Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains

Mette Burmølle,1 Martin Iain Bahl,1 Lars Bogø Jensen,2 Søren J. Sørensen1 and Lars Hestbjerg Hansen1

1Department of Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
2Unit for Antimicrobial Resistance, The National Food Institute, DTU, Denmark

The conjugative plasmid pOLA52, which confers resistance to olaquindox and other antimicrobial agents through a multidrug efflux pump, was investigated for its ability to promote biofilm formation in Escherichia coli. Screening of a transposon-mutagenized pOLA52 clone library revealed several biofilm-deficient mutants, which all mapped within a putative operon with high homology to the mrkABCDF operon of Klebsiella pneumoniae, where these genes are responsible for type 3 fimbriae expression, attachment to surfaces and biofilm formation. Biofilm formation in microtitre plates and in urinary catheters of clones containing pOLA52 with a disrupted putative mrk operon was reduced by more than 100-fold and 2-fold, respectively, compared to mutants with an intact mrk operon. The conjugative transfer rate of pOLA52 was also significantly lower when the mrk operon was disrupted. Through reverse transcriptase analysis, it was demonstrated that the genes contained in the putative mrk operon were linked and likely to be expressed as a single operon. Immunoblotting with type 3 fimbriae (MrkA)-specific antibodies further verified expression of type 3 fimbriae. When transferred to other, potentially pathogenic, members of the family Enterobacteriaceae, including Klebsiella pneumoniae, Salmonella Typhimurium, Kluyvera sp. and Enterobacter aerogenes, pOLA52 facilitated increased biofilm formation. pOLA52 is believed to represent the first example of a conjugative plasmid encoding type 3 fimbriae, resulting in enhanced conjugation frequencies and biofilm formation of the plasmid-harbouring strain.

INTRODUCTION

The plasmid pOLA52 was exogenously isolated from swine manure and demonstrated to confer resistance to the antimicrobial agent olaquindox (Sørensen et al., 2003). This compound was extensively used in pig farming as a growth promoter in the European Union until 1999 and is still in use in other countries. The resistance mechanism of pOLA52 was found to depend on a resistance-nodulation-cell-division (RND) family efflux system (Hansen et al., 2004). Apart from olaquindox, the pump exports chloramphenicol and ethidium bromide across the membrane of Escherichia coli cells (Hansen et al., 2004) and recently experiments have demonstrated reduced susceptibility to other antibiotics, detergents and disinfectants (Hansen et al., 2007). Independent of the efflux pump system, pOLA52 confers resistance to the β-lactam antibiotic ampicillin (Hansen et al., 2004, 2007).

Plasmid pOLA52 was recently sequenced (to be published elsewhere; A. Norman, Q. She, S. J. Sørensen & L. H. Hansen) and annotation revealed a putative operon, totalling 5.6 kb, consisting of five genes highly homologous to the mrkABCDF genes contained in the mrk operon of Klebsiella pneumoniae (Allen et al., 1991). In K. pneumoniae, the mrk operon encodes type 3 fimbriae, which are involved in attachment to and biofilm formation on biotic and abiotic surfaces, including different human cell types (Hornick et al., 1991; Livrelli et al., 1996; Schurtz et al., 1994; Tarkkanen et al., 1997). The mrkA and mrkD genes encode the major structural component of the type 3 fimbriae and an adhesin, respectively (Allen et al., 1991; Jagnow & Clegg, 2003; Langstraat et al., 2001). The genes mrkB and mrkC, which encode proteins essential for fimbrial expression, are thought to be part of the fimbrial assembly process via the chaperone-usher pathway (Allen et al., 1991; Gerlach et al., 1988; Sauer et al., 2000). The mrkF gene encodes the MrkF protein, which is thought to be involved in stabilizing intact fimbriae (Allen et al., 1991).
K. pneumoniae is an opportunistic pathogen, which is often associated with infections in the human respiratory and urinary tract. Because cell attachment is an essential step in infection, the type 3 fimbriae may be crucial for K. pneumoniae virulence (Livrelli et al., 1996; Williams & Tomas, 1990). In several other members of the family Enterobacteriaceae, adhesion-mediating fimbriae and pili are believed to be essential for virulence (Hornick et al., 1991). The mrk ABCDF genes of pOLA52 are the first type 3 fimbriae-encoding genes reported to be present on a plasmid. Previously, plasmid-borne fimbrial genes, different from the mrk genes, have been reported to be involved in aggregative adherence of E. coli to mucosal cells, causing traveller’s diarrhoea and persistent diarrhoea among infants, especially in the developing world (Levine, 1987; Vila et al., 2000), and also to contribute to the pathogenicity of E. coli O157 (Brunder et al., 2001).

Biofilms are recognized as surface-attached bacteria embedded in a self-produced matrix, composed mainly of polysaccharides, but also containing proteins and nucleic acids (Sutherland, 2001). Factors important for biofilm formation include production of extracellular polymers and cell surface-attached structures including flagella, fimbriae and curli (Castonguay et al., 2006; Klausen et al., 2006). Pili involved in conjugation of Gram-negative bacteria have also been shown to promote biofilm formation in several studies (Dudley et al., 2006; Ghigo, 2001; Reisner et al., 2003, 2006). Ghigo (2001) demonstrated how biofilm formation of an E. coli strain was dependent on whether this strain contained a conjugative plasmid and expressed the conjugal pili. Dudley et al. (2006) recently demonstrated that thin type IV pili, different from the thicker conjugative pili, but also involved in conjugation, promoted cell–cell attachment as well as attachment to abiotic surfaces and thereby promoted biofilm formation.

Bacteria organized in biofilms cause many human infections. They attach to human cell tissue, to teeth, and to medical devices such as prosthetic heart valves and urinary catheters (Donlan & Costerton, 2002). Biofilms on urinary catheters often involve Enterobacteriaceae such as E. coli, K. pneumoniae and Enterobacter aerogenes (Donlan & Costerton, 2002). These biofilm-associated infections are hard to cure due to an increased resistance of the biofilm bacteria to antibiotics and phagocytosis by inflammatory cells, and thus represent a large medical problem (Donlan & Costerton, 2002). The 88 clones tested above, the 7 biofilm-negative and 4 randomly selected, were inoculated from glycerol stocks directly into microtitre plate wells, by use of a previously established method in which cell attachment and biofilm formation are quantified by staining with crystal violet (CV) (O’Toole & Kolter, 1998). E. coli CSH26 with and without pOLA52 were included as reference strains. The 88 clones were inoculated from glycerol stocks directly into microtitre plate wells containing 200 μl LB broth and grown with agitation (200 r.p.m.) for 24 h. Staining and quantification of attached cells were performed as previously described (Burmølle et al., 2006), using an EL 340 microplate reader (Bio-Tek Instruments) for absorbance measurements at 595 nm.

Of the 88 clones, 7 were biofilm negative. The biofilm-forming ability of these clones and that of 12 randomly selected biofilm-positive clones was verified by performing the assay in four replicates for each strain. Equal densities (OD600 ± 10 %) of the bacteria were diluted 10-fold in LB in microtitre plate wells to a total volume of 200 μl. The plates were incubated as described above. Wells containing only LB were used as negative controls and the absorbance measurements of these wells were subtracted from the experimental measurements.

Sequencing of biofilm-negative and -positive clones. Of the 19 clones tested above, the 7 biofilm-negative and 4 randomly selected, biofilm-positive clones were chosen for sequencing to identify the exact location of the entranceposon in the pOLA52 derivatives as
ILLUSTRATED IN FIG. 1. pOLA52::KanR plasmids from the 11 chosen clones were purified as described above. From these purifications, 12 ml plasmid DNA (0.1–1.0 μg) was digested with NlaIII in reactions of 20 μl at 37 °C for 60 min, followed by heat inactivation of NlaIII at 65 °C for 25 min. Then, 1 μl T4 ligase (10 units) and 2 μl ATP (10 mM) was added and ligation was performed at 25 °C for 60 min, followed by heat inactivation of T4 ligase at 65 °C for 25 min. PCRs were performed with primers Ent(Kan)FW (5′-TTATTCGGTCGA- AAAGGATCCG-3′) and Ent(Kan)Rev (5′-TCCCGTCAAGTCAG- CGTA-3′) and the PCR products were visualized by agarose gel electrophoresis. Sequencing reactions (DYEnamic ET dye terminator cycle sequencing kit, MegaBACE) containing 0.1 μg purified PCR product and 10 pmol primer Ent(Kan)FW in total volumes of 10 μl were conducted. Sequencing was performed using a MegaBACE 1000 sequencer (Molecular Dynamics). To locate the position of the KanR cassette, the sequences obtained were compared to the plasmid sequence (A. Norman, Q. She, S. J. Sørensen & L. H. Hansen, unpublished). Two clones were chosen for further analysis: the biofilm-positive E. coli Genehogs/pOLA52-oqxB::KanR (H1) and the biofilm-negative E. coli Genehogs/pOLA52-mrkC::KanR (H5); see Table 1.

Complementation of biofilm formation. To investigate whether the biofilm formation was solely caused by the expression of the mrk operon, the absence of the biofilm phenotype was complemented in E. coli Genehogs and in strain H5 containing mrkC-mutagenized

Table 1. Strains and plasmids

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Biofilm positive</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Biofilm positive, Amp<sup>R</sup> Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Biofilm positive, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Biofilm negative, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Salmonella Typhimurium</td>
<td>Low-copy plasmid, Kan<sup>R</sup></td>
<td>Hansen et al. (1997)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Low-copy plasmid, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Low-copy plasmid, Kan<sup>R</sup> Tet<sup>R</sup></td>
<td>This study</td>
</tr>
</tbody>
</table>

*Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.

Fig. 1. The Kan^R cassette contains several NlaIII recognition sites; therefore NlaIII digestion of the Kan^R mutagenized plasmid will, when the products are ligated, result in many different circular fragments. Some of these fragments contain part of the Kan^R cassette and part of the original plasmid, and they will also contain the primer annealing sites. PCRs will therefore result in amplification of these circular fragments, and by sequencing of the PCR products, the location of the Kan^R insertion can be determined.
Biofilm formation on urinary catheters. *E. coli* Genehogs/pOLA52-ophB:: Kan^R^ (H1) and *E. coli* Genehogs/pOLA52-mrkC:: Kan^R^ (H5) were tested for their ability to form biofilms on medical urinary catheters. The strains were grown overnight in LB broth (containing Kan), and the cell density was adjusted (OD_{600} 0.5, 2, 10 and 20). oqxB:: Kan^R^ (H5) were tested for their ability to form biofilms on *E. coli* broth cultures of 10^5, 10^6, 10^7, and 10^8 CFU/ml. Each treatment was performed in triplicate wells. The *E. coli* broth cultures of 10^6 CFU/ml were used in all experiments. The absorbance value of the negative control was subtracted from the measurements.

RT-PCR analysis of the putative *mrk* operon. Reverse transcription-PCR (RT-PCR) was performed to verify transcription of the putative *mrk* operon and the linkage of the genes contained in the operon at the mRNA level. Due to the length of the putative *mrk* operon, the RT reactions were performed by use of three reverse primers, annealing at various positions on the operon, followed by nested PCRs to increase the specificity. The PCR primers were designed to demonstrate the linkage of the genes *mrkA-mrkB*, *mrkB-mrkC*, *mrkC-mrkD* and *mrkD-mrkF*, respectively. Total RNA was purified from 1 ml of overnight culture of *E. coli* Genehogs (no plasmid) and *E. coli* Genehogs/pOLA52-ophB:: Kan^R^ (H1) (Genetec Bacterial Total RNA Purification kit, Sigma). The purified RNA was then subjected to DNase digestion and subsequent DNase inhibition, by use of a DNA-free kit (Ambion) as recommended. This RNA was used as template in RT (Expand Reverse Transcriptase kit, Roche). A total of 8 μg was used in a total of six (three for each strain) 20 μl RT reactions (65 °C for 10 min, subsequent cooling on ice, followed by 45 °C for 60 min) containing 20 pmol of the primers mrkFrev1 (5'-ATTATCTGCGTCCTTCC-3'), mrkCrev (5'-CGCTCTGAGCATGAGCCT-3') and mrkBrv (5'-CATCGGGCGCATAGCT-3'). Next, four nested PCR reactions (Phusion, Finnzymes) were performed, using 1 μl of RT product (10-fold diluted in H_2O) as template, as follows. The RT product obtained from the reverse primer mrkBrv was used as template in a nested PCR performed with the primers mrkBrev1 (5'-CGGGGGTGATATAAAACCG-3') and mrkAw (5'-GGGGAGGAGATGGCCTT-3'). The RT product was used as template in a nested PCR with primers mrkCrev1 (5'-ACCGGTGTCTGTTGACGG-3') and mrkBfw (5'-GAGTGGAAATGGGCCTT-3'). RT-PCR reactions were performed using the DNase-treated RNA (with twice the RNA concentration used in the RT-PCR reactions) as template to verify that the RNA was DNA-free.

Immunoblotting with MrkA-specific antibodies. A colony immunoblot was performed to verify that the expression of the putative *mrk* operon produced intact type 3 fimbriae. Rabbit antiserum raised against the *K. pneumoniae* type 3 fimbriae major subunit MrkA (Di Martino et al., 2003) was provided as a gift from Arlette Darfeuille-Michaud, Pathogénie Bactérienne Intestinale, USCNRA 2018 CBRV, Clermont Ferrand, France. From overnight LB broth cultures of *E. coli* Genehogs (no plasmid), *E. coli* Genehogs/pOLA52-ophB:: Kan^R^ (H1) and *K. pneumoniae* DSA712, 5 μl was spotted onto a nitrocellulose filter placed on an LB agar plate, grown for 16 h and dried at 80 °C for 2 h. Then the membrane was blocked in 50 ml 5% skim milk (Difco) for 1 h on a slowly rotating platform shaker at room temperature. The rabbit antiserum was added at a 1:500 dilution in 5% skim milk solution and incubated for 1.5 h on the platform shaker at room temperature, after which the membrane was washed three times for 10 min in TBS buffer (125 mM NaCl, 25 mM Tris pH 8.0, 0.05% Tween 20). After washing, the filter was incubated for 1 h at room temperature with peroxidase-labelled goat anti-rabbit immunoglobulin G (DAKO) in TBS at 2000-fold dilution. The membrane was washed again three times for 10 min in TBS buffer and resuspended in 50 ml fresh TBS buffer. For the detection of expressed MrkA protein, 20 mg 4-chloro-1-naphthol (Sigma) and 0.2% H_2O_2 were added and the membrane was allowed to develop for 30 min.

Conjugation frequency. Plasmids pOLA52-ophB:: Kan^R^ and pOLA52-mrkC:: Kan^R^, from strains H1 and H5, respectively, were transferred separately to spontaneous Rif^R^ *E. coli* Genehogs cells (H1^Rif^ and H5^Rif^) by conjugation and these transconjugants were used as donor cells in the following conjugation experiment. Single colonies of the donor strains were transferred to separate tubes containing 5 ml LB broth supplemented with Rif and Kan and incubated at 37 °C for 16 h. The donor cells in the following conjugation experiment. Single colonies of the donor strains were transferred to separate tubes containing 5 ml LB broth supplemented with Rif and Kan and incubated at 37 °C for 16 h.

RT-PCR analysis of the putative *mrk* operon. Reverse transcription-PCR (RT-PCR) was performed to verify transcription of the putative *mrk* operon and the linkage of the genes contained in the operon at the mRNA level. Due to the length of the putative *mrk* operon, the RT reactions were performed by use of three reverse primers, annealing at various positions on the operon, followed by nested PCRs to increase the specificity. The PCR primers were designed to demonstrate the linkage of the genes *mrkA-mrkB*, *mrkB-mrkC*, *mrkC-mrkD* and *mrkD-mrkF*, respectively. Total RNA was purified from 1 ml of overnight culture of *E. coli* Genehogs (no plasmid) and *E. coli* Genehogs/pOLA52-ophB:: Kan^R^ (H1) (Genetec Bacterial Total RNA Purification kit, Sigma). The purified RNA was then subjected to DNase digestion and subsequent DNase inhibition, by use of a DNA-free kit (Ambion) as recommended. This RNA was used as template in RT (Expand Reverse Transcriptase kit, Roche). A total of 8 μg was used in a total of six (three for each strain) 20 μl RT reactions (65 °C for 10 min, subsequent cooling on ice, followed by 45 °C for 60 min) containing 20 pmol of the primers mrkFrev1 (5'-ATTATCTGCGTCCTTCC-3'), mrkCrev (5'-CGCTCTGAGCATGAGCCT-3') and mrkBrv (5'-CATCGGGCGCATAGCT-3'). Next, four nested PCR reactions (Phusion, Finnzymes) were performed, using 1 μl of RT product (10-fold diluted in H_2O) as template, as follows. The RT product obtained from the reverse primer mrkBrv was used as template in a nested PCR performed with the primers mrkBrev1 (5'-CGGGGGTGATATAAAACCG-3') and mrkAw (5'-GGGGAGGAGATGGCCTT-3'). The RT product was used as template in a nested PCR with primers mrkCrev1 (5'-ACCGGTGTCTGTTGACGG-3') and mrkBfw (5'-GAGTGGAAATGGGCCTT-3'). RT-PCR reactions were performed using the DNase-treated RNA (with twice the RNA concentration used in the RT-PCR reactions) as template to verify that the RNA was DNA-free.
conducted by mixing 40 μl of either the H1Rd or H5Rd donor strain with 160 μl of the recipient strain in micro-centrifuge tubes, incubated at 37 °C overnight without shaking. Serial dilutions of the mating mixtures were prepared and the following solid media were used for selective plating: LB-agar containing Rif + Kan, minimal media plates (de Liphay et al., 2001) containing glucose and minimal media plates containing glucose and Kan for selection of donors, recipients + transconjugants and transconjugants respectively.

Biofilm formation of potentially pathogenic Enterobacteriaceae strains expressing pOLA52. The plasmid (pOLA52-bla::KanR) from the Amp selection, isolated above, was purified and transferred to E. coli CSH26 by electroporation, followed by a conjugative transfer to Salmonella Typhimurium DT27, Klebsiella pneumoniae DSM3053, as previously described (Hansen et al., 2007). These strains, with and without pOLA52, were grown overnight in LB ± Kn, OD600 was measured, and the cultures were diluted in LB to assure similar cell densities of each strain pair (identical species ± plasmid). E. coli CSH26 ± pOLA52 was used as control. Then, 20 μl samples were transferred to microtitre plate wells, containing 180 μl LB, in four well replicates. The plate was incubated, and the attached cells were stained and quantified as described above. The biofilm formation of each strain devoid of plasmid was then related to that of its plasmid-containing counterpart.

RESULTS AND DISCUSSION

The sequencing of pOLA52 revealed a gene cluster with high homology to the chromosomal mrk operon of K. pneumoniae, which encodes type 3 fimbriae (Allen et al., 1991). In K. pneumoniae, expression of type 3 fimbriae is essential for attachment to abiotic and biotic surfaces and for biofilm formation (Di Martino et al., 2003; Jagnow & Clegg, 2003; Langstraat et al., 2001; Tarkkanen et al., 1997). The latter includes attachment of K. pneumoniae to human epithelial and urinary bladder cells, which may be involved in the common human infections caused by K. pneumoniae (Tarkkanen et al., 1997).

The complete mrk operon of K. pneumoniae contains six genes, of which five homologues are present in pOLA52 (Allen et al., 1991). The remaining gene, mrkE, has been suggested to encode a product involved in regulation of expression of type 3 fimbriae; however, strains lacking the mrkE gene expressed type 3 fimbriae at levels similar to the wild-type, which suggests that MrkE is not essential for fimbriae expression (Allen et al., 1991). The five translated open reading frames showed an 81–95% identical amino acid sequence when compared to the mrk operon from K. pneumoniae (A. Norman, Q. She, S. J. Sørensen & L. H. Hansen, unpublished).

Construction of clone library and screening for loss of biofilm formation phenotype

Due to the close homology between the pOLA52 gene cluster and the K. pneumoniae mrk operon, we hypothesized that pOLA52 would promote biofilm formation, and this was confirmed by preliminary screenings for biofilm formation by E. coli CSH26 ± pOLA52. In order to evaluate what specific genes or operons of pOLA52 contributed to biofilm formation when expressed by E. coli Genehogs, 88 clones containing pOLA52 with random KanR insertions were screened for their ability to form biofilm. Of the 88 E. coli Genehogs/pOLA52::KanR transformants, 7 appeared to be deficient in biofilm formation. When tested in quadruplicate, on average an 80-fold reduction in biofilm formation was observed in these 7 strains when compared to the 4 biofilm-forming clones selected for sequencing, described later (Fig. 2). Thus, specific genes encoded by pOLA52 induced biofilm formation.

Plasmids were subjected to NlaIII digestion, T4 ligation and PCR as illustrated in Fig. 1. The insertion of the entranceposon was localized to the putative mrk operon of pOLA52 in all of the seven biofilm-negative E. coli Genehogs/pOLA52::KanR transformants by sequencing (Fig. 3). In each of the four biofilm-positive transformants, the insertion mapped in genes encoding proteins with known functions (topB, toxB, soj and oqxB), outside the putative mrk operon. This strongly indicates that the putative mrk operon, homologous to that encoding type 3 fimbriae in K. pneumoniae (Allen et al., 1991), is essential for the biofilm-inducing capability of pOLA52.

Biofilm formation on abiotic surfaces

Two clones, E. coli Genehogs/pOLA52-oqxB::KanR (H1) with the transposon inserted in the oqxB gene, encoding the efflux pump, and E. coli Genehogs/pOLA52-mrkC::KanR (H5) with the transposon inserted in the mrkC gene homologue, were chosen as representatives of biofilm and non-biofilm phenotypes, respectively. When the two clones were grown in microtitre plates and stained with CV, there was more than a 100-fold, statistically

![Fig. 2](http://mic.sgmjournals.org) Biofilm formation of seven biofilm-negative (B3, C5, D6, E2, E4, G5, H5) and four (randomly picked) biofilm-positive (B8, G6, G8, H1) E. coli Genehogs/pOLA52::KanR clones. E. coli Genehogs without plasmid pOLA52 (NP) was included as a negative control. The cells were incubated in microtitre plate wells for 24 h, followed by quantification of biofilm formation by staining of attached cells and matrix with CV and spectrophotometric absorbance measurements (A690). Columns represent means ± SD for four replicates.
followed by ligation, PCR amplification and sequencing.

were mapped by NlaIII digestion of the mutagenized plasmid followed by ligation, PCR amplification and sequencing.

The ability to form biofilm in microtitre plates could be fully complemented when *E. coli* Genehogs and strain H5 were transformed with plasmid pLOW2::*TetR::mrkA–F.* CV staining showed attachment to microtitre plates at levels slightly higher than those seen with the H1 derivative (data not shown), probably due to increased expression levels or copy number differences between the pLOW2 and the pOLA52 derivatives.

A twofold reduction (statistically significant, Student’s *t*-test, *P*<0.01) in biofilm formation was observed for H5, containing a disrupted putative *mrk* operon, compared to that of H1, when the two clones were allowed to attach to silicone urinary catheters [biofilm formation (*A*595)=0.2 and 0.09 for H1 and H5, respectively]. This implies that bacterial strains containing pOLA52 may have enhanced opportunities for establishment of biofilms on this surface and other medical devices.

Both *E. coli* Genehogs/pOLA52-*bla::KanR* and H1 were significantly more resistant than H5 to 0.5 µg Tet ml⁻¹ after 48 h. Compared to the non-exposed equivalent strains, the activity of H5 (biofilm-negative) was reduced by 43.3%, but by only 22.6% and 15.8% for H1 and E. coli Genehogs/pOLA52-*bla::KanR*, respectively. The three higher concentrations of Tet resulted in near-total inhibition of all three strains. There was no significant difference in the activity when the strains were exposed to any of the concentrations of H₂O₂ tested. The reason for Tet to result in a significant difference in activity compared to H₂O₂ may be the differences in size and diffusion ability of the two compounds, as H₂O₂ is smaller and may move more freely in a biofilm. Neither of the compounds is excluded by the multidrug efflux pump encoded by pOLA52 (Hansen et al., 2007), but to ensure that the lack of the pump did not affect the observed results, *E. coli* Genehogs/pOLA52-*bla::KanR* was included in the study.

These results indicate that the biofilm mode of growth protects bacteria from some antibacterial compounds, and strains capable of biofilm formation may therefore obtain a higher fitness under some conditions than those incapable of biofilm formation. Thus, the consequences of conjugative transfer of pOLA52 to potentially pathogenic bacteria may be severe, as they may cause hard-to-cure infections on various surfaces.

Expression of the mrk operon

RT-PCR analysis of the putative *mrk* operon was performed to determine whether the *mrk* genes were transcribed as a single mRNA and thereby likely to be organized as an operon. As shown in Fig. 4, we obtained PCR products when using H1 as template in four RT-PCRs, pair-wise linking the *mrk* genes and indicating organization as an operon, regulated and transcribed by a single promoter. Using a promoter prediction server (www.fruitfly.org/seq_tools/promoter.html), several putative promoters were found to be situated in an IS1 insertion sequence upstream from the operon, which might be involved in the transcription of the *mrkABCDF* genes.

In *K. pneumoniae*, the *mrk* operon encodes type 3 fimbriae, which have previously been detected by immunoblotting with rabbit antiserum against the major subunit MrkA (Di Martino et al., 2003). This was used in this study to verify the expression of type 3 fimbriae on the surface of *E. coli* Genehogs. As expected, both *E. coli* Genehogs/pOLA52-*oqxB::KanR* (H1) and *K. pneumoniae* DSA712 showed

![Image of RT-PCR analysis](https://example.com/rt-pcr-analysis.png)

Fig. 4. RT-PCR analysis of *mrkA–F* transcription in *E. coli* Genehogs/pOLA52-*oqxB::KanR* (H1); PCR amplification products of either RNA (+) or reverse-transcribed (RT) DNA (+) were visualized in a 1.2% agarose gel. *mrkA–B*, RT product generated with mrkBrev and amplified with PCR primers mrkBrevnst1 and mrkAfw; *mrkB–C*, RT product generated with mrkCrev and amplified with PCR primers mrkCrevnst1 and mrkBfw; *mrkC–D*, RT product generated with mrkDrev and amplified with PCR primers mrkDrev and mrkCfw; *mrkD–F*, RT product generated with mrkFrev1 and amplified with PCR primers mrkFrev2 and mrkDfw.
positive reactions to the anti-MrkA antibody, and *E. coli* Genehogs did not (data not shown). The results of the RT-PCR analysis and the immunoblotting strongly suggest that the *mrk* operon, contained in pOLA52, encodes type 3 fimbriae, which are expressed by *E. coli* Genehogs and promote biofilm formation.

Effect of type 3 fimbriae on conjugation frequency of *E. coli*/pOLA52

The frequency of conjugative transfer events, calculated as transconjugants per donor, was reduced approximately 3750-fold for the pOLA52-*mrkC*::KanR plasmid derivative (transfer frequency 2.4×10^{-3}) compared to the pOLA52-*aqpB*::KanR plasmid derivative (transfer frequency 9.0×10^{-4}). This reduction was statistically significant (Student's *t*-test, *P*<0.01). Thus, by encoding fimbriae, pOLA52 increases the frequency of its own conjugal transfer, and thereby the plasmid spreads into other bacterial populations. This may enhance the possibility of pOLA52 transfer to potential pathogenic bacteria, which will then acquire the ability to attach to surfaces and become more resistant to antimicrobial agents.

The enhanced conjugation frequency may indicate that, as in *K. pneumoniae*, the type 3 fimbriae, encoded by pOLA52, mediate attachment to abiotic as well as biotic surfaces, the biotic here being intraspecific cell–cell attachment leading to a higher conjugation rate. The ability of type 3 fimbriae to enhance conjugation frequency has not to our knowledge been previously described; however, Dudley et al. (2006) recently reported a similar observation for plasmid-encoded type 4 pili in *E. coli*. These pili were different from the thicker conjugation pili, but their presence resulted in higher conjugation rates, and enhanced attachment to abiotic (polystyrene and glass coverslips) and to biotic (human epithelial cells) surfaces. Another possible explanation for the observed increased conjugation frequency could be that the type 3 fimbriae (or component(s) thereof) somehow stabilize or aid the conjugation apparatus of the plasmid in the liquid broth. This would require interactions between proteins of the two systems or that the general structural change in the membrane due to the type 3 fimbriae stabilizes the conjugation pili. The reason for higher conjugation frequency of cells expressing the type 3 fimbriae remains to be investigated.

The roles of MrkA and MrkD in biofilm formation

In the seven clones deficient in biofilm formation, the KanR insertion was localized to the putative *mrk* operon, specifically in the *mrkA*, *mrkC* or *mrkD* genes. The MrkD adhesin encoded by *mrkD* has previously been reported to mediate *K. pneumoniae* biofilm formation on extracellular matrix- and collagen-coated surfaces (Jagnow & Clegg, 2003), whereas biofilm formation on abiotic plastic surfaces (microtitre plates) was facilitated by the structural fimbrial component MrkA, but independent of MrkD (Langstraat et al., 2001). In contrast to this, our results indicate important roles of both the *mrkA* and *mrkD* gene products in biofilm formation in polystyrene microtitre plate wells, as transposon insertion in either gene was shown to abolish biofilm formation. Here we show that the insertions in three of the knockout clones are positioned in the *mrkD* gene. The *mrkD* mutants could also abolish the expression of *mrkF*, but previous studies have shown that the absence of MrkF still allows expression of fimbriae. This is indicative of the roles of MrkA, MrkB and MrkC as proteins necessary for the presentation and positioning of the MrkD adhesin in the outer membrane and of the MrkD protein as responsible for the actual adhesion. Further complementation studies are needed to verify this hypothesis. It is possible that the discrepancy is due to the expression of the *mrk* genes in *E. coli* in this study, whereas the other studies were performed in *K. pneumoniae*, or to the fact that we are here studying homologues of the MrkA and MrkD proteins.

Conjugative transfer of pOLA52 to other members of the Enterobacteriaceae, and induction of biofilm formation by these strains

Type 3 fimbriae are often produced by potentially pathogenic members of the *Enterobacteriaceae* (Adegbola & Old, 1983; Allen et al., 1991; Old & Adegbola, 1985). We successfully transferred pOLA52 to four such members: *S. Typhimurium*, *K. pneumoniae*, *Kluyvera* sp. and *E. coli*.

![Fig. 5. Biofilm formation of members of the family Enterobacteriaceae: Salmonella Typhimurium DT27, Klebsiella pneumoniae DSA712, Kluyvera sp. MB101 and Enterobacter aerogenes DSM30053, with (grey bars) and without (white bars) pOLA-bla::KanR. Escherichia coli CSH26 ± pOLA52 was used as control. The cells were incubated in microtitre plate wells for 24 h, followed by quantification of biofilm formation by staining of attached cells and matrix with CV and spectrophotometric absorbance measurements (A absorbe). Columns represent means ± SD for four replicates.](http://mic.sgmjournals.org)
Enterobacter aerogenes. As shown in Fig. 5, statistically significant increases in biofilm formation were observed in all strains harbouring plasmid pOLA52-bla::Kan^R (6.5–114-fold induction; Student’s t-test, P<0.01). Although still statistically significant, the increase in biofilm formation was less pronounced in K. pneumoniae when compared to the remaining strains, most likely because this strain contains the
mrk operon on the chromosome, and therefore expresses type 3 fimbriae regardless of harbouring pOLA52. These results are strongly indicative of pOLA52-encoded type 3 fimbriae expression of these Enterobacteriaceae strains, enhancing their attachment and biofilm formation, which may lead to increased virulence. It remains to be investigated whether the type 3 fimbriae, expressed from pOLA52, constitute any advantage in adherence to animal cells. We will test this, using model animal systems, in the near future.

Concluding remarks

The results of this and previous studies reveal some disturbing characteristics of pOLA52, regarding human health. The plasmid encodes a multidrug efflux pump of the RND family, capable of exporting a wide range of antibiotics, detergents and disinfectants (Hansen et al., 2004, 2007). Furthermore, the bla gene of the plasmid encodes β-lactamase, conferring resistance to β-lactam antibiotics (Hansen et al., 2004). The plasmid also encodes type 3 fimbriae, promoting attachment to abiotic and biotic surfaces, biofilm formation and its own spread by increased conjugative transfer rates. To our knowledge, this is the first example of adhesive fimbriae and a multidrug efflux pump being encoded on a single, conjugative plasmid. The ability to form biofilm and export a variety of chemicals will, in many environments, increase the fitness of the host cell, as demonstrated in this study with exposure to Tet. These traits are therefore likely to contribute to selectively stabilizing the presence of pOLA52 in its present hosts, but also to spread of the plasmid to new hosts. As demonstrated here, pOLA52 can easily be transferred from E. coli to other, potentially pathogenic members of the Enterobacteriaceae, which may increase the virulence of these recipient strains. Infections caused by a pathogenic bacterial strain that has acquired pOLA52 may therefore be difficult to cure. Previously we have found several E. coli isolates from pigs harbouring the oqxAB genes on plasmids (Hansen et al., 2005). It remains to be investigated if these plasmids also encode the ability to express type 3 fimbriae. The fact that pOLA52 originates from swine manure renders this scenario worryingly realistic.

ACKNOWLEDGEMENTS

We thank Arlette Darfeuille-Michaud for kindly providing the MrkA polyclonal antibody. We also thank Karin Pinskild Vestberg for excellent technical assistance. The study was partly funded by a grant from the Danish Natural Science Research Council, ref. 272-05-0325.

REFERENCES

Hansen, L. H., Jensen, L. B., Sørensen, H. I. & Sørensen, S. J. (2007). Substrate specificity of the OqxAB multidrug resistance pump in...

Edited by: J. G. Shaw