Regulation of aspartokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase in *Lactobacillus plantarum*

Muhammad N. Cahyanto, Hiroko Kawasaki, Mariko Nagashio, Kazuhiro Fujiyama and Tatsuji Seki

The International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

The use of a lysine-overproducing strain of *Lactobacillus plantarum* in food or feed fermentations may lead to the production of lysine-rich products. The availability of functional genes and information on the regulation of lysine biosynthesis are required to develop a lysine-overproducing strain. The genome sequence of *L. plantarum* revealed putative lysine biosynthetic genes, some of which may produce isozymes. This study examined the functionality of the genes and the regulation of the first four enzymes of lysine biosynthesis, together with homoserine dehydrogenase, in *L. plantarum*. The genes were expressed in *Escherichia coli*, and the regulation of the enzymes was studied in cell extracts of both recombinant *E. coli* and *L. plantarum*. Among seven lysine biosynthetic genes studied (aspartokinase genes, *thrA1* and *thrA2*; aspartate semialdehyde dehydrogenase genes, *asd1* and *asd2*; dihydrodipicolinate synthase genes, *dapA1* and *dapA2*; and the dihydrodipicolinate reductase gene, *dapB*) plus two homoserine dehydrogenase genes (*hom1* and *hom2*), the products of six genes, i.e. *thrA2*, *asd2*, *dapA1*, *dapB*, *hom1* and *hom2*, showed obvious enzyme activities in vitro. The product of one of the homoserine dehydrogenase genes, *hom1*, exhibited both homoserine dehydrogenase and aspartokinase activities. However, the aspartokinase activity was mainly due to ThrA2 and was inhibited by L-lysine and repressed by L-threonine, and the homoserine dehydrogenase activity was mainly due to Hom2 and was inhibited by L-threonine. The aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase were not regulated by the end-products of the pathway.

INTRODUCTION

L-Lysine is an essential amino acid that has to be available in sufficient amounts in feeds to meet the nutritional requirements of the animals. Plant-based feeds such as crops, forages and silage are usually poor in lysine. Therefore, supplementation with a lysine-rich source is sometimes necessary. The use of lysine-overproducing *Lactobacillus plantarum* in preparing feedstuffs such as silage might improve the utility of the feed.

In order to increase lysine formation in organisms by molecular techniques, information on the regulation of lysine biosynthesis and the availability of the functional genes is required. L-Lysine, together with other members of the aspartate family of amino acids, L-methionine, L-threonine and L-isoleucine, is synthesized via a branched pathway. The consecutive actions of the first two enzymes, aspartokinase and aspartate semialdehyde dehydrogenase, lead to the formation of aspartate semialdehyde, the precursor of all members of the aspartate family. In the lysine branch, aspartate semialdehyde is converted to dihydrodipicolinate by dihydrodipicolinate synthase, which is then reduced to piperidine dicarboxylate by dihydrodipicolinate reductase (Umbarger, 1978). The first four steps of lysine biosynthesis from aspartate are well conserved in bacteria. From piperidine dicarboxylate, however, there are three variants of the pathway: the succinylase pathway, which uses a succinyl residue as the blocking group, is present in *Escherichia coli* (Kindler & Gilvarg, 1960); the acetylase pathway, involving acetylated intermediates, is found in certain *Bacillus* species (Sundharadas & Gilvarg, 1967; Weinberger & Gilvarg,
semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase, respectively. For preparation of cell extracts, L. plantarum was grown in synthetic medium according to Morishita et al. (1981), and E. coli strains were grown in M9 medium.

Gene cloning and expression of the genes. Lysine biosynthetic genes were amplified from chromosomal DNA of L. plantarum NCIMB 8826 by PCR. The primers were designed based on the genome sequence of L. plantarum and to include the putative promoter sites of the genes. The primers used were ThrA1-1 (5’TCTGACCTTTCTG-3’), ThrA1-2 (5’ATTGAATTCGCGGAGATG-3’), ThrA2-1 (5’-AAATTTGTTTTGAGTGGG-3’), ThrA2-2 (5’-AACACCGCCATATTATGATG-3’), Hom1-1 (5’-TTTGGACCGTTCGATG-3’), Hom1-2 (5’-TTGATTACGCTTGTTCG-3’), Hom2-1 (5’-GCGGCAATTAAATTGATCTG-3’), hom2-2 (5’-ACACTTTTACAGTGTAGTG-3’), Asd1-1 (5’-CATAGGAGAAAAATGTTGCG-3’), Asd1-2 (5’-AGCTCTTCAATAATTCTCCT-3’), Asd2-1 (5’-ATCTGCGTTGCGAACAG-3’), Asd2-2 (5’-GGATCGCTTTTCTTACAC-3’), DapA1-1 (5’-GTTACGGGTCTACTATG-3’), DapA1-2 (5’-AACTGAAGTCCGGAATCAC-3’), DapB1-1 (5’-ATGTCGATCACAACGTGCT-3’), DapB1-2 (5’-CTGATCCCTAGTAGTAAAC-3’), DapB2-1 (5’-AAATGTGTCGGAGGCG-3’) and DapB2-2 (5’-AAATCGACGTCACTGATG-3’).

The PCR products were cloned into pCR2.1-TOPO (Invitrogen) to facilitate sequencing of the genes. The genes with the right sequences were then subcloned to pUC18 for heterologous expression of the genes in E. coli mutants. Transformation of pUC18 harbouring the relevant gene into E. coli cells was performed by electroporation using a Bio-Rad Gene Pulser II as described by Dower et al. (1988). Asparokinase and homoserine dehydrogenase genes were expressed in E. coli Gift 102, whereas aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase genes were expressed in E. coli strains Hfr3000 U482, AT997 and AT999, respectively.

RT-PCR. Nucleotide sequences inside the genes were used as primers for RT-PCR. RNA of L. plantarum was used as a template. The RNA was isolated by RNeasy (Qiagen). The primers used were thrA1-RTF (5’-AAATGCTGCGTGAGCAGCC-3’), thrA1-RTF (5’-GCGGACCTGTTGAACAC-3’), thrA2-RTF (5’-GGCAAGGTCCGCTGCTG-3’), thrA2-RTF (5’-AGATGACTGCTGCTGATA-3’), hom1-RTF (5’-TTCAGTTACGCTGCTGCTG-3’), hom1-RTF (5’-TTCAGTTACGCTGCTGCTG-3’), hom2-RTF (5’-ATGTTACGCTGCTGCTGCTG-3’), hom2-RTF (5’-ATGTTACGCTGCTGCTGCTG-3’), asd1-RTF (5’-TTATACGCTGCTGCTGCTG-3’), asd1-RTF (5’-TTATACGCTGCTGCTGCTG-3’), asd2-RTF (5’-ATGTTACGCTGCTGCTGCTG-3’), asd2-RTF (5’-ATGTTACGCTGCTGCTGCTG-3’), dapA1-RTF (5’-GCGGACCTGTTGAACAC-3’), dapA1-RTF (5’-GCGGACCTGTTGAACAC-3’), dapB1-RTF (5’-GTCACTGTTAAGTAGTATG-3’), dapB1-RTF (5’-GTCACTGTTAAGTAGTATG-3’), dapB2-RTF (5’-GCGGACCTGTTGAACAC-3’) and dapB2-RTF (5’-GCGGACCTGTTGAACAC-3’).

Preparation of cell extracts and enzyme assays. Cells were harvested by centrifugation, washed twice with deionized water, and resuspended in the buffer used for the enzyme assay. The cells were lysed by sonication (Katio Denki Co.) at maximum setting, for 2 min for E. coli and 20 min for L. plantarum, and the cell debris was separated by centrifugation at 10 000 g for 30 min. The supernatant was used as a cell-free extract.

Asparokinase was measured as described by Black & Wright (1955b). The assay mixture contained 50 mM Tris buffer pH 7.0, 15 mM ATP, 10 mM MgSO₄, 200 mM (NH₄)₂SO₄, 500 mM hydroxylamine, 25 mM 1-aspartate, and cell extract. After incubation at 37 °C for 1 h, the reaction was stopped by addition of FeCl₃. The reaction mixture was centrifuged at 12 000 r.p.m for 5 min and the absorbance

METHODS

Bacterial strains. L. plantarum NCIMB 8826 is the parent of strain WCFS1, used in the genome project. It was maintained in MRS medium (Difco). E. coli mutants (strains Gif 102, Hfr3000 U482, AT997 and AT999) were maintained in LB medium supplemented with 50 μg meso-diaminopimelate ml⁻¹. Strain Gif 102 is deficient in both the asparokinases and homoserine dehydrogenases. Strains Hfr3000 U482, AT997 and AT999 are deficient in aspartate

1970) and the dehydrogenase pathway, in which piperidine dicarboxylate is converted in a single step to the ultimate lysine precursor meso-diaminopimelate, is found in Bacillus subtilis (Misono et al., 1979; White, 1983).

The regulation of lysine biosynthesis varies among organisms. Only asparokinase is regulated for the biosynthesis of lysine in Corynebacterium glutamicum. It is inhibited by L-lysine plus L-threonine; either L-lysine or L-threonine alone does not inhibit asparokinase (Nakayama et al., 1966; Cremer et al., 1988). In E. coli, many enzymes of lysine biosynthesis are regulated by the end-products of the pathway. There are three isozymes of asparokinase in E. coli: asparokinase I is repressed by L-threonine plus L-isoleucine and inhibited by L-threonine, asparokinase II is repressed by L-methionine (Patte et al., 1980), and asparokinase III is repressed and inhibited by L-lysine (Theze et al., 1974). Asparokinase I and II are bifunctional enzymes and show both asparokinase and homoserine dehydrogenase activities. The aspartate semialdehyde dehydrogenase is repressed by L-lysine in E. coli (Cohen & Patte, 1963), as is diaminopimelate decarboxylase, the enzyme that catalyses the last step in the pathway (White, 1976). The activity of dihydrodipicolinate synthase in E. coli is inhibited by L-lysine (Yugari & Gilvarg, 1962).

In L. plantarum, only the regulation of asparokinase has been reported to date (Adebowo et al., 1997); that study was done with cell extract of L. plantarum. Because asparokinase in L. plantarum may be present as an isozyme, as indicated in the genome sequence (Kleerebezem et al., 2003), the study of enzyme regulation using cell extracts of L. plantarum may not be appropriate; the asparokinases should be separated when the regulation of the enzyme is studied. The genome sequence of L. plantarum also reveals that aspartate semialdehyde dehydrogenase and dihydrodipicolinate synthase may be present as isozymes.

We studied here the expression of genes encoding the four key enzymes in lysine biosynthesis, i.e. asparokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase, and the effects of the aspartate family of amino acids on those enzymes in L. plantarum. The first step of the pathway and the branching point are potential sites of regulation of carbon flow. Homoserine dehydrogenase was included in this study because this enzyme catalyses the reaction at the branch point and may have a role in the regulation of carbon flow toward L-lysine.
Aspartate semialdehyde dehydrogenase was measured as described by Hegeman et al. (1970) in the reverse of the biosynthetic reaction. The assay mixture consisted of 30 mM diethanolamine buffer pH 9.0, 0.8 mM NADP, 40 mM Na3HAsO4, 120 mM NaCl, 0.3 mM L-aspartate semialdehyde, and cell extract. 1-Aspartate semialdehyde was synthesized by ozonization of allylglycine as described by Black & Wright (1955a). The rate of reduction of NADP+ to NADPH was measured spectrophotometrically at 30°C and 340 nm. Activity is expressed as the amount of enzyme required to convert 1 nmol of L-aspartate semialdehyde to NADPH min⁻¹.

Dihydricopilinate synthase was assayed according to the method of Yamakura et al. (1974). The assay mixture consisted of 200 mM Tris/HCl buffer pH 8.0, 4 mM sodium pyruvate, 2 mM L-aspartate semialdehyde, and cell extract. After incubation at 37°C for 10 min, the 1 ml assay mixture was mixed with 1 ml 1 M HCl and 1 ml o-aminobenzaldehyde (2 mg ml⁻¹ in ethanol). The assay mixture was incubated at 37°C for an additional 30 min in the dark and then centrifuged. The absorbance of the supernatant was determined at 540 nm. Activity is expressed as the amount of enzyme required to convert 1 nmol aspartate semialdehyde to NADPH min⁻¹.

Dihydricopilinate reductase was assayed by a coupled method as described by Cremer et al. (1988). The gene encoding DHPS from L. plantarum IAM 12477 was transformed into DHPR-deficient E. coli AT999, and the extract of this strain was used to synthesize the reductase substrate, i.e. 2,3-dihydricopilinate. The reaction mixture contained 100 mM Tris/HCl buffer pH 7.5, 5 mM sodium pyruvate, 1.5 mM L-aspartate semialdehyde, 1 mM NADPH, and cell extract of E. coli AT999 containing 0-4 units of DHPS. After incubation at 30°C for 10 min, the reductase reaction was started by addition of the cell extract. The NADPH-dependent reduction was followed at 340 nm and 30°C. Activity is expressed as the amount of enzyme required to oxidize 1 nmol NADPH per minute.

Specific activity of the enzymes is expressed as the activity of the enzyme per mg protein. Protein was measured by the method of Bradford (1976) with bovine serum albumin as a standard.

RESULTS

Although the genome sequence of L. plantarum is available, there has to our knowledge been no report on the functionality of the genes involved in lysine biosynthesis. In addition, information on the regulation of lysine biosynthesis in this bacterium is limited. The first four enzymes of lysine biosynthesis, i.e. aspartokinase, aspartate semialdehyde dehydrogenase, dihydricopilinate synthase and dihydricopilinate reductase, were examined in this study; the first three of these enzymes may be present as isozymes, as indicated by the genome sequence. These enzymes include the first enzyme in the pathway and the enzymes at the branch point, which may be involved in the regulation of carbon flow in lysine biosynthesis. For this reason, homoserine dehydrogenase, which can also catalyse the reaction at the branch point, was included in this study. Therefore, nine genes were cloned from L. plantarum DNA and heterologously expressed in an E. coli mutant deficient in the corresponding enzyme. Regulation of the enzymes was studied in cell extracts of both L. plantarum and the recombinant E. coli.

Cloning and expression of lysine biosynthetic genes

Seven genes involved in lysine biosynthesis, i.e. thrA1, thrA2, asd1, asd2, dapA1, dapA2 and dapB, together with homoserine dehydrogenase genes hom1 and hom2, were amplified by PCR from the DNA of L. plantarum NCIMB 8826. The primers used to amplify the genes were designed to include the predicted promoter regions of the genes. The cloned genes with nucleotide sequence identical to the one reported in the genome project were used for further work.

The expression of the genes in L. plantarum was determined by RT-PCR. The results showed that six genes (thrA1, thrA2, hom2, asd2, dapA1 and dapB) were strongly expressed to mRNA, and the other genes (hom1, asd1 and dapA2) were weakly expressed (Fig. 1). The enzyme activities encoded by the cloned genes were assayed in cell extracts of E. coli harbouring the gene. As a control, cell extract of E. coli harbouring pUC18 was used. For E. coli harbouring aspartokinase or homoserine dehydrogenase genes, the cell extract was assayed for both aspartokinase and homoserine dehydrogenase activities. The aspartokinase activity of the cell extract of E. coli Gif 102 harbouring thrA2 was considerably higher than the control (Table 1). However, the aspartokinase activity of the cell extract of E. coli Gif 102 harbouring thrA1 was not significantly different from the control, although thrA1 was strongly expressed to mRNA in L. plantarum. There were two homoserine dehydrogenase genes indicated in the genome sequence of L. plantarum; hom2 was strongly expressed to mRNA, but the expression of hom1 was weak. However, activity of homoserine dehydrogenase was detected in the cell extract of E. coli Gif.
Table 1. Enzyme activities in cell extracts of E. coli mutants harbouring lysine biosynthesis genes from L. plantarum

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Gene</th>
<th>Specific activity (nmol min(^{-1}) mg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\times E.\ coli^*)</td>
</tr>
<tr>
<td>AK</td>
<td>thrA1</td>
<td>3.6 ± 0.8</td>
</tr>
<tr>
<td>AK</td>
<td>thrA2</td>
<td>162.1 ± 15.7</td>
</tr>
<tr>
<td>AK</td>
<td>hom1</td>
<td>12.8 ± 2.9</td>
</tr>
<tr>
<td>AK</td>
<td>hom2</td>
<td>4.2 ± 0.5</td>
</tr>
<tr>
<td>HDH</td>
<td>thrA1</td>
<td>2.7 ± 0.7</td>
</tr>
<tr>
<td>HDH</td>
<td>thrA2</td>
<td>1.9 ± 0.3</td>
</tr>
<tr>
<td>HDH</td>
<td>hom1</td>
<td>7.6 ± 1.5</td>
</tr>
<tr>
<td>HDH</td>
<td>hom2</td>
<td>1667.0 ± 380.0</td>
</tr>
<tr>
<td>ASADH</td>
<td>asd1</td>
<td>215 ± 9</td>
</tr>
<tr>
<td>ASADH</td>
<td>asd2</td>
<td>2149 ± 173</td>
</tr>
<tr>
<td>DHPS</td>
<td>dapA1</td>
<td>125.2 ± 21.2</td>
</tr>
<tr>
<td>DHPS</td>
<td>dapA2</td>
<td>ND</td>
</tr>
<tr>
<td>DHPR</td>
<td>dapB</td>
<td>1153 ± 255</td>
</tr>
</tbody>
</table>

E. coli harbouring the gene from *L. plantarum.*
†*E. coli* harbouring pUC18.

106 harbouring *hom1*, although it was relatively low. The homoserine dehydrogenase activities in the cell extracts of *E. coli* Gif 106 harbouring *hom1* and *hom2* were 7.6 and 1667 nmol min\(^{-1}\) mg\(^{-1}\), respectively, compared to 24 nmol min\(^{-1}\) mg\(^{-1}\) for the control. Surprisingly, one of the homoserine dehydrogenase genes, *hom1*, also exhibited aspartokinase activity, although the activity (128 nmol min\(^{-1}\) mg\(^{-1}\)) was considerably lower than that of *ThrA2* (162.1 nmol min\(^{-1}\) mg\(^{-1}\)). Thus, *Hom1* was a bifunctional enzyme, with both aspartokinase and homoserine dehydrogenase activities. There are two copies of aspartate semialdehyde dehydrogenase genes in *L. plantarum* as shown in the genome sequence. The RT-PCR data showed that only one of them, i.e. *asd2*, was strongly expressed to mRNA. The enzyme activity assay also showed that only *Asd2* exhibited strong aspartate semialdehyde dehydrogenase activity. The aspartate semialdehyde dehydrogenase activity of *Asd1* was not significantly different from that of the control. The aspartate semialdehyde dehydrogenase activities of cell extract of *E. coli* Hfr3000 U482 harbouring *asd1* and *asd2* were 215 and 2149 nmol min\(^{-1}\) mg\(^{-1}\), respectively, compared to 207 nmol min\(^{-1}\) mg\(^{-1}\) for the control. Although there are two genes encoding dihydrodipicolinate synthase in *L. plantarum* as indicated in the genome sequence, only *dapA1* showed strong expression on RT-PCR and also gave detectable activity (125.2 nmol min\(^{-1}\) mg\(^{-1}\)) of dihydrodipicolinate synthase in the cell extract of the recombinant *E. coli*. Dihydrodipicolinate synthase activity in the cell extract of *E. coli* AT997 harbouring *dapA2* was undetectable, as it was in the control. The genome sequence of *L. plantarum* shows only one copy of the *dapB* gene. This gene was able to be expressed in *E. coli* AT997, giving dihydrodipicolinate reductase activity of 1153 nmol min\(^{-1}\) mg\(^{-1}\) in the cell extract.

Regulation of enzymes by amino acids

The inhibition study of lysine biosynthetic enzymes was carried out in cell extracts of both *L. plantarum* and recombinant *E. coli*, and the repression study was performed in the cell extract of *L. plantarum*. The repression of some genes was also studied using RT-PCR. In the inhibition study, the amino acid was added to the reaction system, whereas in the repression study, the amino acid was added to the growth medium.

Aspartokinase and homoserine dehydrogenase. Although two enzymes exhibited aspartokinase activity, only the activity of ThrA2 was inhibited by the end-product of the pathway. L-Lysine inhibited the activity of ThrA2 by 87 % at 1 mM (data not shown) and by 96 % at 10 mM (Table 2). The concerted inhibition of aspartokinase by L-lysine plus L-threonine as found in *C. glutamicum* was not observed in *L. plantarum* (data not shown). Study of the regulation of aspartokinase using *L. plantarum* cell extract showed inhibition of the enzyme by L-lysine and repression by L-threonine (Table 3). The repression of aspartokinase by L-threonine in *L. plantarum* may contribute to the reduced growth rate when the cells were grown in the medium supplemented with L-threonine (Fig. 2).

The inhibition and repression effects observed in the cell extract of *L. plantarum* are probably attributable to ThrA2, based on the fact that the aspartokinase activity of Hom1 was considerably lower than that of ThrA2. Our results are thus in accordance with the report of Adebawo et al. (1997), who found that aspartokinase in *L. plantarum* was not inhibited by amino acids of the aspartate family. Despite that difference, the activation of aspartokinase by L-methionine observed in this study (Tables 2 and 3) was also reported by Adebawo et al. (1997). The regulation of aspartokinase in *L. plantarum* was found to differ from that in other organisms such as *E. coli* (Patte et al., 1967; Theze et al., 1974), *Bacillus subtilis* (Graves & Switzer, 1990; Rosner & Paulus, 1971) and *C. glutamicum* (Nakayama et al., 1966).

The activity of homoserine dehydrogenase in *L. plantarum* was contributed by Hom1 and Hom2, although the activity of Hom1 was considerably lower than that of Hom2. The activity of Hom1 was not inhibited by amino acids of the aspartate family, though the activity of Hom2 was inhibited by L-threonine; at 1 mM L-threonine, the homoserine dehydrogenase activity of Hom2 was reduced by 90 % (data not shown), and at 10 mM L-threonine, the activity of Hom2 was inhibited completely (Table 2). The inhibition of homoserine dehydrogenase by L-threonine was also
Table 2. Inhibition of aspartokinases and homoserine dehydrogenases by amino acids of the aspartate family

Studies were carried out in the cell extracts of *E. coli* harbouring the relevant gene from *L. plantarum*. L-Amino acid was added to the assay system to reach a final concentration of 10 mM. Results are means ± SD (n ≥ 3).

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Aspartokinase (nmol min⁻¹ mg⁻¹)</th>
<th>Homoserine dehydrogenase (nmol min⁻¹ mg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ThrA2</td>
<td>Hom1</td>
</tr>
<tr>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>162·1 ± 15·7</td>
<td>12·8 ± 2·9</td>
</tr>
<tr>
<td>Methionine</td>
<td>290·8 ± 71·2*</td>
<td>12·2 ± 2·3</td>
</tr>
<tr>
<td>Threonine</td>
<td>196·9 ± 38·0</td>
<td>12·3 ± 4·9</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>289·0 ± 64·3*</td>
<td>13·0 ± 2·9</td>
</tr>
</tbody>
</table>

*Student’s t-test showed that the enzyme activities were significantly different from the control (activity with no inhibition) at 95% confidence interval.

observed when we used cell extract of *L. plantarum* (Table 3).

Aspartate semialdehyde dehydrogenase. Study of the regulation of aspartate semialdehyde dehydrogenase in the cell extracts of both *E. coli* Hfr3000 U482 harbouring *asd2* and *L. plantarum* did not show any influence by amino acids of the aspartate family. Such a lack of effect was also observed in *C. glutamicum* (Cremer et al., 1988). However, aspartate semialdehyde dehydrogenase in *E. coli* is repressed by L-lysine (Cohen & Patte, 1963).

Dihydroydipicolinate synthase. There was no inhibition of dihydroydipicolinate synthase by any amino acids of the aspartate family as shown in the study using cell extracts of *E. coli* AT997 harbouring *dapA1*. In addition, the transcription of *dapA1* to mRNA in *L. plantarum* was not repressed when the cells were grown in medium supplemented with 10 mM L-lysine (data of RT-PCR not shown). The absence of inhibition and repression of dihydroydipicolinate synthase by the end-product of the pathway was also found in *Brevibacterium lactofermentum* (Tosaka & Takinami, 1978), *C. glutamicum* (Cremer et al., 1988) and *Bacillus stearothermophilus* (Selli et al., 1994), but different results were found in *E. coli* (Yugari & Gilvarg, 1962) or *Bacillus sphaericus* (Barlett & White, 1986), where dihydroydipicolinate synthase was reported to be inhibited by lysine.

Table 3. Inhibition and repression of aspartokinases and homoserine dehydrogenases by 10 mM of amino acids of the aspartate family

Studies were carried out in cell extracts of *L. plantarum*. In the inhibition study, L-amino acid was added to the assay system to reach a final concentration of 10 mM, whereas in the repression study, L-amino acid was added to the growth medium at a concentration of 10 mM. Results are means ± SD (n ≥ 3).

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Aspartokinase (µmol min⁻¹ mg⁻¹)</th>
<th>Homoserine dehydrogenase (µmol min⁻¹ mg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>8·4 ± 1·0</td>
<td>2·5 ± 0·1</td>
</tr>
<tr>
<td>Lysine</td>
<td>4·9 ± 0·5*</td>
<td>2·4 ± 0·1</td>
</tr>
<tr>
<td>Methionine</td>
<td>13·1 ± 1·5*</td>
<td>2·3 ± 0·2</td>
</tr>
<tr>
<td>Threonine</td>
<td>8·3 ± 1·7</td>
<td>1·6 ± 0·4*</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>11·4 ± 2·3</td>
<td>2·2 ± 0·1</td>
</tr>
<tr>
<td>Repression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>7·5 ± 0·7</td>
<td>2·1 ± 0·6</td>
</tr>
<tr>
<td>Lysine</td>
<td>7·4 ± 0·7</td>
<td>3·8 ± 0·7</td>
</tr>
<tr>
<td>Methionine</td>
<td>5·9 ± 0·7</td>
<td>1·8 ± 0·2</td>
</tr>
<tr>
<td>Threonine</td>
<td>2·8 ± 0·9*</td>
<td>1·7 ± 0·3</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>6·3 ± 0·5</td>
<td>2·5 ± 0·2</td>
</tr>
</tbody>
</table>

*Student’s t-test showed that the enzyme activities were significantly different from the control (activity with no inhibition or repression) at 95% confidence interval.
Dihydrodipicolinate reductase. Dihydrodipicolinate reductase in *L. plantarum* was not regulated by amino acids of the aspartate family when it was studied in the cell extracts of both *E. coli* AT999 harbouring *dapB* and *L. plantarum*. The dihydrodipicolinate reductases in *Br. lactofermentum* and *C. glutamicum* were also not regulated by the end-product of the pathway. However, dihydrodipicolinate reductase in *Staphylococcus aureus* is repressed by lysine (Barnes *et al*., 1969).

DISCUSSION

The genome sequence of *L. plantarum* indicates the presence of a second copy of genes encoding aspartokinase, aspartate semialdehyde dehydrogenase and dihydrodipicolinate synthase, involved in the synthesis of lysine. However, only one copy of these genes, i.e. *thrA2*, *asd2* and *dapA1*, showed obvious enzyme activity when expressed in *E. coli*. The RT-PCR data showed that those three genes were strongly expressed to mRNA (Fig. 1), whereas the *asd1* and *dapA2* genes, which did not show enzyme activity in vitro, were weakly expressed as shown by RT-PCR. The *asd1* and *dapA2* genes might have lost their functions during their evolution. ThrA1 did not show any aspartokinase activity in vitro, though the RT-PCR data showed strong expression of *thrA1*. When *thrA1* was cloned to the expression vector pET25b and expressed in *E. coli*, it did not give an enzyme activity (data not shown). It is assumed that the degree of evolution of *thrA1* is different from that of *asd1* or *dapA2*.

Our study of the inhibition of lysine biosynthetic enzymes of *L. plantarum* was carried out in cell extracts of *E. coli* and *L. plantarum*. The dihydrodipicolinate reductases in *Br. lactofermentum* and *C. glutamicum* were also not regulated by the end-product of the pathway. However, dihydrodipicolinate reductase in *Staphylococcus aureus* is repressed by lysine (Barnes *et al*., 1969).
lysine biosynthesis of \textit{S. isis} in the species from which the enzymes originate. How-
therA2 and dihydrodipicolinate reductase were not subject to such
lated by the end-product of the pathway, whereas aspartate
semialdehyde dehydrogenase, dihydrodipicolinate synthase
and dihydrodipicolinate reductase were not subject to such
regulation (Fig. 3). The study using cell extract of \textit{E. coli} Gif
102 harbouring \textit{thrA2} revealed that this aspartokinase was
inhibited by L-lysine (Table 2), and the study using the cell
extract of \textit{L. plantarum} showed that aspartokinase was inhi-
bited by L-lysine and repressed by \textit{L-threonine} (Table 3).
The aspartokinase repressed by L-threonine is likely to be
ThrA2, based on the finding that the activity of Hom1 is
considerably lower than that of ThrA2.

The inhibition by L-lysine and repression by L-threonine of
ThrA2 is sufficient to control the synthesis of all amino acids
of the aspartate family provided that the remaining aspar-
tokinase activity supplies sufficient precursor for the synthe-
sis of the rest of the amino acids. At the branching point,
dihydridopicolinate synthase competes with homoserine
dehydrogenase for their common substrate L-aspartate
semialdehyde (Fig. 3). However, the flow of L-aspartate
semialdehyde at this branching point is controlled by regu-
lating the homoserine dehydrogenase, given that regulation
of dihydridopicolinate synthase has not been observed in
\textit{L. plantarum}. The inhibition of Hom2 by L-threonine leads
to less conversion of aspartate semialdehyde toward L-
threonine, though the formation of aspartate semialdehyde
also becomes reduced due to the repression of ThrA2 by L-
threonine, thus allowing a balanced flow of intermediate at
the branch point.

In \textit{C. glutamicum}, the flow of aspartate semialdehyde to L-
lysine is enhanced by increasing the dihydridopicolinate
synthase activity (Eggeling \textit{et al.}, 1998) or by decreasing the
homoserine dehydrogenase activity (Vrljic \textit{et al.}, 1995),
leading to improved L-lysine production. However,
this method of redirecting aspartate semialdehyde flow toward
L-lysine may not be applicable to \textit{L. plantarum} because the
supply of aspartate may be reduced, due to inhibition of
ThrA2 by L-lysine when L-lysine is in excess, unless a mutant
strain with L-lysine-insensitive ThrA2 is used.

\section*{Acknowledgements}

We thank the \textit{E. coli} Genetic Stock Center, Department of Biology, Yale
University, for providing strains AT997, AT999, Gif 102 and Hfr3000
U482.

This paper represents a portion of the thesis submitted by M. N.
Cahyanto to Osaka University as partial fulfilment of the requirements
for the PhD degree.

\section*{References}

Adebawo, O. O., Ruiz-Barja, J. L., Warner, P. J. \\& Oguntimein, G. B. O.
(1997). Regulation of aspartokinase in \textit{Lactobacillus plantarum}. \textit{J Appl
Microbiol} \textit{82}, 191–196.

Barlett, A. T. M. \& White, P. J. (1986). Regulation of the enzymes
of lysine biosynthesis in \textit{Bacillus subtilis} NCTC 9602 during vege-

Barnes, I. J., Bondi, A. \& Moat, A. G. (1969). Biochemical charac-
terization of lysine auxotrophs of \textit{Staphylococcus aureus}. \textit{J Bacteriol}

Black, S. \& Wright, N. G. (1955a). Aspartic \textbeta-}
semialdehyde dehydro-
genase and aspartic \textbeta-semialdehyde. \textit{J Biol Chem}

Black, S. \& Wright, N. G. (1955b). \textbeta-Aspartokinase and \textbeta-aspartyl

Bradford, M. M. (1976). A rapid and sensitive method for the quan-
tification of microgram quantities of protein utilizing the principle of

of amino acid biosynthesis in a branched pathway. \textit{Cold Spring Harbor
Symp Quant Biol} \textit{27}, 513–516.

enzymes of lysine biosynthesis in \textit{Corynebacterium glutamicum}.
\textit{J Gen Microbiol} \textit{134}, 3221–3229.

transformation of \textit{E. coli} by high voltage electroporation. \textit{Nucleic

yield with \textit{Corynebacterium glutamicum}: use of dapA resulting in
increased flux combined with growth limitation. \textit{Appl Microbiol

Kleebezem, M., Boekhorst, J., van Kranenburg, R. \& 17 other
authors (2003). Complete genome sequence of \textit{Lactobacillus plan-

\textit{Meso}-diaminopimelate D-dehydrogenase: distribution and the reaction

Multiple nutritional requirements of lactobacilli: genetic lesions

Studies on lysine fermentation. Part V. Concerted feedback inhibi-
tion of aspartokinase and the absence of lysine inhibition on aspartic
semialdehyde-pyruvate condensation in \textit{Mycobacterium glutamicus}. \textit{Agric

methionine of the synthesis of a third aspartokinase and of a second
homoserine dehydrogenase in \textit{Escherichia coli} K12. \textit{Biochim Biophys
Acta} \textit{136}, 245–257.

Selli, A., Crociani, F., Di Gioia, D., Fava, F., Crisetig, G. \& Matteuzzi, D.
(1994). Regulation of dihydridopicolinate synthase

http://mic.sgmjournals.org

