Modulation of λ plasmid and phage DNA replication by Escherichia coli SeqA protein

Magdalena Narajczyk,1 Sylwia Barańska,1 Anna Szambowska,1 Monika Glinkowska,1 Alicja Węgrzyn2 and Grzegorz Węgrzyn1

1Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
2Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 80-222 Gdańsk, Poland

SeqA protein, a main negative regulator of the replication initiation of the Escherichia coli chromosome, also has several other functions which are still poorly understood. It was demonstrated previously that in seqA mutants the copy number of another replicon, the λ plasmid, is decreased, and that the activity of the λ pX promoter (whose function is required for stimulation of oriλ) is lower than that in the wild-type host. Here, SeqA-mediated regulation of λ phage and plasmid replication was investigated in more detail. No significant influence of SeqA on oriC-dependent DNA replication in vitro was observed, indicating that a direct regulation of λ DNA replication by this protein is unlikely. On the other hand, density-shift experiments, in which the fate of labelled λ DNA was monitored after phage infection of host cells, strongly suggested the early appearance of replication intermediates and preferential rolling-circle replication of phage DNA in seqA mutants. The directionality of λ plasmid replication in such mutants was, however, only slightly affected. The stability of the heritable λ replication complex was decreased in the seqA mutant relative to the wild-type host, but a stable fraction of the λ O protein was easily detectable, indicating that such a heritable complex can function in the mutant. To investigate the influence of seqA gene function on heritable complex- and transcription-dependent λ DNA replication, the efficiency of λ plasmid replication in amino acid-starved relA seqA mutants was measured. Under these conditions, seqA dysfunction resulted in impairment of λ plasmid replication. These results indicate that unlike oriC, SeqA modulates λ DNA replication indirectly, most probably by influencing the stability of the λ replication complex and the transcriptional activation of oriλ.

INTRODUCTION

Replication of genetic material is a fundamental process that occurs in all living organisms (Kornberg & Baker, 1992). To ensure survival, this process must be precisely regulated, and this regulation usually occurs at the stage of initiation. In the model prokaryotic organism Escherichia coli, initiation of chromosome replication is controlled in the cell cycle (Messer, 2002). The dnaA gene product is a replication initiator protein. It binds to the oriC region and positively regulates DNA replication initiation. However, in most biological systems, which require precise and versatile regulation to ensure the ability to respond to various growth conditions, there are both positive and negative regulators. The SeqA protein appears to be one of the key factors involved in the negative control of oriC-initiated replication (Lu et al., 1994; von Freiesleben et al., 1994; Slater et al., 1995; Boye et al., 1996); namely, it is an inhibitor of the onset of chromosome replication in vivo (Slater et al., 1995; Boye et al., 1996).

It has been demonstrated that in vivo SeqA limits DnaA activity in replication from oriC (von Freiesleben et al., 1994). Nevertheless, it has been proposed that the main role of SeqA is sequestration of newly replicated origin sequences, as this protein interacts with hemimethylated GATC motifs, abundant in the oriC region, and prevents DnaA binding to this region (Lu et al., 1994; Slater et al., 1995). However, subsequent studies have revealed that SeqA-mediated regulation of replication is significantly more complex. Although SeqA inhibits replication from oriC at high concentrations of DnaA in vitro, it stimulates this process at low DnaA concentrations (Wold et al., 1998). Other experimental lines have indicated that SeqA inhibits open complex formation at the replication origin (Torheim & Skarstad, 1999).

Studies on DNA supercoiling and the localization of SeqA in cells have suggested that this protein may affect
organization of the nucleoid (Hiraga et al., 1998; Weitao et al., 1999; Skarstad et al., 2001). In seqA mutants, negative supercoiling of DNA increases, and purified SeqA protein generates positive DNA supercoils in vitro (Klungsoyr & Skarstad, 2004). Therefore, it has been proposed that binding of SeqA changes either the twist or the writhe of the DNA (Klungsoyr & Skarstad, 2004). This ability to affect the topology of DNA suggests that SeqA can take part in the organization of the chromosome in vivo. However, it has been proposed that the direct effect of SeqA on replication initiation is rather the result of binding to hemimethylated oriC and releasing DnaA molecules from this region (Taghbalout et al., 2003). Therefore, it has been proposed that seqA gene function is involved in the regulation of bacteriophage λ genome and plasmids derived from this phage. In fact, previous studies have demonstrated that seqA gene function is involved in the regulation of bacteriophage λ development, particularly through the facilitation of transcription stimulation from certain promoters, including pR, and that this is crucial for the expression of replication genes and for transcriptional activation of oriI (Słomińska et al., 2001, 2003a; Węgrzyn, 2006). Moreover, λ plasmid copy number is found to be decreased in seqA mutants relative to wild-type bacteria (Słomińska et al., 2001), and it has been suggested that SeqA interferes with DnaA-mediated regulation of DNA replication initiation from oriI (Słomińska et al., 2003b; Glinkowska et al., 2001). On the other hand, the distribution of SeqA-binding sequences (GATC) at oriC and oriI is substantially different (GATC motifs are abundant at oriC but not at oriI; for reviews, see Messer, 2002; Węgrzyn, 2006). Thus, we assumed that studies of the effects of SeqA on λ DNA replication would provide important information, useful to understand in more detail both the functions of this protein and the regulation of bacteriophage λ development.

METHODS

Bacterial strains, phages, plasmids and culture media used in in vivo experiments. Previously described E. coli wild-type strain MG1655 (Jensen, 1993) was used. The ΔseqA::Tn10 (called ΔseqA in this report) and dnaA46 ΔdnaA::Tn10 derivatives of this strain were constructed previously by Węgrzyn et al. (1999). The in-frame deletion mutant seqAΔ10 has already been described (Slater et al., 1995). The MG1655-derived ΔrelA251::kan ΔseqA::Tn10 strain was constructed by P1 transduction of the ΔseqA::Tn10 allele from the above-described strain to the ΔrelA251::kan recipient (Xiao et al., 1991).

Bacteriophage λd85757 (Goldberg & Howe, 1969) was used. The following plasmids derived from this phage were employed: pKB2 (Kur et al., 1987), pCB104 (Boyd & Sherratt, 1995), pRLM4 (Wold et al., 1982) and pKBlin (Herman-Antosiewicz et al., 1998b). All of them consist of the λ replication region and a different antibiotic-resistance gene.

LB medium (Sambrook et al., 1989) and minimal medium 2 (MM-2) (Węgrzyn & Taylor, 1992) were used in the in vivo experiments.

Proteins, antibodies and protein fraction. Bacteriophage λ O and P proteins were prepared from E. coli strain MM294 (Tabor & Richardson, 1985) bearing plasmids pGP1-2 and pEW1. The latter plasmid was constructed by replacement of the EcoRI–SrfI fragment from pK12 (Konieczny & Marszałek, 1995) with an analogous fragment of pKB2 (Kur et al., 1987). Thus, overexpression of the O and P genes was possible in the 17 RNA polymerase/promoter system (Tabor & Richardson, 1985). O and P proteins were purified as
In vitro DNA replication. The standard reaction mixture (final volume 25 μl) consisted of: 40 mM HEPES/KOH, pH 7.6, 11 mM magnesium acetate, 50 μg BSA ml⁻¹, 40 mM creatine phosphate, 20 μg creatine kinase ml⁻¹, 2 mM ATP, 0.5 mM GTP, 0.5 mM CTP, 0.5 mM UTP, 0.1 mM dATP, 0.1 mM dGTP, 0.1 mM dCTP, 0.1 mM dTTP with [³²P]dTTP (150 c.p.m. pmol⁻¹), 8.6 μg PEG 6000 ml⁻¹, 250 ng supercoiled pRLM4 plasmid DNA (purified by ultracentrifugation in a cesium chloride/ethidium bromide gradient, as described elsewhere (Sambrook et al., 1989)), 300 ng λ O protein and 80 ng λ P protein. SeqA protein was either absent or added to the concentrations indicated. The mixtures were assembled in an ice bath. The reactions were started by the addition of 1.5 μl fraction II and then the samples were incubated at 32 °C for 2 h. In some experiments, 1.5 μl undiluted anti-SeqA serum was added to fraction II and incubated for 12 min in an ice bath before mixing with other components. Total [³H]-labelled nucleotide incorporation was measured by determining the radioactivity (in a scintillation counter) of samples after TCA precipitation and filter binding.

Density-shift experiments. Density-shift experiments were performed according to a previously published method (Wegrzyn et al., 1995b). Briefly, bacteria were grown in ‘light’ MM-2 overnight at 37 °C, and after dilution (1:50, v/v) with fresh medium the cultivation was prolonged to OD₅₀₀=0.2. The bacteria were sedimented, washed with TM buffer (10 mM Tris/HCl, pH 7.2, 10 mM MgSO₄) and suspended with 0.1 volume of this buffer. After 60 min incubation at 37 °C, the [³H]thymidine-labelled phage (9 × 10⁻⁵ c.p.m. p.f.u⁻¹) was added to m.o.i.=10 and incubation was continued for 15 min. The suspension was sedimented, resuspended in the original volume of prewarmed (to 37 °C) ‘heavy’ minimal medium (containing [³¹N]NH₄Cl and [¹³C]glucose instead of NH₄Cl and glucose, respectively), and further incubation was performed at 37 °C. Samples of the infected culture were withdrawn at the indicated times, and total DNA was isolated and ultracentrifuged in the CsCl density gradient, as described previously (Wegrzyn et al., 1995b). Fractions were collected from the bottom of the tube and the radioactivity of each fraction was measured in a scintillation counter.

2D-agarose gel electrophoresis (AGE). Analysis of λ plasmid replication intermediates by 2D-AGE was performed according to a method described elsewhere (Viguera et al., 1996), with modifications described subsequently (Srutkowska et al., 1999). Before electrophoresis, plasmid pCB104 was digested with EcoRI, EcoRV or SspI/PvuI.

Electron microscopy. Electron microscopy analysis of replicating plasmid DNA molecules was performed as described previously (Burkardt & Lurz, 1984; Srutkowska et al., 1998).

Estimation of O protein stability. The stability of the λ O protein in E. coli cells was investigated, as described previously (Wegrzyn et al., 1995a), by [³⁵S]methionine labelling of bacteria growing in MM-2 medium for 20 min, followed by chasing with an excess of unlabelled λ-methionine (1 mg ml⁻¹), cell lysis, immunoprecipitation with anti-λ O serum, SDS-PAGE, autoradiography and densitometry.

Plasmid DNA replication in amino acid-starved bacteria. Bacteria were grown in MM-2 medium, and isoleucine starvation was induced by addition of λ-valine to a final concentration of 1 mg ml⁻¹. Samples of bacterial cultures were withdrawn at indicated times, plasmids were isolated from cells by alkaline lysis, and the amount of plasmid DNA was estimated after AGE and densitometric analysis of plasmid bands on an electrophotogram, as described previously (Herman-Antosiewicz et al., 1998b).

RESULTS

In vitro λ DNA replication in the presence and absence of SeqA

The SeqA protein regulates replication initiation from oriC directly, as demonstrated in studies of the in vitro replication of E. coli minichromosomes (Slater et al., 1995; Wold et al., 1998; Torheim & Skarstad, 1999). Since a decreased copy number of plasmids derived from bacteriophage λ in seqA mutants has been reported previously (Śmiońska et al., 2001), we asked whether the influence of SeqA on replication of these replicons was direct or indirect. Note that the only specific effect of SeqA reported to date that could influence λ DNA replication was the regulation of pR₈ promoter activity (Śmiońska et al., 2001).

In vitro replication experiments were performed using a λ plasmid supercoiled DNA template, purified λ O and P proteins, and a fraction of replication proteins (called fraction II). In such an experimental system, transcription from pR₈ is effective due to the presence of RNA polymerase in fraction II (Wold et al., 1982; for a review, see Taylor & Wegrzyn, 1995). In our experiments we used λ plasmid DNA template isolated from wild-type E. coli cells growing exponentially under standard laboratory conditions. DNA isolated from such bacteria should theoretically be a mixture of hemimethylated and fully methylated molecules. However, assuming that replication of a λ plasmid molecule takes less than 1 min, and considering the kinetics of DNA methylation, it appeared that fully methylated plasmid DNA was predominant in the preparations. On the other hand, it has previously been demonstrated that both the in vivo and in vitro effects of the DseqA mutation and SeqA protein on λ plasmid copy number and pR₈ activity, as well as the binding of SeqA to the λ DNA

http://mic.sgmjournals.org
replication region, are of equal efficiency and of the same specificity with respect to both hemimethylated and fully methylated DNA (Śomińska et al., 2001, 2003b).

We observed no significant effects of SeqA on in vitro replication initiated from oriC. First, because our Western-blotting analysis revealed that fraction II contains some SeqA protein (data not shown), we tested the effects of neutralization of this protein by anti-SeqA antibodies on λ DNA replication. No significant differences were observed in the efficiency of λ DNA synthesis in the presence and absence of anti-SeqA serum (synthesis in the presence of the serum was 86 ± 6% of that measured in the absence of anti-SeqA antibodies). Second, in contrast to previous in vivo studies (Śomińska et al., 2001), the in vitro results presented in this report indicated a slight inhibition rather than stimulation of λ DNA replication by SeqA. Similar results were obtained irrespective of whether SeqA was pre-incubated with DNA template or added together with other replication proteins (Fig. 1). These results show that a direct influence of SeqA on λ DNA replication is unlikely.

Bacteriophage λ replication in infected E. coli seqA mutant

There are two modes of phage DNA replication after infection of the E. coli host by λ (Węgrzyn & Węgrzyn, 2002, 2005). Early after infection, phage DNA replicates according to the circle-to-circle (θ) mode, which is switched later on to the rolling-circle (σ) mode. Since only a few of many (50–100 on average) copies of a circular λ genome that appears after several rounds of θ replication switch to σ replication, the chance is small that parental DNA strands of a DNA molecule that was injected from a phage capsid into the host cell enter rolling-circle replication (Węgrzyn & Węgrzyn, 2002, 2005). This has been employed in density-shift experiments to monitor the modes of λ DNA replication and detect the early appearance of the σ replication intermediates (Węgrzyn et al., 1995; Barańska et al., 2001). If wild-type host cells are infected with λ virions bearing radioactively labelled DNA, and further cultivation is performed in a heavy but non-radioactive medium (a medium containing heavy isotopes of C and N), followed by cell lysis and ultracentrifugation in a CsCl density gradient, the radioactivity can only be observed in the fully light and heavy-light fractions. On the other hand, in mutants causing an earlier switch from θ to σ replication and/or predominant rolling-circle replication, parental λ DNA strands are likely to be a part of σ intermediates and the radioactivity moves toward the fully heavy position (Fig. 2a).

In this type of experiment, 60 min after phage infection of the wild-type cells, we could observe parental λ DNA-specific radioactivity only at positions fully light (DNA molecules that did not enter replication) and heavy-light (parental DNA molecules after one or more rounds of θ replication). However, in the λ-infected seqA mutant, a part of the radioactivity derived from parental λ DNA moved toward the fully heavy position (Fig. 2b). These results suggested that in the seqA mutant the rolling-circle replication starts earlier and is more abundant than in wild-type bacteria.

Directionality of λ DNA replication in the seqA mutant

It has been proposed previously that initiation of the σ mode of bacteriophage λ DNA replication is preceded by one round of unidirectional θ replication (in contrast to bidirectional replication, which predominates at early stages of phage development) (Barańska et al., 2001). Therefore, to determine whether the SeqA-mediated delay in the θ to σ switch results from a SeqA-driven stimulation of bidirectional replication, we investigated the directionality of λ plasmid replication in wild-type cells and seqA mutants. One should note that λ plasmid copy number is decreased in seqA mutants (Śomińska et al., 2001) and that plasmids form multimers. Nevertheless, we assumed that these facts did not influence the interpretation of the results significantly.

Analysis of the results of 2D-AGE experiments indicated that there were few differences in the directionality of λ plasmid replication between wild-type and ΔseqA strains (Fig. 3a, b). Interestingly, the seqA mutation partially suppressed the effects of dnaA gene dysfunction on λ DNA replication directionality demonstrated previously (Barańska et al., 2001). In contrast to the dnaA46 single mutant, in which a high predominance of unidirectional replication has been reported (Barańska et al., 2001), in the double mutant dnaA46 ΔseqA, both unidirectional and bidirectional replication intermediates could be clearly visualized (data not shown). The suppression was however partial, as in contrast to the wild-type host, in which

Fig. 1. In vitro replication of λ plasmid (pRLM4) in the presence of various amounts of the SeqA protein. SeqA was added to the reaction mixture simultaneously with other proteins (○) or incubated with DNA template for 15 min prior to addition of fraction II (●). The amount of λ DNA synthesized in the absence of SeqA was taken as 100% and corresponds to 75 pmol.
Fig. 2. Fate of DNA of infecting \(\lambda\) phage in \(E.\ coli\ seqA^+\) and \(\Delta seqA\) hosts. (a) Diagram of experiments and possible results. Radioactively labelled parental phage DNA (dashed-line circles) starts its replication in bacteria growing in the heavy, non-radioactive medium. After the first round of replication, two molecules of \(\lambda\) DNA appear, each consisting of one radioactive light strand (dashed circles) and one non-radioactive heavy strand (solid circles). Next, several rounds of \(\theta\) replication result in the formation of many (50–100 on average) \(\lambda\) DNA molecules, but only two of them can contain a radioactive strand, and thus radioactivity can be detected only at the heavy-light position after DNA isolation and ultracentrifugation on a CsCl density gradient. Since only a few of these 50–100 \(\lambda\) DNA molecules enter \(\sigma\) replication at late stages of phage development, there is a very low probability that any of these rolling-circle molecules would contain a radioactive strand, and as such they are not detected in these experiments \([\text{a}, \text{upper panel}].\) The lower panel of (a) shows a situation in which \(\sigma\) replication starts early after infection or rolling-circle molecules are highly predominant in the population of \(\lambda\) DNA molecules. Such replication intermediates are likely to contain a light, radioactive parental DNA strand and a newly synthesized, heavy, non-radioactive tail, which leads to the transfer of the radioactivity toward the fully heavy position during density-gradient ultracentrifugation. (b) Experimental results. \(E.\ coli\ seqA^+\) and \(\Delta seqA\) strains growing in the minimal light medium (at 30 °C) were infected with phage \(\lambda cl857S7\) (m.o.i.=10) labelled with \(^{3}H\)thymidine (9×10\(^{-5}\) c.p.m. p.f.u.\(^{-1}\)), and further incubation was performed in heavy medium (containing \(^{13}\)C glucose and \(^{15}\)N NH\(_4\)Cl instead of glucose and NH\(_4\)Cl, respectively). Samples were withdrawn at the indicated times, and total DNA was isolated and centrifuged in a CsCl density gradient. Five-drop fractions were collected from the bottom of the tube, and the radioactivity in each fraction was estimated in a scintillation counter. Arrows indicate the positions of fully heavy, heavy-light and fully light DNA (from left to right in each sub-panel). The results of the experiment with the \(seqA\) mutant at time 0 were analogous to those obtained for the wild-type host (i.e. only a single peak at the fully light position was detected; data not shown). The experiments were repeated three times with roughly the same distribution of the peaks.
roughly equal frequencies of unidirectional and bidirectional replication could be deduced (Fig. 3a), in the dnaA46 ΔseqA cells the accumulation of simple-Y and late double-Y structures, as well as short bubble arcs, suggested a somewhat more frequent unidirectional (preferentially leftward) replication than a bidirectional one (data not shown).

The results obtained in 2D-AGE experiments were generally confirmed in electron microscopic studies. λ plasmids were isolated from bacterial cells and linearized with restriction enzymes, and molecules with replication intermediates were analysed under the electron microscope. We found little influence of the seqA mutation on the directionality of λ plasmid replication (roughly 50% of bidirectional and unidirectional replication in both seqA+ and ΔseqA hosts), and a partial suppression of the effect of dnaA46 mutation by the ΔseqA allele (roughly 10% of bidirectional and 90% of unidirectional replication in the dnaA46 mutant, and 30% of bidirectional and 70% of unidirectional replication in the dnaA46 ΔseqA double mutant; data not shown).

Effect of seqA mutation on stability of the λ heritable replication complex

It has been demonstrated previously that after initiation of a new round of λ DNA replication, the once-formed replication complex is not disassembled but rather inherited by one of two daughter DNA copies (Wegrzyn et al., 1992, 1996a; Wegrzyn & Taylor, 1992). Interestingly, subsequently, a similar phenomenon has been proposed to occur in eukaryotic cells also (Duncker et al., 2002; Li & DePamphilis, 2002). In λ, the heritable replication complex consists of λ O and P proteins and at least two host-encoded proteins, DnaB and DnaK (Potrykus et al., 2002), and occurs in both bacteriophage λ-infected cells and those bearing λ plasmids (Wegrzyn et al., 1995a, 1996a). The existence of the heritable λ replication complex can be monitored by measurement of the stability of the λ O protein, which is rapidly degraded in a free form in E. coli cells but is protected from proteolysis by other components of the complex (Wegrzyn et al., 1992, 1995a, 1996b, 1998).

To monitor the stability of the λ O protein in λ plasmid-bearing wild-type and seqA strains, the cells were pulse-labelled with radioactive methionine, and following chasing with an excess of unlabelled methionine, samples of bacterial culture were withdrawn and analysed. After cell lysis, immunoprecipitation with anti-O serum, and SDS-PAGE, the radioactivity of protein bands was estimated. We found that a stable fraction of the λ O protein,
corresponding to the heritable replication complex, existed in both wild-type and seqA mutant hosts. However, this fraction was less abundant in the mutant (Fig. 4), suggesting that SeqA is required for fully pronounced stabilization of the \(\lambda \) replication complex.

It has been demonstrated that the \(\Delta \)seqA (\(\Delta \)seqA::Tn10) mutation also results in impairment of expression of the cistronic gene \(\text{pgm} \) (Lu et al., 1994). Recently, Hardy & Cozzarelli (2005) have found that deletion of \(\text{pgm} \) affects chromosome topology, without affecting plasmid supercoiling. Nevertheless, since changes in DNA topology can affect the stability of the \(\text{ori}\lambda \)-bound replication complex (Węgrzyn et al., 1998), we repeated the experiments described above using the seqA\(\Delta \)10 mutant, in which the in-frame deletion does not influence expression of \(\text{pgm} \).

The results of experiments with this mutant were analogous to those obtained using \(\Delta \)seqA::Tn10 (data not shown), indicating that dysfunction of \(\text{pgm} \) has no significant influence on the investigated processes.

Replication of \(\lambda \) plasmids in the seqA mutant during the relaxed response

During amino acid starvation, when new replication complexes cannot be formed due to inhibition of protein synthesis, replication of \(\lambda \) plasmids may occur solely due to the activity of the heritable replication complex (Węgrzyn & Taylor, 1992). However, transcriptional activation of \(\text{ori}\lambda \) (transcription initiated at the \(\text{pR} \) promoter and passing through the \(\text{ori} \) region) is necessary for initiation of \(\lambda \) plasmid replication in vivo. Thus, synthesis of \(\lambda \) DNA is inhibited in amino acid-starved wild-type cells, due to guanosine tetraphosphate (ppGpp)-mediated impairment of \(\text{pR} \) activity, but proceeds in \(\text{relA} \) (relaxed) mutants, unable to produce ppGpp in starved cells (Szalewska-Pałasz et al., 1994). Because of this, \(\lambda \) plasmid replication in the amino acid-starved \(\text{relA} \) host reflects the efficiency of functioning of the heritable replication complex and the effectiveness of \(\text{pR} \)-initiated transcriptional activation of \(\text{ori}\lambda \).

We found that in \(\text{relA} \) \(\Delta \)seqA double-mutant cells growing exponentially in a minimal medium, the relative kinetics of plasmid DNA replication in the wild-type host (caused by accumulation of ppGpp and inhibition of transcription from \(\text{pR} \)), some increase in the amount of \(\lambda \) DNA occurred in the \(\text{relA} \) \(\Delta \)seqA host during the relaxed response, but the efficiency of this process was significantly lower than that in the \(\text{relA} \) seqA\(^+ \) bacteria (Fig. 5).

DISCUSSION

Although the SeqA protein is one of major negative regulators of \(\text{E. coli} \) chromosome replication (see Introduction), little is known about the putative involvement of this

Fig. 4. Relative O protein levels in \(\text{E. coli} \) seqA\(^+ \) (○) and \(\Delta \)seqA (●) hosts bearing \(\lambda \) plasmid (pKBlin). Bacterial cultures were pulse-labelled with \([\text{35S}] \)methionine and chased with an excess of non-radioactive methionine at time 0. The y axis shows the O protein level as a percentage of that of the corresponding \(\text{E. coli} \) strain at time 0.

Fig. 5. Replication of \(\lambda \) plasmid (pCB104) in amino acid-starved \(\text{E. coli} \) wild-type (relA\(^+ \) seqA\(^+ \)) host (○), and \(\text{relA} \) seqA\(^+ \) (●), and \(\text{relA} \) \(\Delta \)seqA (●) mutants. The results of experiments with the relA\(^+ \) \(\Delta \)seqA strain were analogous to those obtained for relA\(^+ \) seqA\(^+ \) (data not shown). Isoleucine starvation was induced by the addition of \(\text{L-valine} \) up to 1 mg ml\(^{-1} \) at the time indicated by the arrow. The y axis shows the amount of plasmid DNA relative to that of the corresponding \(\text{E. coli} \) strain at time 0.
factor in the control of the replication of other replicons. Examples of studies of the possible role of SeqA in the regulation of replication initiated from origins different from oriC include relatively preliminary observations only, namely the demonstration of the binding of this protein to bacteriophage P1 ori (Brendler et al., 1995), and the findings that the copy number of plasmids derived from bacteriophage \(\lambda \) is decreased in a seqA mutant host (Słomińska et al., 2001) and that the \(\Delta \)seqA mutation can suppress incompatibility between \(\lambda \) plasmids and certain dnaA(ts) mutants (Słomińska et al., 2003b; Glinkowska et al., 2003). Here, we investigated the role of SeqA in the regulation of \(\lambda \) DNA replication in more detail.

Since SeqA regulates replication from oriC directly (by binding specifically to the origin region, and influencing initiator protein function and changes in nucleoprotein structures in this region), which can be demonstrated in vitro (Slater et al., 1995; Wold et al., 1998; Torheim & Skarstad, 1999), we asked whether the effect of this protein on \(\lambda \) DNA replication is also direct. However, in contrast to a stimulation of \(\lambda \) plasmid replication in vivo, deduced from the negative effects of the \(\Delta \)seqA mutation on plasmid copy number, a small negative effect of SeqA was observed in in vitro experiments (Fig. 1). Thus, in the absence of stimulation of \(\lambda \) DNA replication by SeqA in vitro, we conclude that this protein controls the \(\lambda \) replicon indirectly. One might argue that since SeqA interacts with cell membranes, which are missing in the in vitro replication assay, such an experimental system could be incomplete. Although we cannot exclude such a possibility, the fact that SeqA can clearly influence oriC-initiated replication in vitro (Wold et al., 1998; Torheim & Skarstad, 1999), together with our results (this report), makes the putative hypothesis of a direct involvement of this protein in \(\lambda \) DNA replication unlikely.

Despite the apparent lack of direct effects, there appears to be a significant role for SeqA in the regulation of \(\lambda \) DNA replication. This can be concluded from the results of our density-shift experiments, which indicated considerable differences in the distribution of replication intermediates between wild-type and seqA hosts infected by bacteriophage \(\lambda \) (Fig. 2). The movement of the parental radioactively labelled phage DNA toward the fully heavy position suggests that \(\sigma \) replication intermediates appear earlier and are more abundant in the mutant, implying a role for SeqA in the switch from circle-to-circle to rolling-circle replication during bacteriophage development. The lack of the signal at the fully light position in the experiment with the seqA mutant (60 min after infection), in comparison with the wild-type host, is also intriguing. In theory, this could arise from the stimulation of either \(\theta \) or \(\sigma \) replication. However, since seqA inactivation has a negative effect on the replication of \(\lambda \) plasmids (Słomińska et al., 2001; see also Fig. 5 in this report), which replicate exclusively according to the \(\theta \) mode, these results may support the hypothesis that SeqA delays the rolling-circle replication of phage \(\lambda \) DNA.

Because it has been proposed previously that \(\sigma \) replication of \(\lambda \) DNA is preceded by one round of unidirectional \(\theta \) replication (Barańska et al., 2001), the lack of a marked effect of the seqA mutation on the directionality of \(\lambda \) plasmid replication (Fig. 3) might appear surprising. Nevertheless, this suggests that other processes and/or factors can also influence the mechanisms of the switch from an early to a late mode of DNA replication during bacteriophage \(\lambda \) lytic development. One might be the stabilization of the \(\lambda \) replication complex, which has in fact been postulated previously (Żylicz et al., 1998). The nucleoprotein complex formed at ori\(\lambda \) contains the O protein, which is protected from proteolysis by other components of this complex, and inherited by one of the two daughter copies of \(\lambda \) DNA after each round of \(\theta \) replication (Węgrzyn et al., 1992, 1996a; Węgrzyn & Taylor, 1992; Potrykus et al., 2002). Since a free (unbound) form of the O gene product is rapidly degraded in E. coli cells (to ~1–2 min) (Węgrzyn et al., 1992), the efficiency of formation and persistence of the heritable replication complex may be deduced from the stability of the O protein in vivo pulse–chase experiments. Interestingly, the stable fraction of the O protein was significantly less abundant in the seqA mutant relative to wild-type bacteria (Fig. 4), indicating an involvement of SeqA in either the formation of the stable \(\lambda \) replication complex or its survival in cells. The mechanism of this phenomenon remains to be elucidated; nevertheless, it is worth noting that SeqA binds to a region of the \(\lambda \) p\(R \) promoter and regulates its activity (Słomińska et al., 2001), and that a decrease in the abundance of the stable O protein fraction is also observed in cells bearing a derivative of \(\lambda \) plasmid (pTC\(\lambda \)2) in which p\(R \) is replaced by another promoter (p\(\text{R}_{\text{wa}} \)) (Herman-Antosiewicz et al., 1998a) [the activity of the p\(\text{R}_{\text{wa}} \) promoter has been demonstrated to be SeqA independent (Słomińska et al., 2001)]. Moreover, another regulator of p\(R \) activity, the DnaA protein (Szalewska-Pażasz et al., 1998; Glinkowska et al., 2003), has also been suggested to be a factor that influences the stability of the \(\lambda \) replication complex (Herman-Antosiewicz et al., 1998a), and an interplay between DnaA and SeqA at the p\(R \) promoter region has been clearly demonstrated (Słomińska et al., 2003b). In this light, seqA dysfunction-mediated suppression of the effects of certain dnaA alleles on the transformation of E. coli cells with \(\lambda \) plasmids, demonstrated previously (Glinkowska et al., 2001), and on the directionality of \(\lambda \) plasmid replication, suggested in this report, may be important to understand the regulation of \(\lambda \) DNA replication initiation. It is tempting to speculate that a nucleoprotein structure much larger than that suggested previously is formed at the \(\lambda \) DNA region encompassing p\(R \) and ori\(\lambda \). SeqA and DnaA proteins might be involved in the formation of such a structure, which would control replication initiation from ori\(\lambda \) by both facilitating stabilization of the heritable replication complex and regulating p\(R \)-dependent transcriptional activation of the origin. A precedent for the formation of this kind of ‘supercomplex’ has already been described; namely, the ParB...
protein of phage P1 is capable of forming large complexes, due to spreading along DNA, which affect promoters located downstream (Rodionov & Yarmolinsky, 2004). In this light, it is worth mentioning that the filamentous form of SeqA is able to induce negative DNA supercoiling (Odsbu et al., 2005). This might potentially affect both p\(\alpha\) activity and \(\lambda\)O protein stability.

The lack of drastic effects of SeqA on in vitro \(\lambda\) DNA replication (Fig. 1), together with the moderate effect of seqA dysfunction on \(\lambda\) plasmid and phage replication in vivo, suggests that this protein functions in the modulation of this process rather than being essential. However, such modulation can play an important regulatory role under different environmental and physiological conditions. Interestingly, bacteriophage \(\lambda\) DNA replication based on an unstable, rather than stable, replication complex has been reported in UV-irradiated bacteria (Węgrzyn & Węgrzyn, 2000), strengthening the hypothesis presented above.

If SeqA indeed modulates the efficiency of \(\lambda\) DNA replication by regulating the stability of the replication complex and the transcriptional activation of ori\(\lambda\), one should observe the most significant effects of seqA mutations on replication, which is totally dependent on these processes. Such replication occurs as the sole mode of \(\lambda\) plasmid DNA synthesis during the relaxed response of bacterial cells to amino acid starvation (Taylor & Węgrzyn, 1995; Szalewska-Pałaðsz et al., 1994). Under these conditions, new \(\lambda\) replication complexes cannot be formed due to the lack of amino acids, and the previously formed, heritable replication complex requires p\(\alpha\)-initiated transcription to initiate DNA synthesis. In accordance with the above hypothesis, we observed a significant impairment of \(\lambda\) plasmid replication in the amino acid-starved \(\lambda\) plasmid DNA synthesis during the relaxed response of bacterial cells to amino acid starvation (Taylor & Węgrzyn, 1995)

In conclusion, unlike the \(E.\) coli chromosome, the replication of which is negatively regulated by the sequestering of oriC due to binding of the SeqA protein to hemimethylated GATC motifs (Taghbalout et al., 2000; Guarne et al., 2005), replication of \(\lambda\) DNA is moderately stimulated by SeqA rather than inhibited. This stimulation is indirect, brought about by stabilization of the heritable replication complex and stimulation of the transcriptional activation of ori\(\lambda\), but may nevertheless play an important regulatory role, especially under various stress conditions. This also indicates that SeqA may differentially control the replication of various replicas, employing a large spectrum of molecular mechanisms. Such a function supports the proposal that this protein is a global regulator of processes occurring in bacterial cells. In fact, types of processes that have been demonstrated to be SeqA regulated in studies of bacteriophage \(\lambda\), such as transcription regulation and the stabilization of protein complexes, may represent more general phenomena occurring in the host (\(E.\) coli) cells rather than being restricted solely to its parasite (phage \(\lambda\)).

ACKNOWLEDGEMENTS

We are grateful to Kirsten Skarstad for providing the seqAA10 mutant, SeqA protein and anti-SeqA antibodies, and to Roger McMacken, Johns Hopkins University, and Igor Konieczny and Krzysztof Liberek, University of Gdańsk, for discussions and for providing samples of proteins at early stages of this study. The assistance of Ewa Wójtowicz and Jacek Trzeszczyński in the construction of plasmid pEW1 and electron-microscopic studies, respectively, is acknowledged. This work was supported by the Polish Ministry of Science and Higher Education (project grant no. N301 122 31/3747).

REFERENCES

Edited by: L. Jannière