with calcofluor white similar to findings in vitro. Magnifications of a representative calcofluor white-stained hypha of the wild-type and mutant strains are shown to the right, and abnormal chitin depositions in the mutant are indicated by the white arrowheads. Bars, 10 μm.
proliferation and invasion within the kidneys. It is worth noting that the impaired hyphal formation and abnormal hyphal wall chitin distribution exhibited by \(\text{irs4} \) and \(\text{inp51} \) mutants within the kidneys after 4 days resembled the phenotypes observed during embedded growth within agar over a similar time period. Indeed, it has been hypothesized that embedded conditions \textit{in vitro} resemble those encountered by \textit{C. albicans} \textit{in vivo}, where the organism grows in contact with a solid matrix under reduced oxygen concentrations (Ernst, 2000).

In addition to confirming that \(\text{inp51} \) null mutants resembled \(\text{irs4} \) mutants in their increased susceptibility to cell wall-active agents, impaired hyphal formation, abnormal chitin distribution and attenuated virulence, we demonstrated that disruption of either gene resulted in overactivation of the cell integrity pathway. The fungal cell integrity pathway is responsible for initiating and controlling responses to cell wall stresses (Delley & Hall, 1999; Jung & Levin, 1999). Our findings indicate that the Irs4p–Inp51p interaction exerts some degree of control over the pathway, but this effect is not dominant since it was only observed under conditions in which the pathway was already activated. It has been proposed that effects of \textit{S. cerevisiae} Irs4p/Tax4p and Inp51p on the cell integrity pathway are exerted through the binding of PI(4,5)P2 to the plekstrin homology domain of the GDP/GTP exchange protein Rom2p (Morales-Johansson \textit{et al.}, 2004). In the cell integrity pathway, Rom2p is an upstream activator of the PKC–MAP kinase cascade (Ozaki \textit{et al.}, 1996), which culminates in Mkcp1p. Since the pathway components are conserved in \textit{C. albicans}, a similar hypothesis is plausible.

The \textit{C. albicans} cell integrity pathway has been linked to the regulation of morphogenesis. \textit{C. albicans} Mkcp1p has been shown to be required for morphogenesis (Navarro-Garcia \textit{et al.}, 1998), and the pathway is activated in candidal cells grown in contact with agar (Kumamoto, 2005). A connection between the \textit{S. cerevisiae} cell integrity/PKC and RAS/cAMP pathways has been recently demonstrated through the shared protein Rom2p (Kuranda \textit{et al.}, 2006; Park \textit{et al.}, 2005; Verna \textit{et al.}, 1997). In \textit{C. albicans}, the RAS/cAMP pathway is a major regulator of hyphal formation (Ernst, 2000; Zhao \textit{et al.}, 2002). As such, dysregulation of the \textit{C. albicans} cell integrity pathway might be associated with dysregulation of hyphal-inducing pathways. Nevertheless, dysregulation of the cell integrity pathway cannot fully account for the phenotypes we

Fig. 8. Mkcp1p is hyperphosphorylated in \(\text{irs4} \) and \(\text{inp51} \) mutants under conditions of cell integrity pathway activation. Western blots were performed as described in Methods, using anti-phospho-p44/42 MAP kinase to detect the phosphorylated form of Mkcp1p (top rows of a and b). Mkcp1p was detected using anti-Mkcp1p (bottom rows of a and b). Experimental conditions and strains are indicated in the figure. For each of the experimental conditions, expression of Mkcp1p did not differ significantly between the strains. (a) Control conditions in which the cell integrity pathway is known to be inactive (yeast growth in YPD liquid medium at 30 °C) or activated (hyphal induction in YPD supplemented with 10% FCS at 37 °C, to which 10 mM H\(_2\)O\(_2\) is added for 10 min) were tested. In both wild-type and mutant strains (\(\text{irs4} \) and \(\text{inp51} \)), phosphorylated Mkcp1p is undetectable during growth at 30 °C. Upon activation of the cell integrity pathway, Mkcp1p in the mutant strains is hyperphosphorylated compared with the wild type. (b) Mkcp1p in the wild-type strain is phosphorylated during hyphal growth in liquid medium (YPD supplemented with 10% FCS at 37 °C) and embedded in solid agar. Mkcp1p in mutant strains is clearly hyperphosphorylated during hyphal growth. The \(\text{irs4} \) mutant displays higher activation of the cell wall integrity pathway than the \(\text{inp51} \) mutant.
observed, as the *irs4* and *inp51* mutant strains overactivated Mkclp in liquid media but did not display impaired hyphal growth or abnormal chitin deposition.

In conclusion, we propose a model in which the interaction between Irs4p and the phosphatase Inp51p negatively regulates PI(4,5)P$_2$ levels in *C. albicans*. The specific increases in PI(4,5)P$_2$ levels in *irs4* and *inp51* null mutants are associated with abnormal chitin deposition and impaired hyphal formation during contact-induced growth *in vitro* and within murine kidneys, and attenuated virulence during disseminated candidiasis of mice. Lack of Irs4p and Inp51p also results in overactivation of the cell integrity pathway under normal activating conditions. Future studies of *irs4* and *inp51* null mutant strains that assess processes such as cell wall biogenesis, secretion, endocytosis, exocytosis and, in particular, the temporal–spatial regulation of phosphoinositides under diverse biological conditions will provide unique insights into the pathogenesis of candidiasis.

ACKNOWLEDGEMENTS

Experiments were conducted in the laboratories of C. J. C. and M. H. N. at the North Florida/South Georgia Veterans Health System, Gainesville, FL, and the University of Pittsburgh. The project was supported by the National Institutes of Health Mycology Research Unit Program Project (PO1 AI061537 to M. H. N. and C. J. C.) and the Medical Research Service of the Department of Veterans Affairs. The measurements of phosphoinositide levels were performed in the laboratory of H. D. at the University of Florida, College of Pharmacy. The measurements of phosphoinositide measurements, and Jesús Pla, Universidad Complutense de Madrid, for providing anti-Mkc1p antibody.

REFERENCES

Edited by: J. F. Ernst