Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by *Streptococcus dysgalactiae* subsp. *equisimilis*

Nicholas C. K. Heng, Nancy L. Ragland, Pearl M. Swe, Hayley J. Baird, Megan A. Inglis, John R. Tagg and Ralph W. Jack

Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand

Dysgalacticin is a novel bacteriocin produced by *Streptococcus dysgalactiae* subsp. *equisimilis* strain W2580 that has a narrow spectrum of antimicrobial activity directed primarily against the principal human streptococcal pathogen *Streptococcus pyogenes*. Unlike many previously described bacteriocins of Gram-positive bacteria, dysgalacticin is a heat-labile 21.5 kDa anionic protein that kills its target without inducing lysis. The N-terminal amino acid sequence of dysgalacticin [Asn-Glu-Thr-Asn-Asn-Phe-Ala-Glu-Thr-Gln-Lys-Glu-Ile-Thr-Thr-Asn-(Asn)-Glu-Ala] has no known homologue in publicly available sequence databases. The dysgalacticin structural gene, *dysA*, is located on the indigenous plasmid pW2580 of strain W2580 and encodes a 220 aa preprotein which is probably exported via a Sec-dependent transport system. Natural *dysA* variants containing conservative amino acid substitutions were also detected by sequence analyses of *dysA* elements from *S. dysgalactiae* strains displaying W2580-like inhibitory profiles. Production of recombinant dysgalacticin by *Escherichia coli* confirmed that this protein is solely responsible for the inhibitory activity exhibited by strain W2580. A combination of *in silico* secondary structure prediction and reductive alkylation was employed to demonstrate that dysgalacticin has a novel structure containing a disulphide bond essential for its biological activity. Moreover, dysgalacticin displays similarity in predicted secondary structure (but not primary amino acid sequence or inhibitory spectrum) with another plasmid-encoded streptococcal bacteriocin, streptococcin A-M57 from *S. pyogenes*, indicating that dysgalacticin represents a prototype of a new class of antimicrobial proteins.

INTRODUCTION

Numerous genera of Eubacteria and Archaea produce proteinaceous antimicrobial substances known as bacteriocins that target related species, presumably to provide the producing organism with an ecological advantage in its microenvironment (Riley & Gordon, 1999; Riley & Wertz, 2002). Broadly speaking, bacteriocins fall into one of four main categories, depending on whether they are produced by (and therefore act primarily on) Gram-positive or Gram-negative bacteria, and whether they are of high (>10 kDa) or relatively low molecular mass (<10 kDa). There is a wealth of scientific literature concerning bacteriocins from three of these categories: (i) the >20 kDa bacteriocins of Gram-negative bacteria, epitomized by the plasmid-encoded colicins from *Escherichia coli* (Gillor et al., 2004; Kirkup & Riley, 2004); the <10 kDa antimicrobial peptides or microcins produced by Gram-negative species (Gillor et al., 2004); and (iii) the low-molecular-mass bacteriocins of Gram-positive bacteria (reviewed by Jack et al., 1998; Eijsink et al., 2002; Finland et al., 2005; Cotter et al., 2005). However, comparatively little is known about the colicin equivalents of Gram-positive bacteria, since reports of high-molecular-mass bacteriocins from such bacteria are scarce, the most extensively studied being the peptidoglycan-hydrolysing enzyme lysostaphin from *Staphylococcus simulans* (reviewed by Navarre & Schneewind, 1999).

Amongst the Gram-positive bacteria, the lactic acid bacteria are especially prodigious bacteriocin producers. Indeed, in recent years there has been a seemingly exponential increase in reports of novel inhibitory substances from these organisms (Pagapiani, 2003; Finland et al., 2005). Typically, these bacteriocins are ribosomally synthesized peptides that are characterized by their small size (generally <6 kDa) and heat stability (Jack et al., 1995). On further investigation, some of these have proven to be extensively post-translationally modified, e.g. the lanthionine-containing bacteriocins, or ‘lantibiotics’ (Schnell et al., 1988; Sahl & Bierbaum, 1998), while others remain unmodified (Chatterjee et al., 2005; Finland et al., 2005).
Various species of the genus *Streptococcus* commonly produce bacteriocins, and those best characterized to date are from *Streptococcus pyogenes* (group A streptococcus), *Streptococcus salivarius* and *Streptococcus mutans* (Jack et al., 1995, 1998; Chatterjee et al., 2005), e.g. the lantibiotics streptococcin A-FF22 and salivaricin A (Ross et al., 1993; Jack et al., 1994), and the unmodified peptides mutacin N and mutacin IV (Balakrishnan et al., 2000; Qi et al., 2001). However, several relatively large, heat-labile bacteriocins have also been described, including zoocin A from *Streptococcus equi* subsp. *zoocidemicus*, millericin B from *Streptococcus milleri*, and streptococcin A-M57 from *S. pyogenes* (Simmonds et al., 1996; Beukes et al., 2000; Heng et al., 2004).

In an effort to categorize streptococcal bacteriocin producer strains, a bacteriocin typing (or bacteriocin fingerprinting) scheme has been devised to discriminate inhibitory strains on the basis of differences in their inhibitory activity against a set of standard indicator bacteria (Tagg & Bannister, 1979). Using this scheme, a set of nine so-called standard producer strains with distinctive inhibitory spectra were defined (Tagg & Bannister, 1979). One of these standard producer strains, Lancefield Group G streptococcus W2580 (standard producer P4), exhibits a narrow spectrum of inhibitory activity directed almost exclusively against the large-colony *β*-haemolytic streptococci (Lancefield Groups A, C and G), the principal streptococcal pathogens of humans (Tagg & Bannister, 1979; Wong, 1981; Wong et al., 1981; Tagg & Wong, 1983), but not against a range of oral streptococci, neisseriae, lactobacilli, Corynebacterium diphtheriae, Bacillus spp., Listeria spp., staphylococci, and various Gram-negative bacteria (Wong, 1981; H. J. Baird, unpublished results). Preliminary studies of the inhibitory agent from strain W2580 (originally designated streptococcin G-2580) revealed that (i) it was inactivated both by treatment with trypsin and by heating, indicating that it may be essentially proteinaceous in nature; and (ii) its elution profile during gel-permeation chromatography was consistent with that of a protein of molecular mass ~18 kDa (Wong, 1981; Wong et al., 1981). Moreover, *S. pyogenes* treated with partially purified preparations of streptococcin G-2580 was shown to be killed without lysis (Wong, 1981; Wong et al., 1981). This mode of action is in direct contrast to that of other large streptococcal bacteriocins such as zoocin A, which lyse target cells via proteolytic cleavage of peptidoglycan (Simmonds et al., 1996). Strain W2580 has since been identified by 16S rDNA sequencing as *Streptococcus dysgalactiae* subsp. *equisimilis* (N. L. Ragland, unpublished results) and, consequently, its bacteriocin product (streptococcin G-2580) has been renamed dysgalacticin.

In this study, we have purified dysgalacticin to homogeneity, biochemically characterized the bacteriocin and determined the genetic basis for its production in strain W2580. We show that the bacteriocin is plasmid-encoded and, following heterologous expression in *E. coli*, confirm that purified recombinant dysgalacticin is solely responsible for the antimicrobial phenotype exhibited by strain W2580, and that it has a non-lytic mode of action. Furthermore, we demonstrate that dysgalacticin possesses a novel predicted secondary structure containing a single disulphide bond that is essential for its biological activity.

METHODS

Bacterial strains and culture conditions. The bacterial strains used in this study are listed in Table 1. Streptococcal strains were routinely cultivated at 37°C in a microaerophilic (5% CO₂ in air) atmosphere on BACa medium [Columbia blood agar base (Becton Dickinson) containing 4% (v/v) human blood and 0.1% (w/v) CaCO₃] or in Todd–Hewitt broth (THB; Becton Dickinson). *Escherichia coli* DH5α (Hanahan, 1983), the host for all cloning and expression experiments, was propagated aerobically at 37°C in LB broth or on LB agar (Sambrook & Russell, 2001). When required, antibiotics were added to the media at the following final concentrations: ampicillin, 100 μg ml⁻¹; chloramphenicol, 15 μg ml⁻¹.

Purification of dysgalacticin. The inhibitory activity produced by *S. dysgalactiae* strain W2580 was purified to homogeneity from a total of 4 l supernatant fluid from cultures grown in THB at 35°C,

Table 1. Bacterial strains and plasmids used in this study

<table>
<thead>
<tr>
<th>Bacterial strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus dysgalactiae subsp. equisimilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2580</td>
<td>Dysgalacticin producer strain</td>
<td>Wong et al. (1981)</td>
</tr>
<tr>
<td>W2580C</td>
<td>Plasmid-cured derivative of W2580</td>
<td>This study</td>
</tr>
<tr>
<td>Streptococcus pyogenes FF22</td>
<td>Dysgalacticin-sensitive indicator strain</td>
<td>Tagg & Bannister (1979)</td>
</tr>
<tr>
<td>Escherichia coli DH5α</td>
<td>Cloning and expression host</td>
<td>Hanahan (1983)</td>
</tr>
<tr>
<td>QE-dysA</td>
<td>DH5α carrying pQE-dysA</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td>Dysgalacticin-encoding indigenous plasmid of strain W2580</td>
<td>This study</td>
</tr>
<tr>
<td>pW2580</td>
<td>E. coli–Lactococcus lactis shuttle vector</td>
<td>Xu et al. (1991)</td>
</tr>
<tr>
<td>pFX3</td>
<td>E. coli expression vector</td>
<td>Qiagen</td>
</tr>
<tr>
<td>pQE-80L</td>
<td>pQE-80L containing the dysgalacticin expression cassette</td>
<td>This study</td>
</tr>
</tbody>
</table>

[1992] Downloaded from www.microbiologyresearch.org by
IP: 54.70.40.11

Microbiology 152
in a 2 l fermenter maintained at pH 6-5 by addition of 2 M NaOH. Briefly, the cells were removed by centrifugation, and protein in the supernatant was precipitated with ammonium sulphate (80% saturation) with gentle stirring for 18 h at 4 °C. The precipitated protein was harvested by centrifugation (12 000 g, 30 min, 4 °C) and the pellet was redissolved in 900 ml of 20 mM Tris/HCl (pH 8.0). This solution was then applied to an XK26 column (GE Healthcare Bio-Sciences) packed with 20 ml Q-MacroPrep (Bio-Rad), at a flow rate of 4 ml min⁻¹, using an AKTAexplorer (GE Healthcare Bio-Sciences). The column was washed with 15 bed volumes of 20 mM Tris/HCl (pH 8.0) and then developed in a linear gradient of 0–0.5 M NaCl in 20 mM Tris/HCl (pH 8.0). Fractions (12 ml) were collected and assessed for homogeneity by SDS-PAGE (see below), and biological activity was assayed as described by Wescombe & Tagg (2003) with S. pyogenes FF22 as the indicator strain. Suitable fractions were pooled and concentrated by membrane filtration (Microcon YM-10; Millipore), and then further fractionated by gel-permeation chromatography in 25 mM HEPES containing 150 mM NaCl (pH 7-2) through a Superdex 75 100/300 GL column (GE Healthcare Bio-Sciences) at a constant flow rate of 0.5 ml min⁻¹. Appropriate fractions (0.5 ml) containing inhibitory activity were pooled, buffer-exchanged with 5 mM HEPES (pH 7-2) and concentrated by membrane filtration (Microcon YM-10).

Bioanalytical characterization of dysgalacticin and recombinant proteins. The approximate mass and degree of homogeneity of various proteins was assessed by SDS-PAGE on pre-cast Novex 16 % Tris/Tricine gels (Invitrogen) in an XCell SureLock Mini-Cell apparatus (Invitrogen), using the manufacturer’s protocols and reagents. Following electrophoresis, protein bands were visualized with Coomassie Brilliant Blue G250 (Sigma). MALDI-TOF MS and N-terminal amino acid sequencing (by automated Edman degradation) of purified dysgalacticin were carried out at the Protein Microchemistry Facility (Department of Biochemistry, University of Otago). MS was conducted with a Finnigan LaserMAT 2000 (Thermo BioAnalysis) mass analyser, according to the method described by Hubbard & McHugh (1996). The N-terminal amino acid sequence of dysgalacticin was determined by automated, repetitive Edman degradation on a Procise model 492 pulsed liquid/gas-phase micro-sequencer (Applied Biosystems), using the manufacturer’s reagents, protocols and analysis software.

Plasmid curing experiments. Plasmid-cured mutants of S. dysgalactiae strain W2580 were derived according to the method of Tagg & Wannamaker (1976) by growing the strain in THB containing doubling dilutions of novobiocin (1250 μg ml⁻¹ to 5 μg ml⁻¹) and 0.5 μg tetracycline ml⁻¹ (to destroy any residual bacteriocin activity). A total of approximately 200 colonies were picked from cultures grown in the presence of 5 and 10 μg novobiocin ml⁻¹ and subjected to a deferred antagonism assay (Tagg & Wannamaker, 1976) using S. pyogenes FF22 as the indicator strain. Colonies displaying loss of inhibitory activity were then retested using a standard bacteriocin typing scheme (Tagg & Bannister, 1979). One plasmid-cured mutant, designated W2580C, which was indistinguishable from the wild-type strain by biochemical (API 20 Strep, bioMérieux) and serological (Oxoid Streptococcal Grouping Kit) testing, and by 16S rRNA sequencing (Wilson et al., 1990), was selected for further study.

Recombinant DNA techniques, sequencing of pW2580 and bioinformatic tools. Genomic DNA from streptococcal strains, plasmid DNA from E. coli and PCR amplicons were purified using the appropriate Qiagen spin-column-based kits, according to the manufacturer’s instructions. Plasmid DNA from S. dysgalactiae strain W2580 was obtained using the TempliPhi DNA amplification kit (Amersham Biosciences). Established protocols for molecular cloning in E. coli and genetic analysis (e.g. Southern hybridization) were conducted as described by Sambrook & Russell (2001). For PCR experiments, the high-fidelity Platinum Pfx DNA polymerase (Invitrogen) was used according to the supplier’s recommendations. All nucleotide sequencing requirements were met either by the Waikato DNA Sequencing Facility (Hamilton, New Zealand) or by the Allan Wilson Centre Genome Service (Palmerston North, New Zealand).

Expression and purification of recombinant dysgalacticin in E. coli. An expression cassette incorporating nucleotides encoding a short linker sequence (Gly-Ser-Gly-Ser) and a recognition site for factor Xa protease (Ile-Glu-Gly-Arg), followed by the segment of the dysA gene encoding the amino acid sequence of mature dysgalacticin (i.e. without the 28 aa leader peptide), was amplified by PCR using primers Dya-ExpF and Dya-ExpR (Table 2). Purified PCR products were then digested with BamHI and HindIII, and inserted into the corresponding sites of the expression vector pQE-80L (Qiagen), yielding pQE-dysAkm (Table 1). The presence of the desired coding sequences was verified by sequencing of the cloned insert with primers QIAF and QIAR (Table 2). E. coli QE-dysA (DH5α carrying pQE-dysAkm) was grown in 2 x yeast tryptone (YT) broth (Sambrook & Russell, 2001) containing 0-5 % (w/v) glucose to OD₆₀₀ of 0.6, after which IPTG was added to a final concentration of 1 mM to induce expression. Following incubation for a further 4 h, cells were harvested by centrifugation (4000 g, 5 min), resuspended in one-thirtieth of their original volume of lysis buffer [50 mM NaH₂PO₄, 300 mM NaCl, 10 mM imidazole, 1 mg lysozyme ml⁻¹ (pH 8.0)] and disrupted by repetitive sonication (15 bursts of 30 s; Ultrasounds model W-220F). Cell debris was then removed by centrifugation (31 000 g, 30 min, 4 °C) and the supernatant (crude protein preparation) was subjected to further purification by chromatographic separation.

Recombinant dysgalacticin was purified by: (i) initial enrichment of hexahistidine-tagged recombinant dysgalacticin using nickel-nitrilotriacetic acid (Ni-NTA) agarose (Qiagen) under native (non-denaturing) conditions, according to the manufacturer’s protocol; (ii) anion-exchange chromatography; (iii) removal of the hexahistidine tag by treatment with factor Xa protease (New England Biolabs) at a 50:1 substrate:enzyme ratio for 4 h at 22 °C; and (iv) gel-permeation chromatography. The anion-exchange and gel-permeation chromatographic steps were the same as those used for the purification of native dysgalacticin, except that the anion-exchange buffers contained 2 mM CaCl₂ to facilitate factor Xa digestion without the need for buffer exchange. The purity of recombinant protein was assessed by SDS-PAGE.

Preliminary mode-of-action studies. In order to ascertain whether purified recombinant dysgalacticin kills target cells by lysis, we tested the effect of dysgalacticin on actively growing S. pyogenes strain FF22 by measuring changes in OD₆₀₀ and cell viability, and compared this with cells treated with the known bacteriocytic agent

http://mic.sgmjournals.org 1993
RESULTS AND DISCUSSION

Purification and N-terminal amino acid sequence of dysgalacticin

The antimicrobial activity elaborated by *S. dysgalactiae* strain W2580 was purified to apparent homogeneity by ammonium sulphate precipitation followed by anion-exchange and size-exclusion chromatography to yield a protein of ~22 kDa as judged by SDS-PAGE (data not shown). MALDI-TOF MS analysis revealed a single product with a mass of 21 492±19 Da, and N-terminal amino acid sequence analysis by automated Edman degradation showed no significant similarity between the N-terminal sequence of dysgalacticin and those of proteins of either known or unknown function, indicating that dysgalacticin is a novel antimicrobial agent.

The dysgalacticin structural gene is plasmid-encoded

In order to localize the dysgalacticin structural gene, oligonucleotide OP4-A (Table 2), synthesized based on the first seven amino acid residues of dysgalacticin, was used as a probe in Southern hybridization analyses. When EcoRI-digested genomic DNA of strain W2580 was probed, OP4-A hybridized not only to a fragment of ~3.0 kb but also to a band migrating below that of chromosomal DNA in an undigested sample (data not shown), indicating an extrachromosomal location for the dysgalacticin structural gene. Furthermore, when W2580 genomic DNA treated

Table 2. Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Nucleotide sequence (5’→3’)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP4-A</td>
<td>5’-AA(C/T)GAAC(A/T)AA(C/T)TTTG-3’</td>
<td>Probe for dysgalacticin structural gene</td>
</tr>
<tr>
<td>P4-P1</td>
<td>5’-ATAACAGCAGTGAAATGATAAAAAGGGG-3’</td>
<td>Sequencing of pW2580</td>
</tr>
<tr>
<td>P4-P2</td>
<td>5’-GGATACCAATGTGAACTTTACATGAA-3’</td>
<td>Sequencing of pW2580</td>
</tr>
<tr>
<td>P4-P3</td>
<td>5’-GGATACCAATGTGAACTTTACATGAA-3’</td>
<td>Sequencing of pW2580</td>
</tr>
<tr>
<td>P4-P4</td>
<td>5’-GGATACCAATGTGAACTTTACATGAA-3’</td>
<td>Sequencing of pW2580</td>
</tr>
<tr>
<td>DysA-ExpF*</td>
<td>5’-CAGGATCCGGCAGCATTGAAAGGCGTATAAAGCAAA-3’</td>
<td>Dysgalacticin expression cassette forward primer</td>
</tr>
<tr>
<td>DysA-ExpR</td>
<td>5’-GCCGATAGGGAGTTGAGGATAGTGATACG-3’</td>
<td>Dysgalacticin expression cassette reverse primer</td>
</tr>
<tr>
<td>QIAF</td>
<td>5’-CCCGAAAAAGTGCCACCTG-3’</td>
<td>Forward sequencing primer for pQE-dysA*</td>
</tr>
<tr>
<td>QIAR</td>
<td>5’-ATCGGATATATCAACGTTGG-3’</td>
<td>Reverse sequencing primer for pQE-dysA*</td>
</tr>
<tr>
<td>DysA-intF</td>
<td>5’-GGAAAAATGCAAGTATAATGAAAACGGA-3’</td>
<td>dysA internal forward primer</td>
</tr>
<tr>
<td>DysA-intR</td>
<td>5’-GGAAAAATGCAAGTATAATGAAAACGGA-3’</td>
<td>dysA internal reverse primer</td>
</tr>
<tr>
<td>DysA-UpF†</td>
<td>5’-GCTTACATGTTTGATATGAAAGGCGTATAAAGCAAA-3’</td>
<td>Amplification of dysA locus</td>
</tr>
<tr>
<td>RepB-R†</td>
<td>5’-CGTATTCATCATTCCATCATTCCATCATTCCATCATTCC-3’</td>
<td>repB-specific primer</td>
</tr>
</tbody>
</table>

*The nucleotides in italics encode the linker-factor Xa cleavage site (NH2-GSGSIEGR-COOH; see text). The BamHI restriction site used for cloning into pQE-80L is underlined.†The partners for the DysA-UpF and RepB-R primers during PCR were DysA-ExpR and P4-PRI, respectively.
with TempliPhi DNA polymerase (which preferentially
amplifies plasmid DNA as concatemers) was subjected
to restriction endonuclease analysis (yielding unit-length
plasmid fragments), a single ~3·1 kb band was observed
by agarose gel electrophoresis (data not shown). Recogni-
tion sites for the restriction enzymes EcoRI, PstI and
HindIII, but not BamHI, were present in the plasmid
(Fig. 1).

In order to further verify that the antimicrobial phenotype of
S. dysgalactiae W2580 is plasmid-encoded, the strain
was grown in the presence of the plasmid-curing agent
novobiocin. Using a colony-based deferred-antagonism
assay against the indicator *S. pyogenes* FF22, a bacteriocin-
negative derivative (*S. dysgalactiae* W2580C) that did not
exhibit any antimicrobial activity against a standard set
of indicator strains (Tagg & Bannister, 1979) was isolated
following novobiocin treatment. Together, these results
demonstrate that the genetic determinant responsible for
dysgalacticin production is located on the indigenous plas-
mid of *S. dysgalactiae* W2580, designated pW2580.

**Nucleotide sequence analysis of pW2580 and
identification of dysA, the dysgalacticin
structural gene**

The complete nucleotide sequence of pW2580 was deter-
mined and totalled 3043 bp with a mol% G+C content of
35 mol%, slightly lower than the 39–41 mol% determined
for *S. dysgalactiae* (Hardie, 1986). To the best of our
knowledge, pW2580 is the first plasmid from this organism
to be completely sequenced. We arbitrarily assigned the first
nucleotide of the unique EcoRI site (Fig. 1) as the starting
point for plasmid annotation. BLAST searches identified
four genetic elements (Fig. 1), all associated with plasmid
replication, and which classify pW2580 as a new member of
the pMV158 rolling-circle plasmid family (Moscoso *et al*.,
1995): (i) *copG* (nt 86–220) encodes a putative 5 kDa CopG
repressor protein, probably responsible for maintaining
plasmid copy number; (ii) *repB* (nt 283–906) which specifies
the 24 kDa RepB replication initiation protein; (iii) *dsO* (nt
2893–2991) or double-strand origin of replication, which
is nicked by RepB during initiation of plasmid replica-
tion; and (iv) *sso* (nt 2394–2567) or single-strand (lagging-
strand) origin, essential for conversion of the ssDNA
intermediate to its double-stranded form (del Solar *et al*.,
1998; Khan, 2005). The putative *sso* of pW2580 contains a
highly conserved 14 bp sequence, termed *RSB* (‘5′-TTTA-
TGCCGTGAAA-3′; nt 2399–2412) that is believed to be the site
of interaction with RNA polymerase during initiation of
lagging-strand synthesis (Kramer *et al*., 1998; Khan, 2005).
The *RSB* is also a distinctive feature of *sso*, the most com-
monly encountered *sso* in rolling-circle plasmids isolated
from Gram-positive species, irrespective of plasmid family
(Khan, 2005). Each component of the replication mach-
nery of pW2580 displays significant homology (between 86
and 97% identity) with its respective counterpart from
the prototype of the plasmid family, pMV158 (Moscoso
et al., 1995), as well as other streptococcal members of
the pMV158 family, including pSSU1 from *Streptococcus
suis* (Takamatsu *et al*., 2000), and pER13 and pSMQ172
from *Streptococcus thermophilus* (Solow & Somkuti, 2000;
Turgeon & Moineau, 2000).

The dysgalacticin structural gene, designated *dysA*, was
located between nt 1102 and 1764 but in the opposite transcrip-
tional orientation with respect to the other ORFs iden-
tified in pW2580 (Fig. 1). The *dysA* gene, which encodes
the 220 aa (24·5 kDa) dysgalacticin preprotein *DysA*, was
flanked (i) upstream by a potential promoter consisting of
hexanucleotide motifs resembling −35 and −10 regions
(separated by a 17 bp spacer), and (ii) downstream by an
inverted repeat sequence that could function as a rho-
independent transcriptional terminator (Fig. 2). As antic-
pated, *DysA* contained the sequence obtained by N-terminal
sequencing of dysgalacticin (Fig. 2). However, the first
amino acid of mature dysgalacticin corresponds to the
twenty-ninth amino acid of *DysA*, indicating that the first
28 aa may constitute a secretion signal peptide. This find-
ing was not unexpected, as all streptococcal bacteriocins
characterized to date are exported either by dedicated ATP-
binding cassette transporters, e.g. streptin (Wescome &
Tagg, 2003) and the non-lantibiotic mutacins (Hale
et al., 2005), or by the general secretory (Sec-dependent)
pathway, e.g. zoocin A (Simmonds *et al*., 1997). Indeed, the
puta-
tive signal peptide of *DysA* displayed the typical hallmarks
of proteins secreted by the Sec-dependent translocation

Fig. 1. Genetic map of pW2580. Numbering of the nucleotide
sequence starts from the unique EcoRI site. The various
genetic features and their respective transcriptional orientations
are depicted with the replication-associated elements coloured
black. Restriction endonuclease sites relevant to the preliminary
sequencing experiments (see text) are also shown. *copG*, copy
control protein; *repB*, replication initiation protein; *dysA*, dysga-

lacticin preprotein; *sso*, single-strand origin of replication; *dsO*,
double-strand origin of replication.
pathway (Tjalsma et al., 2004; van Roosmalen et al., 2004) including: (i) several positively charged amino acids at the N-terminal (N-domain) end; (ii) a central core (H-domain) of primarily hydrophobic amino acids; and (iii) a C-terminal (C-domain) portion that contains a conserved proline residue at position 266 (Fig. 2). These observations were in perfect agreement with the results independently obtained using the SignalP signal peptide prediction algorithm (Bendtsen et al., 2004).

The 192 residue deduced primary amino acid sequence of dysgalacticin had a calculated molecular mass of 21 504 ± 4 Da, which corresponds very well to that obtained for the dysgalacticin molecule by MALDI-TOF MS (21 492.5 ± 19.3 Da), indicating that dysgalacticin is probably not further modified post-translationally. Furthermore, dysgalacticin had a predicted p_I_{calc} of 4.67, a characteristic consistent with the experimental parameters used to effect purification of the protein. BLAST homology searches did not reveal any significant similarity between the amino acid sequence of dysgalacticin and those of proteins of known function, or to any other previously detected hypothetical proteins.

In addition to the bacteriocin structural gene, most (if not all) bacteriocin-associated genetic loci usually contain genes that encode immunity factors conferring producer self-protection. For example, zif, which encodes the zoocin A

![Fig. 2. Nucleotide sequence of the dysA locus. The numbering of the sequence is in reverse order due to the transcriptional orientation of the locus. The hexanucleotide motifs TAGACA and TATAAT which could function as $^{-35}$ and $^{-10}$ promoter sequences, respectively, are depicted by the raised text. The putative ribosome-binding site is double-underscored. The deduced amino acid sequence of the dysgalacticin preprotein, DysA, is numbered with negative and positive values assigned to the secretion signal peptide and mature bacteriocin, respectively. The N-terminal amino acid sequence obtained from automated Edman degradation is underlined and the putative signal peptidase cleavage site is indicated in the inserted arrow. The amino acid tracts predicted to form helical motifs (see text) are highlighted by the dotted underlining. The two cysteine residues which form the disulphide bond essential for biological activity are circled. The putative rho-independent transcription terminator is delineated by the facing arrows.](image)
immunity factor, is located adjacent to zooA, the zooxin A structural gene (Simmonds et al., 1997). Interestingly, the pW2580-free derivative, S. dysgalactiae strain W2580C, was not only defective in its ability to produce dysgalacticin, but also sensitive to the effects of the bacteriocin (either in a deferred-antagonism assay or with exogenously added inhibitor), implying that the gene(s) encoding the dysgalacticin immunity factor is (are) also plasmid-borne. However, as pW2580 appeared to contain only dysA and those genetic elements necessary for its replication, the mechanism of immunity to dysgalacticin may be atypical and thus remains enigmatic.

Detection of dysA variants in S. dysgalactiae subsp. equisimilis

Forty-two presumptive S. dysgalactiae strains available in our culture collection, which were isolated from clinical sources (Dunedin Public Hospital and the University of Minnesota, Minneapolis, MN, USA) and from Dunedin schoolchildren (Ragland & Tagg, 1990) were screened for the production of inhibitory activity using a standard deferred-antagonism protocol (Tagg & Bannister, 1979). Of these, nine exhibited inhibitory activity similar to that of strain W2580, whilst the remainder were non-inhibitory. All 42 strains were subjected to PCR analyses to detect the presence of dysA or pW2580-like plasmids using the following primer pairs (Table 2): (i) DysA-intF/DysA-intR, which amplifies an internal fragment of dysA; (ii) DysA-ExpF/DysA-ExpR, yielding the entire dysA locus; and (iii) P4-PR1/RepB-R, specific for repB of pW2580. Whereas PCR amplicons were obtained with all primer combinations from the nine inhibitory strains (data not shown), none was detected from non-inhibitory strains. In order to ascertain if these nine dysgalactin-producing strains harboured dysA elements identical to that of strain W2580, nucleotide sequence analysis of these nine dysA homologues was conducted. Three nucleotide changes were observed in the dysgalactici-coding sequence, but only resulting in two conservative amino acid changes (Leu$^{25} \rightarrow Ile, Thr^{22} \rightarrow $Ser), in each case apparently not affecting the inhibitory activity displayed by the producer strains. Taken collectively, our results demonstrate that: (i) the production of dysgalacticin is correlated with the presence of pW2580-like plasmids, and (ii) dysgalacticin appears to be highly conserved.

Production of recombinant dysgalacticin by E. coli

As a means of obtaining larger amounts of dysgalacticin to facilitate subsequent biochemical studies, and also to establish whether the 21·5 kDa protein isolated from S. dysgalactiae W2580 is the sole agent responsible for the antimicrobial activity of this strain, recombinant dysgalacticin was produced by heterologous expression in E. coli. In order to accomplish this, an expression cassette consisting of the dysA gene (excluding the nucleotide tract encoding the signal peptide), preceded by a 5’ nucleotide extension encoding a short linker sequence followed by a recognition site for factor Xa protease, was cloned into the hexahistidine-tag-encoding vector pQE-80L (Qiagen). The resulting construct, pQE-dysA^M, facilitated the production of a recombinant protein that could be purified using successive chromatographic separations. Hexahistidine-tagged recombinant dysgalacticin was enriched by nickel ion affinity and subsequent anion-exchange chromatography and, following removal of the hexahistidine tag with factor Xa protease, recombinant dysgalacticin was obtained after fractionation by gel-permeation chromatography. Purified recombinant dysgalacticin was biologically active and its activity spectrum was indistinguishable from that of S. dysgalactiae strain W2580 in a deferred antagonism test (data not shown). Taken together, these results conclusively demonstrate that: (i) dysgalacticin is solely responsible for the antibacterial activity exhibited by S. dysgalactiae strain W2580, and (ii) purified recombinant dysgalacticin is suitable for subsequent biochemical characterization experiments.

Dysgalacticin kills sensitive S. pyogenes without inducing lysis

The large bacteriocins of Gram-positive bacteria can generally be divided into the bacteriolytic enzymes, such as lysostaphin and zooxin A (Simmonds et al., 1997; Navarre & Schneewind, 1999), and the bacteriocins that kill by non-lytic means. However, to date, only one large bacteriocin, namely helveticin J from Lactobacillus helveticus (Joerger & Klaenhammer, 1986), appears to fulfil the criteria of the latter category, although nothing is known of its structure and physical properties. It has previously been suggested that partially purified dysgalacticin acts to kill S. pyogenes strain FF22 in a non-lytic manner, based on examination of treated cells by Gram staining and by electron microscopy (Wong et al., 1981; Wong, 1981). In the present study, we treated S. pyogenes strain FF22 with either purified recombinant dysgalacticin or the bacteriolytic protein zooxin A (Simmonds et al., 1996) and monitored both the OD₅₉₀ and the viable cell count of the culture. As shown in Fig. 3, the OD₅₉₀ of dysgalacticin-treated cells remained static, whilst the cell viability decreased dramatically immediately after addition of the bacteriocin. In contrast, zooxin A treatment of S. pyogenes resulted in a rapid decrease in both OD₅₉₀ and viable cell count, consistent with the bacteriolytic mode of action of this bacteriocin (Simmonds et al., 1996). Taken collectively, these observations confirm that dysgalacticin kills sensitive target cells by a non-lytic mechanism.

Dysgalacticin contains a disulphide bond essential for biological activity

Using various algorithms available at the PredictProtein server (www.predictprotein.org), the secondary structure of dysgalacticin is predicted to be composed of: (i) a relatively unstructured N-terminal region, and (ii) a primarily helical C-terminal segment. Furthermore, the deduced amino acid sequence of dysgalacticin contained two cysteine residues
at positions 132 and 186 (Fig. 2) and these, according to the DISULFIND algorithm (Vullo & Frasconi, 2004), are predicted to form a disulphide bond. It is interesting to note that the putative disulphide (cystine) in dysgalacticin flanked the predicted strongly helical region (Fig. 2) and could, therefore, play a role in maintaining the structural stability of the C-terminal portion of the bacteriocin.

Disulphides are thought to be important to the biological activity of a number of antimicrobial proteins from Gram-positive bacteria (Ennahar et al., 2000). Alkylation with 4-vinylpyridine in the absence and presence of a reducing agent has been shown to be a useful technique in determining both the oxidation state of cysteine residues and the role they play in the biological activity of bacteriocins such as piscicolin 126 (Jack et al., 1996). Under the conditions employed, alkylation only occurs when the polypeptide being studied contains cysteine (free thiol); thus, if cystine is naturally present, S-pyridethyl adducts are observed (e.g. by MS) only on alkylation following reduction. Conversely, if the encoded Cys residues are naturally present as cysteine, alkylation will occur irrespective of prior reduction.

In order to assess the oxidation state of Cys132 and Cys186, recombinant dysgalacticin was exposed to the alkylating agent 4-vinylpyridine, in either the absence or presence of the reducing agent 2-mercaptoethanol (Jack et al., 1996). Samples that were treated with 2-mercaptoethanol prior to alkylation exhibited a marked loss of biological activity against the indicator organism \textit{S. pyogenes} strain FF22 (Fig. 4). In contrast, untreated dysgalacticin, or that treated with the 4-vinylpyridine alone, showed essentially the same level of biological activity (Fig. 4). Furthermore, MS of the reaction products generated showed an increase in mass of 210 Da (indicating alkylation at two sites) only in protein that had been reduced prior to exposure to the alkylating agent. These results provide experimental evidence that dysgalacticin contains a disulphide essential for its biological activity.

Dysgalacticin: the prototype of a new family of antimicrobial proteins?

Dysgalacticin is the second plasmid-encoded Sec-dependent bacteriocin to be characterized from a member of the genus \textit{Streptococcus}, the first being the recently described streptococcin A-M57 (SA-M57) from M-type 57 \textit{S. pyogenes} (Heng et al., 2004). These two bacteriocins do not share any similarity with respect to their primary amino acid sequences but, surprisingly, the predicted secondary

![Fig. 3. Non-lytic mode of action of dysgalacticin on \textit{S. pyogenes} FF22 cells. (a) Effect of dysgalacticin on OD\textsubscript{590} of \textit{S. pyogenes} cultures; (b) effect of addition of dysgalacticin on the viable cell count (c.f.u. ml-1). The positive control in both sets of experiments was zoocin A, a known bacteriolytic enzyme. The arrows indicate the time point at which dysgalacticin or zoocin A was added. ○, untreated \textit{S. pyogenes} culture (negative control); ●, \textit{S. pyogenes} treated with dysgalacticin; ●, \textit{S. pyogenes} treated with zoocin A.](image1)

![Fig. 4. Reductive alkylation abolished the biological activity of dysgalacticin. The various reaction mixtures (applied as 15 μl spots) were: (a) dysgalacticin plus 4-vinylpyridine (without reducing agent); (b) untreated dysgalacticin (positive control); (c) reagent-only negative control consisting of 2-mercaptoethanol and 4-vinylpyridine; and (d) dysgalacticin pre-reduced with 2-mercaptoethanol and alkylated with 4-vinylpyridine. Reaction mixtures (a), (b) and (d) each contained ~20 μg purified recombinant dysgalacticin. The indicator strain was \textit{S. pyogenes} FF22.](image2)
Dysgalacticin: a novel antimicrobial protein

structure of SA-M57 is similar to that of dysgalacticin, i.e. a flexible N-terminal portion and a predominantly helical C-terminal region containing a putative disulphide (between Cys87 and Cys148). Reductive alkylation experiments with purified recombinant SA-M57 confirmed the presence of an essential disulphide (data not shown), strongly supporting the proposed function of the disulphide in facilitating a biologically active protein conformation. Unlike dysgalacticin, however, SA-M57 is not active against S. pyogenes, but rather has a spectrum of activity that includes Micrococcus luteus, Lactococcus lactis (and its different subspecies), certain Listeria spp., Bacillus megaterium and Staphylococcus simulans (Heng et al., 2004). Interestingly, SA-M57 (but not dysgalacticin) shares limited sequence similarity with two hypothetical proteins of unknown function (Heng et al., 2004): EF1097 from the genome sequence of Enterococcus faecalis V583 (Paulsen et al., 2003), and YpkK from the sequence of a large virulence-associated plasmid harboured by Corynebacterium jeikeium (Tauch et al., 2004). It remains to be determined whether EF1097 and YpkK possess antimicrobial activity.

Based on the similarity of their predicted secondary structures, dysgalacticin and SA-M57 (and possibly EF1097 and YpkK) may represent the first members of a novel family of antimicrobial agents, the target specificity of which may be dictated by their primary amino acid sequences (i.e. the variable N-terminal segment), whilst their killing function could be determined by their shared secondary structure, especially of the C-terminal portion. Such a model is compatible with that proposed for the well-studied lytic bacteriocin zoocin A, which is composed of an N-terminal peptidase (catalytic) domain and a C-terminal substrate-binding (targeting) domain, separated by a short linker sequence (Simmonds et al., 1997). Recent studies with recombinant fragments of zoocin A have also shown that each individual domain can function independently (Lai et al., 2002), indicating that a similar approach may be of value in determining whether dysgalacticin and its related proteins are indeed composed of distinct domains.

Conclusion

In conclusion, we have utilized a combination of protein purification, reverse genetics and heterologous expression (in E. coli) to characterize dysgalacticin, a novel plasmid-encoded, large non-lytic bacteriocin that is presumably exported via a Sec-dependent protein secretion system. In light of the observation that strain W2580C possess antimicrobial activity.

structure of SA-M57 is similar to that of dysgalacticin, i.e. a flexible N-terminal portion and a predominantly helical C-terminal region containing a putative disulphide (between Cys87 and Cys148). Reductive alkylation experiments with purified recombinant SA-M57 confirmed the presence of an essential disulphide (data not shown), strongly supporting the proposed function of the disulphide in facilitating a biologically active protein conformation. Unlike dysgalacticin, however, SA-M57 is not active against S. pyogenes, but rather has a spectrum of activity that includes Micrococcus luteus, Lactococcus lactis (and its different subspecies), certain Listeria spp., Bacillus megaterium and Staphylococcus simulans (Heng et al., 2004). Interestingly, SA-M57 (but not dysgalacticin) shares limited sequence similarity with two hypothetical proteins of unknown function (Heng et al., 2004): EF1097 from the genome sequence of Enterococcus faecalis V583 (Paulsen et al., 2003), and YpkK from the sequence of a large virulence-associated plasmid harboured by Corynebacterium jeikeium (Tauch et al., 2004). It remains to be determined whether EF1097 and YpkK possess antimicrobial activity.

Based on the similarity of their predicted secondary structures, dysgalacticin and SA-M57 (and possibly EF1097 and YpkK) may represent the first members of a novel family of antimicrobial agents, the target specificity of which may be dictated by their primary amino acid sequences (i.e. the variable N-terminal segment), whilst their killing function could be determined by their shared secondary structure, especially of the C-terminal portion. Such a model is compatible with that proposed for the well-studied lytic bacteriocin zoocin A, which is composed of an N-terminal peptidase (catalytic) domain and a C-terminal substrate-binding (targeting) domain, separated by a short linker sequence (Simmonds et al., 1997). Recent studies with recombinant fragments of zoocin A have also shown that each individual domain can function independently (Lai et al., 2002), indicating that a similar approach may be of value in determining whether dysgalacticin and its related proteins are indeed composed of distinct domains.

Conclusion

In conclusion, we have utilized a combination of protein purification, reverse genetics and heterologous expression (in E. coli) to characterize dysgalacticin, a novel plasmid-encoded, large non-lytic bacteriocin that is presumably exported via a Sec-dependent protein secretion system. In light of the observation that strain W2580C

Dysgalacticin: a novel antimicrobial protein

