Functional characterization of IScs605, an insertion element carried by tetracycline-resistant *Chlamydia suis*

Jae Dugan,1 Arthur A. Andersen2 and Daniel D. Rockey1

INTRODUCTION

Chlamydiae are obligate intracellular bacteria that cause serious disease in humans and many other species (Belland et al., 2004; Pollmann et al., 2005; Wang et al., 2005). One chlamydia of veterinary concern is *Chlamydia suis*, a pathogen that can cause conjunctivitis, abortion and enteritis in swine (Pollmann et al., 2005). Recent work in our laboratory has identified the nature of a set of tetracycline (Tet) resistance islands that are integrated into the chlamydial chromosome. The tet(C) islands contain several plasmid-specific genes, the tet(C) resistance gene and, in most cases, a novel insertion element (IScs605) encoding two predicted transposases. The hypothesis that IScs605 mediated the integration of the tet(C) resistance islands into the *C. suis* genome was tested using a plasmid-based transposition system in *Escherichia coli*. Both high- and medium-copy-number plasmids were used as carriers of IScs605 in these experiments. IScs605 integrated into a target plasmid (pOX38) when delivered by either donor plasmid, and integration of the entire donor plasmid was common. IScs605-mediated integration occurred at many positions within pOX38, with 36 of 38 events adjacent to a 5′-TTCAA-3′ sequence. Deletions in each of the candidate transposase genes within IScs605 demonstrated that only one of the two ORFs was necessary for the observed transposition activity and target specificity. Analysis of progeny from the mating assays also indicated that IScs605 can excise following integration into a target DNA, and, in each tested case, the sequence 5′-AATTCAA-3′ remained at the site of excision. Collectively, these results are consistent with the nucleotide sequence data collected for the tet(C) islands, and strongly suggest that a transposase within IScs605 is responsible for integration of these genomic islands into the *C. suis* chromosome.

Stable tetracycline resistance in *Chlamydia suis* is mediated by a family of genomic islands [the tet(C) islands] that are integrated into the chlamydial chromosome. The tet(C) islands contain several plasmid-specific genes, the tet(C) resistance gene and, in most cases, a novel insertion element (IScs605) encoding two predicted transposases. The hypothesis that IScs605 mediated the integration of the tet(C) resistance islands into the *C. suis* genome was tested using a plasmid-based transposition system in *Escherichia coli*. Both high- and medium-copy-number plasmids were used as carriers of IScs605 in these experiments. IScs605 integrated into a target plasmid (pOX38) when delivered by either donor plasmid, and integration of the entire donor plasmid was common. IScs605-mediated integration occurred at many positions within pOX38, with 36 of 38 events adjacent to a 5′-TTCAA-3′ sequence. Deletions in each of the candidate transposase genes within IScs605 demonstrated that only one of the two ORFs was necessary for the observed transposition activity and target specificity. Analysis of progeny from the mating assays also indicated that IScs605 can excise following integration into a target DNA, and, in each tested case, the sequence 5′-AATTCAA-3′ remained at the site of excision. Collectively, these results are consistent with the nucleotide sequence data collected for the tet(C) islands, and strongly suggest that a transposase within IScs605 is responsible for integration of these genomic islands into the *C. suis* chromosome.

A major limitation in developing an understanding of the chlamydial host–pathogen interaction process is the lack of a genetic system. Genome sequencing data support the conclusion that these organisms are not naturally receptive to foreign DNA (Raoult, 2001). While there is a single genomic island within a related obligate intracellular species, the tet(C) islands represent the first example of recent horizontal acquisition of DNA in any *Chlamydia* spp. (Greb et al., 2004; Roberts, 2005). It is anticipated that an understanding of the mechanisms associated with acquisition of the tet(C) islands by *C. suis* may assist in the development of a stable transformation system in the chlamydiae.

Each of the tet(C) islands has several genes found in plasmids from Gram-negative bacteria, including tet(C) and tetR(C), which encode an efflux pump for Tet resistance and the cognate repressor protein, respectively (Chopra & Roberts, 2001). Most of these islands also carry a novel insertion element (IS), IScs605 (Dugan et al., 2004). IScs605 is homologous to the IS605 family of insertion sequence elements, which are most commonly found in *Helicobacter pylori* (Kersulyte et al., 1998, 2000, 2002, 2004; Ton-Hoang et al., 2005). This family of IS elements consists of two divergently oriented ORFs that are members of different families of IS elements. One of these (orfA) is related to members of the IS200 family of transposases, while the

Abbreviation: IS, insertion element.
second (orfB) is similar to a family of proteins related to candidate transposases encoded within IS1341 (Bisercic & Ochman, 1993; Dugan et al., 2004; Murai et al., 1995). There is 100% sequence identity of IScs605 from the different C. suis strains. A pentanucleotide sequence, 5'-TTCAA, is always present adjacent to the orfA end of IScs605 (Fig. 1). The tet(C) islands integrate into the C. suis chromosome within an invasin-like gene, and the site of insertion is also 5'-TTCAA (Dugan et al., 2004).

Nucleotide sequence analysis has suggested that IScs605 may have had a role in the acquisition of the tet(C) islands by C. suis. The described experiments demonstrate that IScs605 can direct transposition in an Escherichia-coli-based mating assay, yielding transposition products consistent with those observed in the TetR C. suis strains.

METHODS

E. coli strains, and culture conditions. All E. coli strains were recA negative, and were grown in Luria–Bertani (LB) broth, or on LB agar, at 37°C. E. coli RZ212 is a gentamicin (Gen)-resistant (Gen)-resistant strain containing a deletion derivative of the F plasmid [pOX38: aac(3)-I], and it serves as a transposition host and a mating donor strain (Guyer et al., 1981). E. coli SP800 is resistant to nalidixic acid (Nal), and has a deletion in polA, which prevents the strain from supporting ColEl-based origins of replication (Gross & Gross, 1969; Hefron et al., 1977; Stachel et al., 1985). E. coli TOP10 (Invitrogen) was used for plasmid rescue, and for constructing the pUC18- and pBRR1MCS-based vectors. When indicated, particular antibiotics were added to the medium at the following concentrations: Nal, 10 µg ml⁻¹; kanamycin (Kan), 50 µg ml⁻¹; ampicillin (Amp), 100 µg ml⁻¹; chloramphenicol (Chl), 100 µg ml⁻¹; Gen, 10 µg ml⁻¹. All antibiotics were purchased from Sigma.

General PCR conditions. PCR reactions were performed with 0.25 mM dNTP (Fermentas), 0.4 nM forward and reverse primers (Table 1), and Taq (NEB) or Pfx polymerase (Invitrogen), as indicated. The following reaction parameters were used for all amplifications: templates were denatured for 45 s at 94°C, the primers were annealed for 45 s at 52°C, and products were extended for 90 s at 72°C. All amplifications were performed for 30 cycles. Digoxigenin-labelled PCR products were made using previously described methods (Dugan et al., 2004). The digoxigenin-labelled PCR probe of aph was produced with primers JP11 and JP12, using the pCR-Blunt vector (Invitrogen) as the template. The digoxigenin-labelled PCR probe of bla was produced with primers JP13 and JP14, using pUC18 as the template. The digoxigenin-labelled PCR probe of cat was produced with primers JP15 and JP16, using pBRR1MCS as the template. The digoxigenin-labelled PCR probe of pOX38 was produced with primers JP9 and JP10, using pOX38 as the template.

Plasmid constructs

A collection of pUC18-based and pBRR1MCS plasmids was produced to test the transpositional activity of IScs605. A cartoon of each construct is shown in Fig. 2, and the details for each set of plasmids are described in the following paragraphs.

pUC18 with IScs605. The entire IScs605 sequence was amplified from the TetR C. suis strain R19 using Pfx polymerase PCR
Table 1. Oligonucleotide primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5′–3′)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP1</td>
<td>AGCAAAGCTTAAGTGAACTACTCGCTGCTA</td>
<td>orfB</td>
</tr>
<tr>
<td>JP2</td>
<td>AGCAGAATCTTTGAACGGAGTGTTG</td>
<td>orfA</td>
</tr>
<tr>
<td>JP3</td>
<td>AGCAGAATCCCGAGTGTTGCGAATCT</td>
<td>orfA</td>
</tr>
<tr>
<td>JP4</td>
<td>TCGGAAAACACAAGCCCTG</td>
<td>249 bp from orfB</td>
</tr>
<tr>
<td>JP5</td>
<td>AACAACCAGAAGCAAGGCCC</td>
<td>71 bp from orfA</td>
</tr>
<tr>
<td>JP6</td>
<td>TTTGGTCTCTCTCTGCTCC</td>
<td>aph</td>
</tr>
<tr>
<td>JP7</td>
<td>TCTGTGTTTGGTTTCCGCC</td>
<td>IScs605</td>
</tr>
<tr>
<td>JP8</td>
<td>GCTCACAATCTCAGCTCACAAG</td>
<td>IScs605</td>
</tr>
<tr>
<td>JP9</td>
<td>CACACCCACCCCAAAACAAG</td>
<td>pOX38</td>
</tr>
<tr>
<td>JP10</td>
<td>CAGACTGGGTACATGAGGAACTC</td>
<td>pOX38</td>
</tr>
<tr>
<td>JP11</td>
<td>ACTGGGCTATCTGAGAAGG</td>
<td>aph</td>
</tr>
<tr>
<td>JP12</td>
<td>TAATCCAGAGCTAGGAGGTC</td>
<td>aph</td>
</tr>
<tr>
<td>JP13</td>
<td>CAGCTAGTGAGCTGACTCC</td>
<td>bla</td>
</tr>
<tr>
<td>JP14</td>
<td>GTATATGCCCTTATGTAGGCC</td>
<td>bla</td>
</tr>
<tr>
<td>JP15</td>
<td>TTAATGATGCTGCAAACAGG</td>
<td>cat</td>
</tr>
<tr>
<td>JP16</td>
<td>CAGCGTGATGAGCTGAAAATCTC</td>
<td>cat</td>
</tr>
<tr>
<td>JP17</td>
<td>CGGTGATGACGGTGAAAACCTC</td>
<td>pUC18</td>
</tr>
<tr>
<td>JP18</td>
<td>CCTGGTATGCTGAAAATCT</td>
<td>pUC18</td>
</tr>
</tbody>
</table>

Fig. 2. Plasmid constructs used in this study. The details of the constructs can be found in Methods. Plasmids pJD1–pJD6 were constructed within pUC18(Amp[®]), while pJD7 was built within the medium-copy-number plasmid pBBR1MCS(Chl[®]) (Kovach et al., 1994). The plasmid pJD1 contains an intact IScs605 adjacent to a Kan[®] gene (aph), which is flanked by the ends of IScs605. The plasmid pJD2 contains aph with the IS ends, but lacks the intact IScs605. Plasmid pJD3 is pJD1, but with a deletion introduced into the orfA ORF. Plasmid pJD4 is identical to pJD1, but carries a deletion that inactivates the orfB ORF. Plasmid pJD5 is a modification of pJD4, in which the aph coding sequence was placed within the inactivated orfB. Plasmid pJD6 is identical to pJD1, except for the lack of the 5′-TTCAA at the 3′ end of IScs605. Plasmid pJD7 consists of pBBR1MCS containing the pJD5 insert.
(Invitrogen) with the primers JP1 and JP2 (Table 1). The PCR product was cloned into pUC18, and transformed into Top10 cells, creating pUC18:ISC605. Since there is no antibiotic resistance marker on IScs605, a KanR cassette was constructed by placing the resistance gene (aph), flanked by approximately 150 terminal nucleotides from each end of the IS element, adjacent to full-length IScs605. The primers JP4 and JP5 were used in a long-PCR protocol to amplify the vector backbone of pUC18:ISC605, which lacked the candidate transposase ORFs. Amplification with these primers produced a linear product containing terminal fragments of each IScs605 end (Table 1) flanking the entire pUC18 molecule, with terminal restriction sites for NotI and EcoRV. The aph sequence was then amplified from the pCR-blunt vector (Invitrogen) using Pfx polymerase with primers JP11 and JP12, and this resulted in an aph sequence with terminal NotI and EcoRV restriction enzyme sites. This product was then ligated to the amplification product from the outward PCR reaction. The resulting plasmid (pJD2) was transformed into E. coli, and selected by growth on LB agar containing Kan. The IScs605/aph fragment from pJD2 was then excised with EcoRI, and ligated into the full-length pUC:ISC605 to create the plasmid pJD1. The plasmids pJD1 and pJD2 served as experimental and control plasmids, respectively, for initial studies of the transpositional activity of IScs605.

orfA and orfB knockouts. Each of the two ORFs in IScs605 was independently inactivated using a restriction-enzyme-based approach. A 200 bp fragment of orfA was deleted by digesting pJD1 with PstI and PflMII, which are enzymes that each cut only once within the orfA ORF. The restricted plasmid was electrophoresed through 1 % agarose, and the vector-containing fragment was excised from the gel and purified. The DNA was then treated with T4 DNA polymerase (Fermentas) to blunt end the restriction sites. The product was then self-ligated, and transformed into E. coli TOP10. PCR was used to demonstrate that the resulting plasmid pJD3 carried an inactivation within orfA. A similar strategy was used for orfB. In this case, a 1.1 kb deletion within orfB was created by restriction digest with the enzymes NsiI and Hpal, leading to the plasmid pJD4.

Replacement of orfB with the KanR marker aph. The orfB sequence within pJD1 was replaced with the KanR marker aph from the plasmid pCR-Blunt vector (Invitrogen) by restricting pJD1 with NsiI and Hpal, blunting the single-stranded ends, and ligation aph into the vector. The aph ORF was amplified with the primers JP11 and JP12 (Table 1). Transformed clones were identified by plating on LB agar containing Kan, and resistant colonies were screened by PCR. This resulted in the plasmid pJD5.

Deletion of the targeting sequence within IScs605. The 5'-TTCGA found at the orfA end of IScs605 was deleted within pJD1 by performing PstI-based PCR with the primers JP1 and JP3, using pJD5 as the template. This amplification produced an IS element identical to that found in pJD5, except for a deleted terminal 5'-TTCGA sequence. This PCR product was inserted into pUC18, creating pJD6.

IScs605 insertions into pBBR1MCS. The medium-copy-number vector pBBR1MCS (Kovach et al., 1994) was also used to analyse IScs605 transposition activity. The IScs605 sequence from pJD5 was PCR-amplified using the primers JP1 and JP2. The PCR product was then inserted into pBBR1MCS, producing the plasmid pJD7.

Mating assay. The mating assay was performed by individually introducing each of the plasmids (Fig. 2) into chemically competent E. coli RZ212. Following transformation, individual colonies were picked, and cultured overnight in LB broth. These cultures were diluted 50-fold into 10 ml LB broth containing 0.5 % glucose, and grown for 2–4 h to an OD600 of 0.4–0.6. The transformed donor strain was then added to exponentially growing E. coli SF800 in equal proportions. This mating mix was incubated at 37 °C for 3 h, without shaking, to allow conjugation between the donor strain and the polA-deficient recipient strain. Bacteria were then diluted and spread onto LB agar containing Nal to determine the total number of recipient bacteria, and onto LB agar containing Kan and Nal to determine the number of recipient bacteria that carried pOX38/IScs605 recombinant plasmids. The values reported represent the number of transconjugants (KanR NalR) per 10^7 recipient bacteria (NalR), and each experiment was repeated at least four times.

Genomic DNA purification. Transconjugants from mating assays were grown overnight in LB at 37 °C, and then concentrated by centrifugation at 3000 g. Pellets were resuspended in 50 mM Tris, pH 7.4, 1 % SDS, and 100 units proteinase K (Fermentas). The mixture was incubated at 37 °C for 4–6 h, and extracted three times with 1:1 phenol/chloroform, followed by a single chloroform extraction. The DNA was precipitated with ethanol/ammonium acetate and resuspended in water to a concentration of 1 μg µl^-1.

Plasmid rescue. Genomic DNAs from individual transconjugant clones were restricted with the enzymes MluI and BssHII for 4 h. These restriction enzymes generate the same overhanging ends following digestion and cut many times within pOX38, but do not cut within pJD1, pJD5 or pJD7. Products of these digests were purified using a commercial kit (Qiagen), self-ligated, and then transformed into TOP10 cells. Individual AmpR KanR colonies were transferred to LB, and cultured overnight. Plasmids were purified from these cultures (Qiagen), and the nucleotide sequence of DNA flanking the likely insertion site was determined using primers JP6, JP7 and JP8.

Southern blot analysis. Purified genomic DNA of transconjugants was analysed by Southern blots, as described previously (Dugan et al., 2004). Genomic DNA was digested with MluI and BssHII, PstI or PstI, followed by electrophoresis through a 1 % agarose gel, and then passively blotted to nitrocellulose. The enzymes MluI and BssHII do not cut within any of the pJD plasmids, and thus MluI/ BssHII restriction fragments analysed by Southern blotting represent DNA not digested within the original plasmid source of IScs605. In contrast, the enzymes PstI and PstI cut once within pJD1 through pJD6 (PstI) and pJD7 (PstI), and they were useful for identifying multimers of donor plasmids within pOX38. The blots were analysed using probes for aph, bla, IScs605 orfB, cat and pOX38.

Excision analysis. Genomic DNA of transconjugants was used as template for PCR reactions to look for evidence of excision of IScs605 from pOX38 recombinants. Primers for these experiments (JP17 and JP18) were designed to amplify a 750 nt fragment that would be present in genomic DNA if IScs605 had deleted itself from a pJD1 construct. PCR products that were of the appropriate size were excised from gels, and the nucleotide sequence was determined.

Transposition of IScs605 versus integration of entire plasmids. Transconjugants from both pUC18-based (pJD5) and pBBR1MCS-based (pJD7) constructs were analysed for independent transposition of IScs605 into pOX38. Standard mating assays were conducted, and colonies were selected using Kan and Nal. Transconjugants from each mating assay were then individually transferred to plates containing Kan and Nal, and either Amp (for pJD5) or Chl (for pJD7). The ratio of clones that grew on Kan and Nal only, versus those that grew on plates containing Kan and Amp, or Nal and Chl, was determined for each tested donor plasmid. Southern blotting was also conducted using PstI-digested genomic DNAs from pJD7-based mating assays. DNAs from Chl and Chl^R transconjugants were used in these blots, and probed with aph to monitor the presence and number of IS elements in the transconjugant.
RESULTS

Mating assays

The IScs605 mobile genetic element was analysed for functional activity and insertion specificity in an E. coli-based mating assay (Kersulyte et al., 1998, 2000). This assay involves transforming a donor strain with IScs605-containing plasmids (Fig. 2), and selecting for transposition into a conjugative plasmid, pOX38. Several different experiments were conducted using independent clones of donors transformed with different pJD1 plasmids, and these assays resulted in a mean of 3265 transconjugants per 10^9 recipient bacteria (Fig. 3). Control experiments using pJD2 resulted in a mean of <5 background colonies per 10^9 recipient bacteria. These data demonstrate that the presence of intact IScs605 resulted in an approximately 1000-fold increase in resistance to Kan, relative to a control vector, in this transposition system.

The nature of the pJD1:pOX38 transpositions

Initial experiments showed that all transconjugants using pUC-based donor plasmids were resistant to both Kan and Amp. These data led to the hypothesis that the IS element integrated into pOX38 within its pUC framework. This possibility was examined using Southern hybridizations of genomic DNA from independent transconjugants. Blots of MluI- and BssHII-digested genomic DNA from >30 transconjugants were probed with the Kan^R gene (aph), the Amp^R gene (bla), orfA from IScs605, and a fragment from pOX38. All transconjugants were positive for each probe, and each of aph, bla and IScs605 was present on an identical band in each individual transconjugant. These data support the conclusion that the entire pJD1 plasmid was integrated into pOX38 following pJD1-mediated transposition.

ORF knockouts

The two ORFs within IScs605 are members of different families of IS elements. To assess the possible role of each ORF in the integration of pJD1 into pOX38, plasmids containing interrupted orfA or orfB (pJD3 and pJD4 respectively) were constructed and used in mating assays. The results showed that inactivation of orfA led to a reduction of transconjugants to control levels, while the inactivation of orfB had a minimal effect on the formation of Amp^R Nal^R transconjugants (Fig. 3). Mating experiments using pJD5, in which the orfB ORF was replaced by aph, produced identical results to pJD4. This construct was also capable of facilitating integration of DNA into pOX38 (Fig. 3). These experiments supported the conclusion that orfA was essential for transposition, while inactivation of orfB had no detectable effect on transposition frequency.

Insertion-site specificity

Nucleotide sequence analysis was performed to determine the site of insertion of the IScs605 plasmids into pOX38. These data demonstrated that integration of pJD1 occurred throughout pOX38, and that insertions occurred in both orientations (Fig. 4). Certain regions appeared to lack recombinated plasmid, but it is likely that integrations at these sites (i.e. critical genes for conjugation during the mating assay) may have resulted in a pOX38:pJD1 plasmid that did not conjugate efficiently into recipient E. coli (Frost et al., 1994). These data also demonstrated that 36 out of 38 independent insertion events were adjacent to a 5'-TTCAG site present in pOX38 (Fig. 5), and that the two alternate target sequences (5'-GTGCA and 5'-TTCTAG) were similar to 5'-TTCAG. This insertion-site specificity was also observed in experiments using the orfB-deletion plasmid pJD5. There was no evidence of insertion specificity at the orfB end of IScs605 (Fig. 5). The sequencing also demonstrated that there were no direct or inverted repeats at the sites of plasmid integration. These data were consistent regardless of which particular plasmid containing the IS element was used for analysis, as the plasmids pJD1 (pUC-based, intact orfA and orfB), pJD5 (pUC-based, orfB deletion) and pJD7 (pBR1MCS-based orfB deletion) consistently targeted the 5'-TTCAG site (Fig. 5). Thus, the presence of orfA within the IS element is responsible for both the transpositional activity and insertion specificity of IScs605.
Concatamer-based insertion, and secondary excision events, in the mating assay

The nucleotide sequencing was often complicated by the presence of apparent overlapping electropherogram profiles. Several clones that yielded these overlapping sequence reads were further analysed by using Southern blotting and PCR. Southern blots of *Pst*I-digested DNA from

Fig. 4. Sites of integration of the pJD plasmids within pOX38, based on nucleotide sequence analysis of recovered plasmid DNA. The arrowheads represent all insertions within pOX38, derived from analysis of pUC18-based donor plasmids. Some sites had multiple independent insertion events, represented by open arrowheads. Arrowheads above and below the plasmid map represent insertions oriented to the left and right, respectively. Filled arrowheads represent selected genes or collections of genes within pOX38. Asterisks indicate sites of insertion in mating assays that used pJD7 as a donor. Open circles indicate products in which the donor DNA is not inserted at a 5′-TTCAA.

Fig. 5. Sequence analysis of the pOX38 insertion site, and excision events. (a) Sequences adjacent to the sites of insertion within pOX38 showing association with the pentanucleotide 5′-TTCAA-3′ (underlined). Asterisks indicate sites of insertion in mating assays that used pJD7 as a donor plasmid. Open circles indicate products in which the donor DNA is not inserted at a 5′-TTCAA-3′. (b) Sequences at the margins of IScs605 before and after apparent excision in transconjugants. Note the sequence 5′-AATTCA-3′ remaining at the site of excision. This sequence was identical in eight independent transconjugants containing the plasmid pJD5.

Fig. 6. Southern blots of *Pst*I-digested genomic DNA from transconjugants. Genomic DNA from transconjugants was restriction digested with *Pst*I. Results showed the presence of multiple copies of the *bla*, IScs605 and *aph* elements in the transconjugants. Nucleotide sequencing of genomic DNAs, using a primer within *aph*, resulted in overlapping sequence reads for genomic DNAs shown in lanes 1, 2, 3, 4 and 6. In contrast, there were no overlapping sequence reads in the analysis of genomic DNAs shown in lanes 5 and 7. Southern blots were probed for *bla* (a), *aph* (b) and *orfB* of IScs605 (c). Molecular mass standards are listed to the right of the blots.
transconjugants were probed with \textit{bla}, \textit{aph} and \textit{Ics605 orfB}. The data demonstrated that there were multiple copies of each of these genes within most genomic DNAs generated in mating assays using \textit{pUC}-based donor plasmids (Fig. 6). These experiments suggested several different scenarios: (1) more than one \textit{pOX38} recombinant may be present in a single cell, (2) secondary transposition may have occurred inside either the donor or the recipient cell, or (3) concatamers of \textit{pJD1} may be inserted into single \textit{pOX38} within the donor. As mentioned above, Southern blots were also performed using DNA digested with the enzymes \textit{MluI} and \textit{BssHII}, which do not have recognition sites within \textit{pJD1}. These blots demonstrated that the \textit{bla}-specific probe reacted with single positive restriction fragments in all tested clones (not shown). These data indicate that, in \textit{E. coli}, the \textit{Ics605} element can drive the integration of entire plasmids and plasmid concatamers into a target DNA.

In some cases, minor bands present within the Southern blots suggested the possibility of secondary transposition following the original integration event (Figs 6a and 7b). This was supported by detailed analysis of several products recovered for nucleotide sequence analysis (not shown). These observations led us to hypothesize that \textit{Ics605} may have excised itself in subpopulations from many of the primary recombinants. This was tested by PCR-based analysis of selected genomic DNAs. Oligonucleotide primers flanking \textit{Ics605} in recipient \textit{pOX38} were used to successfully amplify sequences consistent with excision events in 40 out of 40 tested transconjugants. Sequence analysis of a subset of these PCR products showed that products lacking the entire IS element were present in the population, with a signature sequence 5'-AATTC of the IS element (Fig. 7b). Evidence of such excision events was found in both \textit{pJD1} and \textit{pJD5}-based transconjugants, suggesting that the excision event was also \textit{orfA} mediated.

Therefore, \textit{Ics605} can excise from cointegrates produced in this \textit{E. coli} system.

Importance of the pentanucleotide sequence

The sequencing analysis demonstrated that the sequence 5'-TTCAA was commonly a target for integration in this system. This pentanucleotide is present at the \textit{orfA} end of each \textit{Ics605} found in the TetR chlamydiae (Fig. 1). The importance of this sequence in \textit{Ics605}-mediated transposition was examined by conducting mating assays with a plasmid construct that had the 5'-TTCAA sequence deleted from the IS element (pJD6, Fig. 2). This deleted plasmid was not able to facilitate integration into \textit{pOX38} (Fig. 3). Therefore, the 5'-TTCAA sequence at the \textit{orfA} end of \textit{Ics605} is essential for transposition in \textit{E. coli}.

Ics605 transposition activity in pBBR1MCS

To examine the possible role of the vector in defining integration events in the mating experiments, parallel assays were conducted with plasmid \textit{pJD7}, in which the medium-copy-number plasmid \textit{pBBR1MCS} was the vector for delivery of \textit{orfA} and \textit{orfB} \textit{Ics605} in the mating assay. Analysis of the transconjugants using \textit{pJD7} as the source of \textit{Ics605} showed both similarities and differences to experiments with the \textit{pUC}-based plasmids. First, there were similar rates of transposition observed using either plasmid donor (not shown). Sequencing of the transconjugants showed that \textit{pJD7} also inserted adjacent to 5'-TTCAA (Fig. 4) and that there was evidence of concatamers in the inserted products (Fig. 7b, lanes 1–4). However, in contrast to the observations with \textit{pUC}-based mating assays, transconjugants from the \textit{pBBR1MCS} matings routinely resulted in only the IS element – and not the vector – being incorporated into \textit{pOX38} (Fig. 7a). This was measured using donor plasmids that contained the \textit{aph} marker within

Fig. 7. Analysis of transposition using \textit{Ics605} donor plasmids based on different plasmid vectors. (a) The percentage of KanR transconjugants that also contained the resistance marker found in the vector used in plasmids \textit{pJD5} (\textit{pUC18}) and \textit{pJD7} (\textit{pBBR1MCS}). Colonies growing on Kan were then screened for Amp resistance (\textit{pJD5}-based assays) and Chl resistance (\textit{pJD7}-based assays). The data represent the percentage of KanR colonies that were also resistant to the second antibiotic, and the error bars represent the standard deviation of three independent assays. One hundred colonies were examined for each replicate. (b) Southern blot for \textit{aph} of \textit{Psal}-digested genomic DNA from ChlR and ChlS colonies resulting from \textit{pJD7}-based mating assays. Lanes 1, 2, 3 and 4 contain DNA from ChlR colonies. Lanes 5, 6, 7 and 8 contain DNA from ChlS colonies.
the IS element (pID5 and pID7). Selection could then be measured first with Amp, and then transconjugants examined for a resistance marker in the vector. pUC-based mating assays universally resulted in recombinants containing both markers, while pBBR1MCS-based mating assays resulted in a high frequency of products that contained only the marker in the IS element, and not the marker in the vector. Therefore, in some plasmid backgrounds, IScs605 orfA can facilitate transposition of the IS element in the absence of the donor plasmid.

DISCUSSION

The results of the described experiments support the hypothesis that IScs605 is responsible for the integration of the tet(C) islands into the C. suis genome. The IS element was capable of inserting entire plasmids into the target plasmid pOX38 (Figs 4, 7). Both medium- and high-copy-number plasmids were successfully used in these assays (Fig. 7). Nucleotide sequencing showed that integration of the donor plasmids occurred at many sites within pOX38, but that the sequence 5'-TTCAAA was the predominant target. Sequence analysis also demonstrated that there was no sequence duplication or evidence of repeats at the insertion site (Figs 4 and 5). Southern blotting and PCR demonstrated that IScs605 can also excise from target sequences following integration of entire plasmids (Figs 5 and 6), leaving the sequence 5'-AAATCAA at the excision site. Each of these traits is consistent with the observed organization of the tet(C) islands in C. suis.

IScs605 is structurally related to IS605, IS606, IS607 and related IS elements from H. pylori (Kersulyte et al., 1998, 2000, 2002, 2004). These relationships can be seen in a phylogenetic analysis of orfA and orfB, which have apparent homologues both within the IS605-like IS elements, and within IS elements containing only single candidate transposases (Dugan et al., 2004). The data from the mating assays demonstrate that there are also functional similarities. H. pylori IS605 integrates at chromosomal sites specifically with the orfA end adjacent to the sequence 5'-TCTAA or 5'-TCTAAC (Kersulyte et al., 1998). H. pylori IS607 requires orfA for transposition, but not orfB, and inserts adjacent to single G nucleotides (Kersulyte et al., 2000). H. pylori IShp608 inserts at the tetranucleotide sequence 5'-TTAC, also in an orfA-dependent manner (Kersulyte et al., 2002). In no case does insertion or excision of these islands result in deleted or duplicated chromosomal sequence. Each of these traits is parallel to the insertional properties of IScs605 in E. coli, and is consistent with the sequences of IScs605 in the resistant C. suis strains.

Analysis of secondary transposition events in the mating assays demonstrated that excision of the IS element was common in this system, and these events resulted in the sequence 5'-AAATCAA remaining at the previous location of IScs605 (Fig. 5b). Such secondary events may help to explain differences in sequence within some of the tet(C) islands. In C. suis strains 130 and 132, the tet(C) island lacks the IS element, and the sequence surrounding a possible excision site is 5'-AATTCAA (Fig. 1, compare strain R19 with strain 130). A related event may also explain the small size of the R27 and H7 islands. In these strains, the genomic island has a large deletion which occurs at a 5'-AATTCAA sequence found within the tet(C) islands. Therefore, it is likely that IScs605-mediated excision events are also responsible for production of the smaller tet(C) islands, such as those seen in C. suis strains R27 and 130.

There were, however, some differences between the behaviour of IScs605 in E. coli and the predicted events leading to insertion of the tet(C) islands into C. suis. First, we observed multiple examples of concatamer formation of plasmids associated with integration of pJD plasmids into pOX38. There are no examples of similar concatamers in any C. suis strain (Dugan et al., 2004). Additionally, when the medium-copy-number plasmid pBBRMCS was used as a source of IScs605 (i.e. pJD7), the predominant insertion event involved an actual transposition of the IS element into the pOX38 target. These results provide evidence that the IS element is also capable of true transposition into target DNA. However, this event has not yet been identified in any C. suis strain. The low-copy-number plasmid experiments were conducted with a plasmid containing aph inserted into the orfB coding sequence, and thus the transposition events were selected for using Kan. The intact IScs605 sequence has no marker, and therefore could not be directly selected for, either in our system or within the original C. suis isolates found in farmed pigs. We have previously hypothesized that feeding of Tet was responsible for selection of the TetB C. suis (Dugan et al., 2004), and that in that model, transposition of IScs605 without the accompanying plasmid sequence would not lead to selection of resistant strains.

Deletion analysis was used to test the role of the individual ORFs within IScs605. The data suggest that orfA, but not orfB, is essential for both transposition activity and insertion specificity (Fig. 3). These results parallel the tested IS605-like elements in the Helicobacter system, in which the homologous orfA sequence appears critical for transposition (Kersulyte et al., 1998, 2000, 2002). The function of the highly conserved orfB in the IS605 family of IS elements remains unclear. We have previously hypothesized that orfB of H. pylori IS605 serves to increase bacterial fitness in vivo, and this was supported by BLAST analysis, which showed that IScs605 orfB is similar to the putative E. coli virulence-factor-encoding gene ydcM (Dugan et al., 2004). Another possibility is discussed by Kersulyte et al. (2002) who proposed that ydcM might serve to complement a deletion in orfB in the mating assays. The chlamydiae do not have an apparent homologue of orfB within their genomes (not shown), and thus orfB within the IS element may have been important for the integration of the tet(C) islands in C. suis.

The described experiments demonstrate that IScs605 can direct the integration of plasmids into a target sequence with
specify that is parallel to that seen in the chlamydial tet(C) islands. It is therefore likely that IScs605 activity led to the integration of the tet(C) islands into the C. suis chromosome. IScs605 is the only known example of an IS element within any chlamydial species, and this work describes the first analyses of the activity of a horizontally acquired element within the chlamydiae. The chlamydial insertion element also may be important in practical aspects of the study of chlamydiae. The tet(C) islands have several characteristics that may be useful in the genetic transformation of chlamydiae, a technology that is currently unavailable in these organisms. The exploration of this possibility is currently under way in our laboratory.

ACKNOWLEDGEMENTS

We thank Bill Reznikoff (University Wisconsin, Madison, WI, USA) for providing the donor strain RZ212, Douglas Berg (Washington University, St Louis, MO, USA) for advice about the mating assays, and Walt Ream (Oregon State University, OR, USA) for providing the strain SF800. Sara Weeks provided valuable technical and editorial assistance during this work. This research was supported by grants P30 ES00210 (NIEHS) and ORE00047 (USDA), and through the N. L. Tartar Award program in the Oregon State University Department of Microbiology.

REFERENCES

Edited by: T. P. Hatch