A putative sensor kinase, Hik31, is involved in the response of \textit{Synechocystis} sp. strain PCC 6803 to the presence of glucose

Shira Kahlon,1† Karen Beeri,1† Hiroshi Ohkawa,2† Yukako Hihara,3 Omer Murik,1 Iwane Suzuki,4 Teruo Ogawa2 and Aaron Kaplan1

Correspondence
Aaron Kaplan
aaronka@vms.huji.ac.il

1Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
2Bioscience Center, Nagoya University, Nagoya, Japan
3Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
4National Institute for Basic Biology, Okazaki, Japan

The reason(s) for glucose sensitivity in certain cyanobacterial strains is poorly understood. Inactivation of genes encoding the putative sensor kinase Hik31 in \textit{Synechocystis} sp. strain PCC 6803 resulted in a mutant unable to grow in the presence of \(\text{D-glucose}\). Sensitivities to \(\text{D-glucose}\), its analogue \(2\text{-deoxy-D-glucose}\), and fructose, were alleviated in mutants in which \textit{glcP}, encoding the glucose transporter, was inactivated. These data indicate that permeation of these substrates is required to inflict cell death. The mutant \(\Delta\text{hik31}\), and the glucose-sensitive strain of \textit{Synechocystis}, do not possess glucokinase activity, although a transcript originating from \textit{glk}, encoding glucokinase, is present. Inactivation of \textit{glk} led to severe sensitivity to glucose, indicating that the presence of glucose itself, within the cells, inflicted this sensitivity. On the other hand, sensitivity to 2-deoxy-D-glucose was lower in \(\Delta\text{glk}\), thus distinguishing between the effect of glucose itself and that of its analogue, which, in the absence of glucokinase activity, may not be phosphorylated. Addition of glucose led to a small rise in glucose-6-phosphate dehydrogenase activity in the wild type, but constitutive activity was observed in the \(\Delta\text{hik31}\) mutant regardless of the presence of glucose. Microarray analyses showed only small changes in the abundance of global transcripts in \textit{Synechocystis} following glucose addition, but the transcription levels of several genes, including \textit{icfG}, but not \textit{glk}, were strongly affected by inactivation of \textit{hik31}. The mechanism(s) whereby Hik31 is involved in glucose sensing and response is discussed.

INTRODUCTION

Variations in the ability of cyanobacteria to consume carbon from their surroundings have been reported, ranging from obligate photoautotrophs, for which the sole carbon source is carbon dioxide, to photomixotrophic and heterotrophic growth (Rippka \textit{et al.}, 1979; Stal & Moezelaar, 1997). Despite its importance to our understanding of cell metabolism, little is known about the mechanism(s) whereby cyanobacteria respond to the presence of glucose in their environment. Furthermore, while \(\text{D-glucose-sensitive (GS) and D-glucose-tolerant (GT) strains of Synechocystis sp. PCC 6803 (henceforth referred to as Synechocystis) are available, the mechanisms distinguishing their response to glucose are poorly understood.}

Zhang \textit{et al.} (1998) introduced \textit{glcP}, which encodes the glucose transporter in \textit{Synechocystis}, into the chromosome of the obligate autotroph \textit{Synechococcus} sp. strain PCC 7942 (henceforth referred to as \textit{Synechococcus}). This resulted in glucose sensitivity in the \textit{Synechococcus} cells that expressed \textit{glcP}; a glucose-tolerant subclone was found to have lost \textit{glcP}. Integration of \textit{glcP} in a replicative vector allowed glucose transport and photomixotrophic growth of \textit{Synechococcus}, but this could not be maintained. These data suggested that lack of glucose transport could partly explain obligate autotrophy, at least in \textit{Synechococcus}, and that glucose uptake was essential to lead to glucose sensitivity by a mechanism that was unknown at that time.

Exposure of \textit{Synechocystis} to glucose results in many changes at various cellular levels, including carbon metabolism (Knowles & Plaxton, 2003), pigmentation (Hsiao \textit{et al.},
2004; Ryu et al., 2004), phosphorylation patterns (Bloye et al., 1992), carbon dioxide uptake (Kaplan & Reinhold, 1999) and redox state of the plastoquinone pool (S. Kahlon, I. Ohad & A. Kaplan, unpublished results). The mechanisms whereby Synechocystis senses glucose are not known. The transmembrane proteins Snf3, Rgt2 (Moriya & Johnston, 2004) and Gpr1 (Lemaire et al., 2004) have been implicated in glucose sensing in the yeast *Saccharomyces cerevisiae*. Our analysis showed that the N-terminal of Snf3p is highly homologous to glcP from *Synechocystis*, but also that the cyanobacterium lacks the other half (the sensor?) of Snf3p. *Synechocystis* does not possess a homologue of Rgt2 or the G-protein Gpr1. In plants, glucose sensing is mediated by hexokinase (Moore et al., 2003), but *Synechocystis* does not possess hexokinase, and phosphorylation of glucose is catalysed by glucokinase. Interestingly, despite the numerous responses of *Synechocystis* to the presence of glucose, and with the exception of cases such as carotene biosynthesis in the dark (Ryu et al., 2004), the profiles of transcript abundance and protein levels during steady-state growth have not shown marked differences between control and glucose-supplied GT cells (Knowles & Plaxton, 2003; Tu et al., 2004; Yang et al., 2002). This may suggest that the response to glucose in *Synechocystis* rests mainly on alterations at the level of post-translational modifications, or modulation of enzyme activities.

Synechocystis mutants impaired in their growth in the presence of glucose have been isolated. A ΔicfG mutant cannot grow in the presence of glucose under low carbon dioxide conditions (Beuf et al., 1994). The icfG (slr1860) gene, encoding a protein phosphatase, is part of a gene cluster that encodes a protein kinase, a protein phosphatase and two phosphoproteins (Shi et al., 1999). A reduced level of gap1 transcript (encoding glyceraldehyde-3-phosphate dehydrogenase, GAPDH) in a Δhik6 mutant of *Synechocystis* lowers the ability of the cells to degrade glucose, and grow in the dark (Singh & Sherman, 2005), thus implicating this sensor kinase in the response to glucose. PmgA, which shows homology with anti-sigma factor, is essential for the acclimation of *Synechocystis* to changing light intensity (Hihara et al., 1998). Growth of a ΔpmgA mutant is impaired when glucose is provided in the light (Hihara & Ikeuchi, 1997), but the mechanism(s) involved is not known.

It is widely accepted that the oxidative pentose pathway is the main route of carbohydrate breakdown in cyanobacteria (Hagen & Meeks, 2001). However, inactivation of zwf encoding glucose-6-phosphate dehydrogenase (G6PD) in *Synechococcus* has little effect on the rate of oxygen uptake in the dark (Scanlan et al., 1995), thus suggesting that alternative metabolic routes are present. The level of glucose-6-phosphate (G6P) increases following initiation of photosynthesis, whereas that of 6-phosphogluconate declines (Pelroy & Bassham, 1972), suggesting regulation of G6PD. Indeed, detailed kinetic studies have shown strict regulation of G6PD activity by G6P, ATP, NADP and NADPH, and a shift in the nature of the curve relating the rate of G6PD activity to G6P concentration, from hyperbolic to sigmoidal, with a rising pH (Grossman & McGowan, 1975). Biochemical analyses have indicated that G6PD is present in various aggregation states that show variable kinetic properties (Gleason, 1996; Schaeffer & Stanier, 1978; Sundaram et al., 1998). It has been suggested that OpcA is involved in the assembly of G6PD, and its oligomerization and activation, in various cyanobacteria (Min & Golden, 2000; Sundaram et al., 1998). In contrast, detailed studies on G6PD from *Nostoc punctiforme* do not support involvement of OpcA in its aggregation, but show that the presence of OpcA strongly affects the activity of G6PD, and its affinity towards its substrate G6P (Hagen & Meeks, 2001).

The seminal studies by Shestakov and colleagues (Koksharova et al., 1998) have shown the importance of gap1 and gap2, which are closely related to the genes encoding cytosolic and chloroplast GAPDH, respectively, of higher plants. A mutant impaired in gap1 is unable to grow on glucose, but retains autotrophic growth in carbon dioxide. On the other hand, the gap2 mutant can perform photomixotrophic growth on glucose, but loses the ability to grow under photosynthetic conditions. Biochemical analyses indicate that Gap2 operates in the reductive photosynthetic (Calvin) cycle, and in non-photosynthetic gluconeogenesis, whereas Gap1 is essential for glycolytic glucose breakdown only (where the catabolic activity of Gap2 is repressed by a low-molecular-weight inhibitor of an unknown nature).

We show that inactivation of slr0790 and its plasmid homologue slr6041 (encoding sensory histidine kinase, Hik31) in the GT strain of *Synechocystis* results in a mutant unable to grow in the presence of glucose. These findings implicate Hik31 in the mechanisms that regulate between photoautotrophic and photomixotrophic growth.

METHODS

Organism, mutants and growth conditions. GT and GS strains of *Synechocystis* were used in the experiments presented here. The GT strain was originally isolated by John Williams of DuPont, Wilmington, DE, USA; its DNA has been sequenced and placed in Cyanobase (http://www.kazusa.or.jp/cyanobase). The Pasteur Culture Collection of Cyanobacteria maintains the GS strain. In addition, we raised mutants of the GT strain, in which we inactivated genes encoding the chromosomal (slr0790) and plasmid (slr6041) copies of Hik31; the glucose transporter (glcP, slr0771), and a glucokinase (glk, slr0593). The methodology used to raise the mutants involved PCR amplifications of genomic regions in the 5‘ and 3‘ ends of the relevant ORF, and ligations to an antibiotic-resistance-encoding cartridge, thereby deleting part of the ORF. This was followed by transformation of the host strain with the construct obtained, and selection in the presence of the relevant antibiotics. DNA from the mutant was examined by PCR and Southern analyses to confirm absence of the relevant genomic region from the wild type (WT), i.e. complete segregation. Both the chromosomal and the plasmid-located copies of hik31 were inactivated by insertion of a spectino-mycin-resistance cassette into the *Ncol* site (located at bp 3 064 298 of the chromosome, and at the homologous site in the plasmid). The *AglcP* mutant was obtained by ligating the PCR products from positions 18 to 542 (from the ATG codon), and 631 to 1133, with a
chloramphenicol-resistance-encoding cassette, thereby deleting nt 543–630. The Δglk mutant was obtained by ligating the PCR products from positions 75 to 625, and 809 to 1327, with a cassette encoding kanamycin resistance, thereby deleting nt 626–808. The double mutants ΔglkΔhik31 and ΔglcPΔhik31 were also prepared during the course of this study using the same constructs. All the mutants used here were fully segregated; we could not detect WT uninterrupted fragments in their DNA.

The hik31 gene is located immediately downstream of sll0788 and sll0789 (http://www.kazusa.or.jp/cyano/Synechocystis). A Δsll0788 mutant was insensitive to glucose (not shown). We could not specifically inactivate sll0789 encoding a putative two-component response regulator of the OmpR subfamily, which is likely to interact with Hik31 (Sato et al., 2004), without affecting the transcription of hik31. Thus, at this time we cannot unequivocally conclude whether the GS phenotype observed in the Δsll0789 mutant was due to inactivation of hik31, or an effect on the abundance of its response regulator Sll0789.

The cells were grown in BG11 medium (Stanier et al., 1971) at 30 °C, with continuous illumination of 60 μmol photons m⁻² s⁻¹; the medium was supplemented with 20 mM HEPES/NaOH, pH 7.8, and, where appropriate, the relevant antibiotics. Liquid cultures were bubbled with air enriched with 1–3 % carbon dioxide (high CO₂), or a mixture of 1:1 air and carbon-dioxide-free air (low CO₂); agar plates were placed in a plexiglas chamber aerated with one of these gas mixtures.

Western analysis and RT-PCR. Cultures were grown to a cell density of OD₅₇₀ 0.5, transferred to fresh BG11 medium, either with or without 5 mM glucose, and harvested when required. For Western analyses, the cells were lysed mechanically, and the extracts placed onto polyacrylamide gels (7 %) in the presence (denaturing) or without 5 mM glucose, and harvested when required. For the effect on the abundance of its response regulator Sll0789.

RESULTS

Growth experiments

Synechocystis possesses two genes encoding the putative sensor kinase Hik31: the chromosome-located sll0790, and its plasmid-harboured copy slr6041. At the nucleotide level, the plasmid and the chromosomal genes are 94–8 % identical; the encoded amino acid sequences are 95–7 % identical. Differences between the amino acid sequences are observed downstream of position 420 only, out of 458 and 450 amino acids in the chromosomal- and plasmid-encoded sequences, respectively.

Addition of D-glucose to mutant Δhik31 (in which both genes are inactivated) arrested its growth within about 20 h (Fig. 1a, b). In the absence of glucose, the GT and GS strains of *Synechocystis*, and all the mutants raised on the background of GT during the course of this study, including Δhik31, grew equally well under the conditions used here in either solid (Fig. 1c) or liquid BG11 media (not shown). Addition of L-glucose or 3-O-methyl-D-glucose did not inhibit the growth of the WT or the Δhik31 mutant (Fig. 1b). On the other hand, addition of either 2-deoxy-D-glucose

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>zwf</td>
<td>5′-TTCCACATTTACCGGCGGCGG-3′</td>
<td>5′-GTTCATAGGTGGGCGGCCCAA-3′</td>
</tr>
<tr>
<td>gap1</td>
<td>5′-AAACATTATTTACGCTACACG-3′</td>
<td>5′-CTAGCCCAACCGCTTTTGCT-3′</td>
</tr>
<tr>
<td>gap2</td>
<td>5′-GGATTGTTGACGCTAAGGGA-3′</td>
<td>5′-GTGTTCATGCTGGTCTTGA-3′</td>
</tr>
<tr>
<td>gidA</td>
<td>5′-AATGCGGCGCCGAAGTCGCTGTA-3′</td>
<td>5′-TCGGAGGGGAGCTGCGCGCC-3′</td>
</tr>
<tr>
<td>pmgA</td>
<td>5′-AGCCCGCCGACGACCATTCAG-3′</td>
<td>5′-CCGGCGCTTAATTTCTTGCC-3′</td>
</tr>
<tr>
<td>icfG</td>
<td>5′-AAGATCTTCAAGGCCCCCGG-3′</td>
<td>5′-CGGATTGACAAGGGAGTT-3′</td>
</tr>
<tr>
<td>16S rDNA</td>
<td>5′-AGACTCTCCTACGGGAGGGCAGC-3′</td>
<td>5′-CCGGTATGCTACGCGCCGCTGG-3′</td>
</tr>
</tbody>
</table>
(2-D-Glc), which can undergo phosphorylation, or fructose was lethal for the GT and Δhik31 strains (Fig. 1b, c). Raising the level of Pi in the BG11 medium by 10-fold did not alter the response of the WT and the Δhik31 mutant to glucose or 2-D-Glc (Fig. 1b), suggesting that the response to 2-D-Glc was not due to a low internal Pi level, which could be caused by phosphorylation, but rather that the response was due to lack of further metabolism of this substrate.

To test whether the Δhik31 mutant was sensitive to internal or external glucose, we inactivated glcP encoding the glucose transporter. Mutants ΔglcP and ΔglcP/Δhik31 grew like the WT in the presence or absence of glucose, in the light (Fig. 1c), indicating that glucose must enter the cells to induce sensitivity. As expected, mutants in which glcP was inactivated could not grow in the dark on glucose (not shown), and were not sensitive to the presence of 5 mM Pi.

Fig. 1. Growth of Synechocystis sp. strain PCC 6803 and mutants thereof on glucose and its analogues. (a) The GT strain of Synechocystis (WT, □) and mutant Δhik31 (○) grown in liquid BG11 medium supplemented with 5 mM D-glucose. After 24 h growth, the cells were diluted, and the growth experiment was continued under otherwise identical conditions. Light intensity was 50 μmol photons m⁻² s⁻¹, and the temperature was 30 °C. (b, c) The WT, and mutants Δhik31, ΔglcP, Δglk, Δhik31/Δglk and Δhik31/ΔglcP thereof, grown on solid BG11 medium supplemented with D-glucose (D-Glc), L-glucose (L-Glc), 2-D-Glc, 3-O-methyl-D-glucose (3OMG) or fructose (Frc), 5 mM each. Normal and high-P in (b) are standard BG11 medium, and 10× Pi in BG11, respectively. Cells grown in liquid BG11 were placed (at densities corresponding to OD₇₅₀ values 0·1, 0·01 and 0·001) on agar plates supplemented with the sugars indicated above. The plates were maintained in a closed plexiglas box aerated with 3% carbon dioxide in air, at 30 °C. Light intensity was 50 μmol photons m⁻² s⁻¹.
2-DOGlc or fructose, unlike the WT (Fig. 1c; Flores & Schmetterer, 1986). These data also suggest that fructose enters the cells via the glucose transporter.

Glucokinase activity

The results presented in Fig. 1 suggest that phosphorylation of glucose or its analogues inside the cells could lead to the glucose sensitivity observed in this study. In *Synechocystis*, conversion of glucose to G6P is mediated by glucokinase, which is encoded by *glk*. Mutants Δglk and Δglk/Δhik31 could not grow in the presence of glucose (Fig. 1c), indicating that the entry of glucose itself into the cells inhibited growth. This observation raises the possibility that sensitivity of the GS strain and the Δhik31 mutant to glucose is due to impaired glucokinase activity. Measurements of enzyme activity on cell extracts (Table 2) confirmed that the GS and Δhik31 strains did not possess glucokinase activity. We were confronted with a very large variability in glucokinase activities in various cell extracts from the WT, despite the fact that, to the best of our knowledge, the growth and experimental conditions were identical. In addition, the methodology used to break the cells was identical for the measurements of G6PD (see below) and glucokinase activities, and we repeatedly examined these two activities on the same extracts; nevertheless, the reproducibility of the results obtained was much better for G6PD than glucokinase. Furthermore, the data in Table 2 are provided per milligram of protein in the cell extract, and thus breaking efficiency is normalized. Nevertheless, it was clear that glucokinase activity was essentially zero in all the experiments where extracts from GS or Δhik31 strains were examined.

As expected, heterotrophic growth in the dark on glucose was observed in the GT, ΔicfG and ΔpmgA strains that possess glucokinase activity (not shown). On the other hand, mutants Δhik31 and Δglk, lacking glucokinase activity, could not grow on glucose in the dark. Interestingly, inactivation of *glk* partly alleviated the sensitivity of the WT and Δhik31 mutant to 2-D-Glc (Fig. 1c), suggesting that phosphorylation by glucokinase is involved in the toxicity of 2-D-Glc.

G6PD

The G6P produced by glucokinase activity is further metabolized by G6PD. The activity of G6PD increased slightly in WT cells that were provided with glucose, but it was significantly higher in the Δhik31 mutant, irrespective of the presence of glucose (Fig. 2). To examine a possible effect of inactivation of *hik31* on the profile of G6PD, we extracted proteins from the WT and the mutant before and after addition of glucose, and separated them on a native (not shown) and a denaturing gel (Fig. 3). In agreement with the elevated G6PD activity in cell extracts from the Δhik31 strain, the levels of G6PD and of OpcA were also higher in the mutant than in the WT (Fig. 3). In both strains, the levels of OpcA and of G6PD were not affected by the presence of glucose (Fig. 3). Interestingly, a 105 kDa polypeptide was observed in protein extracts from the WT loaded onto the denaturing gel, but this was not observed in extracts from the Δhik31 mutant. The nature of this polypeptide is not known, but, since it was recognized by the G6PD antibody, we cannot discount the possibility that it is a dimer of G6PD that is resistant to the denaturing SDS conditions.

Transcript abundance

This was examined by microarray, and RT-PCR and Northern analyses. These analyses were performed on RNA isolated from the WT and Δhik31 mutant, with or without exposure to 5 mM D-glucose for 6 h. In general, our results confirmed earlier reports (see Introduction) that the profiles of transcript abundance do not show large changes in response to the addition of glucose; two exceptions are the *rpl* and *rps* genes involved in ribosome biosynthesis, which were upregulated two- to fourfold by glucose. In Table 3, we

Table 2. Glucokinase activity in the GT and GS strains of* Synechocystis*, and in the Δhik31 mutant

Experiments with the GT strain were repeated six times, and those with the GS and Δhik31 strains were repeated three times. Glucokinase activity at 0 and 5 h is given in μmol NADPH (mg protein)⁻¹ s⁻¹.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Glucokinase activity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 h</td>
<td>5 h</td>
</tr>
<tr>
<td>GT</td>
<td>0·88 (0·24–1·44)</td>
<td>1·75 (0·23–3·2)</td>
</tr>
<tr>
<td>GS</td>
<td>0·00</td>
<td>0·00</td>
</tr>
<tr>
<td>Δhik31</td>
<td>0·00</td>
<td>0·00</td>
</tr>
</tbody>
</table>

![Fig. 2. The activity of G6PD in* Synechocystis* (WT) and Δhik31, in the presence and absence of D-glucose. Where indicated, the cells were exposed to 5 mM D-glucose for 24 h before the extraction of proteins.](image-url)
provide the ratio (in the Δhik31 mutant versus that in the WT) of transcript abundances of genes that encode proteins directly involved in glucose metabolism, and that were also examined by RT-PCR and Northern analyses, during the course of this study. The analyses showed that the levels of the transcripts originating from glk (encoding glucokinase), glcP (encoding the glucose transporter), opcA (slr1734) and zwf (slr1843, encoding G6PD) hardly differed between the WT and the Δhik31 mutant (Table 3), and that the levels were not significantly affected by the addition of glucose (not shown). Among the transcripts examined by RT-PCR, that of icfG increased significantly after addition of D-glucose to the WT, but it was missing, or at least not detected, in RNA from the Δhik31 mutant (Fig. 4). The abundance of transcripts originating from gap1, gidA and pmgA was slightly affected by the addition of glucose, but the effect was much smaller than that observed for icfG (not shown).

DISCUSSION

The mechanism whereby *Synechocystis* senses (and responds) to the presence of glucose is poorly understood. Inactivation of the chromosomal and plasmid genes encoding Hik31, a putative sensor kinase in *Synechocystis*, resulted in a mutant unable to grow in the presence of D-glucose (Fig. 1). Since inactivation of glcP, encoding the glucose transporter, alleviated the sensitivity of the Δhik31 mutant to glucose (Fig. 1), we conclude that entry of glucose into the cells is required to induce glucose sensitivity. The Δhik31 and GS strains of *Synechocystis* lack glucokinase activity (Table 2), and inactivation of glk (encoding glucokinase) in the GT strain resulted in sensitivity to glucose (Fig. 1c). These data suggest that glucose sensitivity is due to an inability to metabolize the compound. An ability of the GT strain to consume glucose is indicated, for instance, by a large rise in the rate of oxygen uptake (respiration) following the addition of glucose in the dark (Ohkawa et al., 2000). This was not the case in the Δhik31 and Δglk strains, where the presence of glucose hardly affected the rate of oxygen uptake (not shown). Taken together, the data indicate that the presence of glucose itself, within the cells of strains unable to metabolize it, induces their sensitivity.

Since the abundance of a transcript originating from glk was not affected by inactivation of hik31 (Table 3), we propose that downregulation of glucokinase activity in this strain is probably mediated by post-transcriptional regulation, the nature of which is being examined. In addition to glk, the genome of *Synechocystis* contains another ORF, slr0329, annotated as encoding glucokinase (http://www.kazusa.or.jp/cyano/Synechocystis). However, glk and slr0329 are not

Table 3. Ratios of transcript amounts of certain *Synechocystis* genes in the Δhik31 mutant/WT, as indicated by microarray analysis

The cells were incubated for 6 h in the presence of 5 mM D-glucose, before the extraction of RNA. Ratios of transcript amounts are given in duplicate.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>glk (slr0593)</td>
<td>Glucokinase</td>
<td>1.37, 1.19</td>
</tr>
<tr>
<td>glcP (slr0771)</td>
<td>Glucose transporter</td>
<td>1.11, 0.97</td>
</tr>
<tr>
<td>opcA (slr1734)</td>
<td>OpcA</td>
<td>1.09, 1.10</td>
</tr>
<tr>
<td>zwf (slr1843)</td>
<td>G6PD</td>
<td>0.94, 1.10</td>
</tr>
</tbody>
</table>

Fig. 3. Western analyses of protein extracts from *Synechocystis* (WT) and mutant Δhik31 separated on denaturing SDS-PAGE. The gels were loaded with 10 μg protein. Where indicated, the cells were exposed to 5 mM D-glucose for 24 h prior to extraction of proteins. Antibodies raised against G6PD and OpcA were used.

Fig. 4. The abundance of transcripts of icfG and 16S rDNA in *Synechocystis* (WT) and mutant Δhik31 in the presence of D-glucose. The cells were provided with 5 mM D-glucose at time zero.
homologous, and, unlike the Δglk mutant, inactivation of slr0329 did not result in sensitivity to glucose (not shown). Thus the role, function and annotation of slr0329 remain to be elucidated.

Sensitivity to non-metabolized glucose analogues that can undergo phosphorylation (Fig. 1) has been observed in many organisms, including yeast (Rincon et al., 2001) and plants (Kulma et al., 2004). The ability to phosphorylate glucose is essential for the induction of cell death in nutrient-limited yeast (Granot & Dal, 1997). In contrast, we observed sensitivity to D-glucose in *Synechocystis* strains lacking glucokinase activity (GS, Hik31 and Δglk), where the presence of D-glucose within the cells appeared to be lethal, but the mechanism involved is unknown. The *Synechocystis* genome contains genes homologous to gidA (slr0202 and slr0204) and gidB (slr0072); the name gid (glucose-inhibited division) is derived from the observation that deletion of the gene in *Escherichia coli* results in a cell-elongation phenotype when glucose is provided (von Meyenburg et al., 1982). gidA is widely distributed, and highly conserved, among prokaryotes and plants (including *Arabidopsis thaliana* and rice). Recent analyses of the structures of GidA (Iwasaki et al., 2004) and GidB (Romanowski et al., 2002), and characterization of mutants in various organisms in which gidA is inactivated (Kinscherf & Willis, 2002; Sha et al., 2004), suggest that the latter is involved in the coordination of replication, and that it can act as a global regulator and moderator of translation. It is not known whether the gid genes function similarly in *Synechocystis*, and whether they are involved in its sensitivity to internal glucose. It should be noted that supply of glucose had little effect on the abundance of transcripts for gidA and gidB in *Synechocystis*, and that the number of these transcripts was very low (not shown).

Involvement of regulatory genes, including hik8 and icfG, in the response of *Synechocystis* to glucose has been reported by others (Beuf et al., 1994; Singh & Sherman, 2005). Unlike the Δhik31 mutant, a Δhik8 mutant can grow in the presence of glucose, but not in the dark, or an extended dark period, presumably due to an altered ability to express gap1, and thus to an altered ability to utilize glycogen in the dark (Singh & Sherman, 2005). In contrast, the Δhik31 mutant was found to possess a normal level of gap1 transcript (not shown), but was unable to grow in the dark due to lack of glucokinase activity. It has been reported that inactivation of icfG, encoding a protein serine phosphatase in *Synechocystis* (Shi et al., 1999), results in the inability to grow under limiting levels of inorganic carbon in the presence of glucose (Beuf et al., 1994). In contrast, glucose sensitivity of the Δhik31 mutant was observed in cells exposed to either high or low levels of carbon dioxide, although the mutant was less sensitive to the presence of glucose under low CO₂ (not shown). The ΔicfG mutant was able to grow in the presence of glucose in the dark, whereas the Δhik31 mutant could not. A considerable rise in the level of icfG transcript was induced by glucose in the WT, but this transcript was not detected in the Δhik31 mutant, regardless of the presence of glucose (Fig. 4). These data suggest that, in addition to activation of glucokinase, Hik31 is essential for the expression of icfG.

It is known that G6PD is present in various levels of aggregation (Gleason, 1996; Schaeffer & Stanier, 1978; Sundaram et al., 1998), but the biological significance of the aggregation states is not known. The constitutive higher level and activity of G6PD exhibited by the Δhik31 mutant (Figs 2 and 3), and higher degree of aggregation (observed in native gels, not shown), suggest that Hik31 is also involved in the modulation of G6PD. The data also suggest that cells of the Δhik31 mutant are in an ‘acclimated phase’ to glucose, regardless of its presence. This may indicate a dual role for Hik31 as a repressor of some of the glucose-related functions, and as an inducer/activator of others, including the presence of the 105 kDa polypeptide, and the expression of icfG.

As indicated in the Introduction, the supply of glucose to *Synechocystis* cells imposes many changes in various and seemingly unrelated processes and activities. It is therefore surprising that analysis of global gene expression by means of DNA microarray (performed here, and by others; Singh & Sherman, 2005; Tu et al., 2004) did not show marked changes in the transcript abundance of many genes. Nevertheless, detailed Northern, RT-PCR and biochemical analyses suggested changes in the expression of several genes, and the activity of certain enzymes, including glucokinase and G6PD, in response to deletion of hik31 (Table 2; Figs 2, 3 and 4). A detailed proteomic approach, using some of the mutants raised here, is required to identify other components involved in the complex network whereby the cells regulate between photoautotrophic and photomixotrophic modes of growth.

Finally, while the data presented here support the suggestion that Hik31 plays an important role in the response of *Synechocystis* cells to glucose, the mechanisms involved, and the interactions with other components, are yet to be elucidated. Here, it is worth mentioning a serious difficulty that we faced during the course of this study – the stability of the phenotypes of some of the mutants used. It was apparent that addition of glucose caused an immense selection pressure, which led to the appearance of many suppression mutants. Analysis of these mutants may help to identify additional components in this complex system, and the interaction between them.

ACKNOWLEDGEMENTS

This research was supported by grants from the Israeli Science Foundation (ISF), the Deutsche Forschungsgemeinschaft (DFG), and the German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMFT) to A.K., grants from the Japan Society of the Promotion of Science (JSPS) to T. O. and I. S., and grants from the Salt Science Research Foundation to I. S.
REFERENCES

