Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae

Frank Riffer, Katrin Eisfeld, Frank Breinig and Manfred J. Schmitt

K28 killer strains of Saccharomyces cerevisiae are permanently infected with a cytoplasmic persisting dsRNA virus encoding a secreted αβ heterodimeric protein toxin that kills sensitive cells by cell-cycle arrest and inhibition of DNA synthesis. In vivo processing of the 345 aa toxin precursor (preprotoxin; pptox) involves multiple internal and carboxy-terminal cleavage events by the prohormone convertases Kex2p and Kex1p. By site-directed mutagenesis of the preprotoxin gene and phenotypic analysis of its in vivo effects it is now demonstrated that secretion of a biological active virus toxin requires signal peptidase cleavage after Gly36 and Kex2p-mediated processing at the α subunit N terminus (after Glu-Arg49), the α subunit C terminus (after Ser-Arg149) and at the β subunit N terminus (after Lys-Arg245). The mature C terminus of the β subunit is trimmed by Kex1p, which removes the terminal Arg345 residue, thus uncovering the toxin’s endoplasmic reticulum targeting signal (HDEL) which – in a sensitive target cell – is essential for retrograde toxin transport. Interestingly, both toxin subunits are covalently linked by a single disulfide bond between α-Cys56 and β-Cys340, and expression of a mutant toxin in which β-Cys340 had been replaced by Ser340 resulted in the secretion of a non-toxic αβ heterodimer that is blocked in retrograde transport and incapable of entering the yeast cell cytosol, indicating that one important in vivo function of β-Cys340 might be to ensure accessibility of the toxin’s β subunit C terminus to the HDEL receptor of the target cell.

Keywords: Kex2p endopeptidase, preprotoxin processing, C-terminal HDEL motif

INTRODUCTION

K28 toxin encoding dsRNA viruses of the yeast Saccharomyces cerevisiae contain the genetic information for a secreted non-glycosylated protein toxin and an as yet unidentified immunity component that renders killer cells immune to their own toxin (Tipper & Schmitt, 1991; Wickner, 1992). The secreted and biologically active toxin is a disulfide-bonded heterodimer consisting of a 10.5 kDa α subunit and a 10.9 kDa β subunit (referred to hereafter as α and β) (Schmitt & Tipper, 1995) that kills sensitive non-killer cells by a rapid inhibition of DNA synthesis. Toxin-treated cells arrest in early S phase of the cell cycle with a medium-sized bud, a single nucleus in the mother cell and a pre-replicated DNA content (Schmitt et al., 1989, 1996). Sequence analysis of a K28 toxin-encoding cDNA predicts that the toxin is matured from a 38 kDa pre-pro-protein precursor corresponding to the 38 kDa preprotoxin (pptox) seen after in vitro translation of the toxin-encoding virus transcript (Schmitt, 1995).

Based on the pptox sequence we previously predicted that the toxin precursor includes an N-terminal signal sequence [necessary for toxin import into the ER (endoplasmic reticulum) lumen] that is cleaved by the action of signal peptidase (SP) most likely after Leu31 or Gly36, producing a 314- or 309-residue precursor, respectively (Schmitt & Tipper, 1995). The prototoxin resulting from SP cleavage contains an intervening, potentially N-glycosylated γ sequence that separates the α and β subunits. Genetic analysis of pptox gene

Abbreviations: ER, endoplasmic reticulum; MBA, methylene blue agar; pptox, preprotoxin; SP, signal peptidase.
expression in yeast Δkex1 and/or Δkex2 null mutants and determination of the N-terminal sequences of the toxin’s α and β subunits implied a pattern of processing that strongly resembles prohormone conversion in mammalian cells (Steiner et al., 1992; Schmitt & Tipper, 1992; Eisfeld et al., 2000). In S. cerevisiae, the KEX-encoded prohormone processing machinery is involved not only in the activation of virally encoded killer toxins (such as K1, K2 and K28) but also in the maturation of the yeast pheromone α factor (Dmochowska et al., 1987; Zhu et al., 1987; Dignard et al., 1991; Eisfeld et al., 2000). Both processing enzymes, endoproteinase Kex2p and carboxypeptidase Kex1p, are membrane-anchored proteins located in a late Golgi compartment and have their N-terminal active sites in the lumen (Fuller et al., 1989; Redding et al., 1991). In both mammalian and yeast systems, endoproteinase Kex2p and Kex2p-like convertases such as furin and PC1-PC7 are very similar in their substrate specificity for C-terminal lysine and arginine residues, most often cutting after a sequence of two basic residues (Bryant & Boyd, 1993; Bevan et al., 1998). In the case of the K28 toxin precursor, intracellular ppxtox processing has previously been predicted to be mediated by Kex2p and Kex1p (Schmitt & Tipper, 1995). The N terminus of α should be produced by cleavage after Glu-Arg49, 18 residues downstream of the predicted SP cleavage site, and the N terminus of β by Kex2p cleavage after Lys-Arg240. Although the precise C terminus of α has not yet been identified, it has been postulated that it terminates upstream of the first N-glycosylation site (Asn-Ser-Thr162) since the secreted toxin is not glycosylated in vivo. In contrast to the toxin’s α subunit, the β C terminus (His-Asp-Glu-Leu344) is generated by the action of yeast carboxypeptidase Kex1p that removes the terminal arginine residue and finally uncovers the action of yeast carboxypeptidase Kex1p that removes the signal peptidase cleavage site and identified Kex2p and carboxypeptidase Kex1p, important accessibility of the HDEL receptor of the target cell.

METHODs

Strains and culture conditions.

Escherichia coli DH5α [F− recA1 endA1 gyrA96 hsdR17 supE44 relA Δ(argF–lacZYA) U169 880lacZAM15 Δ], was used as a general host for the amplification and propagation of all constructed plasmids. The following yeast (*Saccharomyces cerevisiae*) strains were used throughout this study: MS300c [MATα leu2 ura3-52 ski2-2 (K28 killer strain)] (Schmitt & Tipper, 1990); 192.2d (MATα ura3 leu2) (Schmitt et al., 1996); SEY6210 (MATα ura3-52 leu2-3,112 his3-120 trpl-1 A010 lys2-801 sus2-Δ9) (Eisfeld et al., 2000); HKY20-11A (MATα can1-100 ade2-101 his3-11,15 leu2-3,112 trpl-1 ura3-1 Δyp3+Δpsl1 ΔLEU2) (Fuller et al., 1989); BFY113 (MATα ura3 ade2 trpl1 leu2 sis can1 Δ KEX2); W303-1B (MATα ura3 ade2 trpl1 leu2 sis can1); and ME938 (MATα bar1 leu3-3,112 gal2 ura3 his3 kex2::ura3 yap3 Δpsl+ ΔLEU2) (Egel-Mitani et al., 1990). All yeast cultures were grown at 30 °C either in complex YES medium or in synthetic medium (YNB) supplemented with the appropriate amino acid/base requirements of each strain.

DNA constructs and in vitro mutagenesis. The K28 killer toxin ORF was isolated by PCR using *Taq* DNA polymerase and the yeast expression plasmid pPGK-M28-I (Schmitt, 1995) as DNA template. Oligonucleotide primers used for PCR amplification were 5′-CCGGAATTCATGAGAAGCGTTTTCTCATATTATTT3′ and 5′-CCCAAGCTTTCAGGTAGCTCAGTCTACGACGACCCCTCT3′, introducing a terminal HinIII restriction site flanking the toxin-encoding cDNA. The PCR product containing the K28 ORF was cloned between the EcoRI and HindIII restriction sites of the yeast expression vector pYX242, allowing constitutive expression of a K28 killer phenotype under transcriptional control of the yeast triose phosphate isomerase (TPI) promoter. The Arg→Ala mutation was introduced by PCR (splicing by overlapping extension) as previously described by Horton et al. (1989) using the following primers: 5′-K28-, 5′-GAATTCATGAGAAGCGTTTTCTCATATTATTT3′ and 5′-CCCAAGCTTTCAGGTAGCTCAGTCTACGACGACCCCTCT3′; 3′-K28, 5′-CTCGAGTTCGAGTGCAGCTCACTCGTGCACTCTTG3′; 5′-R49A, 5′-ATCTGAGACAAGAGCAGGGTGTATTAGAAAGAGTACGTTGTCGCTG-ACCTGGTCTACT-3′ and 3′-R49A, 5′-AGTACGCGAATGACGCACACTGAAGTCTCCTTTCCTAAGCAGGTTCGTCGCTG-TCTCTCAGAT3′. For changing Arg→Leu, 5′-K28, 5′-K28 (see above), 5′-R149A (5′-GACTGAAACCGAGAATATACGCACTGCGGCTTATCTAGCGG-TCGCTTTAGGAATTAA-3′) and 3′-R149A (5′-TTATTAATGCACTAAAGAGACCCCGTGATAAGCACTAGCAGCTGACGACCTG3′) were used. Both constructs were cloned between the EcoRI and Xhol site of pYX242. The double mutant (Ala49→Ala149) was constructed by substitution of the BamHI–Xhol fragment of Arg→Ala49 by the corresponding fragment of Arg→Ala149. All other amino acid changes were introduced into the K28 ORF by using the phagemid in vitro mutagenesis kit Muta-Gen Version 2 (Bio-Rad) under conditions recommended by the manufacturer. The sequences of the oligonucleotide primers used to generate mutations within the N-terminal hydrophobic region of the toxin were 5′-ATGGAGAGCGTTTCCTCATTATTT3′ and 5′-CTCGAGTTAGCGTAGCTCACTCGTGCACTCTTG3′ for the change of Gly82 to arginine, and 5′-GGTGATATTTGGGATTTGAAACA-3′ for the change of Lys83 to proline. The oligonucleotide primer 5′-TAAGACGCTGTTTTGTATAC3′ was used to exchange serine-148 into lysine, thereby conferring the endoproteinase cleavage site predicted to generate the X C terminus into a ‘classical’ Kex2p site. For an exchange of Cys40 to tryptophan, the primer 5′-GCCCATGATACCCAACTGAGCAGCA-3′ was used. PCR mutagenesis was carried out to change Cys40 to serine with the following oligonucleotides as PCR primers: 5′-CCCAAGCTTTCAGGTAGCTCAGTCTACGACGACCTTTGCTGTCG-3′ and 5′-CCGGAATTCATGAGAAGCGTTTTCTCATATTATTT3′. Mutated ppxtox constructs were cloned between the EcoRI and HindIII sites of the yeast expression vector pYX242. Subsequent DNA se-
Preprotoxin processing in yeast

fraction (300 g), membrane fraction (plasma-, Golgi- and ER membranes; 13000 g), endosomal vesicle fraction (100000 g pellet) and cytosol (100000 g supernatant).

Western blot analysis. To estimate the amount of killer toxin secreted by *S. cerevisiae* after transformation with the various K28 expression vectors, cultures of the appropriate transformants were grown in synthetic minimal medium (pH 4.7) at 30 °C for 2 days until they reached about 5 × 10^7 cells ml^-1. After centrifugation, 1-2 ml supernatant was ethanol precipitated. The precipitate was dried and redissolved in water for further analysis by SDS-PAGE. If not otherwise stated, SDS-PAGE was performed under non-reducing conditions. Reducing conditions were provided by adding β-mercaptoethanol to the sample buffer at a final concentration of 6%. Cell lysis was carried out under reducing conditions using 100 cells which were vortexed for 1 min in sample buffer containing an equal volume of acid-washed glass beads. After short-spin centrifugation, the resulting supernatant was analysed by gel electrophoresis. Samples were fractionated either on SDS-polyacrylamide gradient gels (10–22.5%) or on Tris/Tricine gels (10%) and electrophoretically blotted onto PVDF membranes in transblot buffer (2.5 mM Tris, 192 mM glycine, 20% methanol, 0.1% SDS). Western blot analysis of the secreted toxin was carried out using polyclonal antibodies against the toxin’s x and/or β subunit. Experiments on yeast cell fractionation and subcellular toxin localization were performed as previously described (Eisfeld et al., 2000).

Protein sequencing. The secreted pptox processing intermediate in which the two Kex2p sites flanking the N and C termini of x had been destroyed (Arg→Ala^199, Arg→Ala^198) was fractionated by SDS-PAGE, electroblotted onto PVDF membranes and used for N-terminal sequence analysis by Edman degradation as previously described (Schmitt & Tipper, 1995).

RESULTS

Identification of the SP cleavage site

In vivo processing of the virally encoded K28 toxin precursor results in the secretion of a disulfide-bonded, heterodimeric protein toxin consisting of a 105-kDa x subunit and a 10-9 kDa β subunit. We previously reported that the N terminus of the unprocessed toxin precursor contains two consecutive hydrophobic stretches that are consistent with secretion signal function (Schmitt & Tipper, 1995). However, a plot of SP cleavage probability according to the rules codified by von Heijne (1986) identified no clearly defined signal and this apparent redundancy in signal function predicted SP cleavage sites after either Leu^30 or Gly^28. To identify the precise SP cleavage site, we used site-directed mutagenesis and changed the wild-type sequence (Leu^28) into proline (Leu→Pro^28) and, in addition, changed Gly^28 into arginine (Gly→Arg^28). Each mutated pptox construct was transformed into the sensitive non-killer strain *S. cerevisiae* SEY6210 and constitutively expressed under transcriptional control of the yeast TPI promoter. Transformants were isolated and subsequently tested for killer phenotype expression by determining K28 toxicity, functional immunity and level of toxin secretion. As expected, yeast cells expressing the wild-type pptox gene showed an immune killer phenotype as did

Yeast cell fractionation. For subcellular toxin localization, the sensitive yeast strain *S. cerevisiae* 192.2d was grown at 30 °C in YEPL medium to early exponential phase (1 × 10^7 cells ml^-1), harvested by centrifugation and used for cell fractionation experiments essentially as previously described (Eisfeld et al., 2000). Briefly, yeast spheroplasts were incubated for 1 h at 30 °C in the presence of 10 U purified K28 toxin ml^-1. Thereafter, cells were washed in a solution of 0.8 M sorbitol, 20 mM HEPES/KOH, 50 mM potassium acetate and 2 mM EDTA (pH 7.0) and lysed in chilled lysis buffer with the aid of a 5 ml dounce homogenizer (~15 strokes), and the resulting lysate was subjected to differential centrifugation giving four different cell fractions: cell wall
Involvement of Kex2p in K28 pptox processing

N-terminal amino acid sequence analysis of the purified toxin and comparison with the cDNA sequence of the unprocessed toxin precursor indicated that α and β are generated in vivo by endopeptidase cleavage, initiating at Asn30 and Ala246 respectively (Schmitt & Tipper, 1995). In vitro analysis of Kex2p endopeptidase activity against different peptides showed that Kex2p cleavage occurs most efficiently after Lys-Arg, Arg-Arg, and (with much lower efficiency) after Pro-Arg and Ala-Arg (Brenner & Fuller, 1992). In vivo, the context would be expected to affect cleavage efficiency, and inspection of known Kex2p processing sites indicates preference for sites with a hydrophobic residue in the P4 position (Tao et al., 1990; Park et al., 1994). Following these rules, Kex2p cleavage within the K28 precursor should occur after Leu-Tyr-Lys-Arg192 (within γ) and after Leu-Gln-Lys-Arg245 (generating the mature β N terminus). Besides that, the K28 toxin precursor contains no other clearly predictable Kex2p cleavage sites.

By classical genetics and phenotypic analysis we previously reported that pptox expression in a yeast Δkex2 null mutant results in immune non-killers completely devoid of secreted toxin activity or protein (Schmitt & Tipper, 1995). It, therefore, had been concluded that KEX2 function is essential for expression and secretion of the α/β heterodimeric protein toxin. We now extend these findings by analysing the intracellular K28 processing intermediates in a yeast Δkex2 null mutant. Expression of wild-type pptox in this mutant (strain BFY113) resulted in immune non-killers that did not secrete detectable amounts of toxin (Fig. 2a, lane 2). However, in contrast to the cell-free culture supernatant, intracellular membrane fractions derived from the Δkex2 mutant gave a strong anti-β antibody response and identified a 42 kDa protein species which was absent in the negative control (i.e. in the untransformed mutant; Fig. 2b, lanes 4 and 5, respectively). Thus, in a Δkex2 mutant, the K28 toxin precursor is accumulating within the intracellular membrane fraction – most likely within the ER lumen – because it is not properly processed. Correspondingly, retransformation of the pptox-expressing Δkex2 mutant with a functional copy of KEX2 on the 2μ vector YEp6-KEX2 fully restored pptox processing, resulting in immune killers that

![Fig. 1. Destruction of the SP cleavage site within the K28 toxin precursor prevents Kex2p-mediated processing and blocks toxin secretion.](image-url)
after Gly36 (see above) and further N-glycosylation should add about 7-5 kDa leading to a protoxin with a calculated size of 41-9 kDa.

Kex2p-mediated processing of the toxin’s α N and C termini

Since SP cleavage of the K28 pptoxx precursor occurs after Gly36, and the α N terminus in the mature toxin initiates at Asp39, additional N-terminal processing is needed to produce the mature N terminus of the toxin’s α subunit. Furthermore, α is not glycosylated in vivo and, therefore, it can be predicted that it terminates before the first N-glycosylation site within γ (Asn-Ser-Thr163), whose context suggests facile N-glycosylation. Possible endopeptidase cleavage sites responsible for generating the mature α N and C termini are after Leu-Glu-Glu-Arg49 (α N) and Ile-Gln-Ser-Arg149 (α C), although neither sequence resembles the established Kex2p specificity profile. In yeast, Yps1p (formerly called Yap3p) is another membrane-anchored aspartyl protease of the yapsin family, which has been shown to be responsible for presomatostatin cleavage after Leu-Glu-Arg in recombinant somatostatin expressing yeast cells (Bourbonnais \textit{et al.}, 1993). Furthermore, overexpression of YAP3/YPS1 in a Δkex2 null mutant can partially suppress loss of Kex2p activity (Egel-Mitani \textit{et al.}, 1990), indicating some overlap in cleavage specificity between Kex2p and Yps1p. Interestingly, the predicted endopeptidase cleavage site upstream of the toxin’s α N terminus (Leu-Glu-Glu-Arg49) shows striking similarity to the sequence Leu-Glu-Arg recognized during presomatostatin processing in yeast, and the yapsin Yps1p might indeed play a role in the maturation of the α N terminus. To address this question we destroyed the potential Kex2p sites at both termini of α by changing the P1 position of the wild-type sequence into (i) Leu-Glu-Glu-Arg49 and (ii) Ile-Gln-Ser-Arg149 (Fig. 3a). In addition to the single mutants, we also constructed a double mutant (Ala49/Ala149) in which the arginine residue in the P1 position of both α-flanking Kex2p sites was changed to alanine. Wild-type and mutated pptoxx constructs were expressed in a KEX2 YPS1 wild-type yeast, in a Δkex2 null mutant and in a Δyps1 deletion mutant (strain HKY20-11A), and subsequently analysed for killer phenotype expression and toxin secretion. SDS-PAGE and Western analysis of the cell-free culture supernatant indicated that Kex2− wild-type yeasts (as well as Δyps1 mutant cells; data not shown) expressing the mutated Ala49 toxin derivative secrete a heterodimeric 23-5 kDa protein that – after separation by reducing SDS-PAGE – dissociated into a 12-3 kDa subunit (resembling the unprocessed δ/α fragment) and the correctly processed 10-9 kDa β subunit (Fig. 3b, right lane in each blot). \textit{In vivo} expression of the Ala49 derivative resulted in the secretion of a 32 kDa heterodimer consisting of a 21-1 kDa α/γ fragment and (again) the fully processed 10-9 kDa β subunit (Fig. 3b, middle lane in each blot). Correspondingly, expression of the Ala49/Ala149 double mutant resulted in the secretion of a 35 kDa protein that, after separation by reducing SDS-
Investigation of potential Kex2p processing sites within γ and at the N terminus of β

For the potential Kex2p site within γ we could show that this sequence (Leu-Tyr-Lys-Arg169) is probably not cleaved in vivo because (as shown above) expression of an Arg\rightarrowAla169 toxin derivative resulted in the secretion of a α/γ fragment that corresponded exactly to the predicted size of the unprocessed α/γ peptide after translocation into the ER, cleavage of the signal peptide and core N-glycosylation of all three potential N-glycosylation sites (Asn-X-Ser/Thr) within γ. However, the observed molecular mass of the secreted pptox processing intermediates indicates that the N-linked carbohydrate moiety of all γ containing fragments is probably trimmed back by late Golgi α-mannosidases.

As summarized in Table 1, exactly the same results were obtained after expression of the Arg\rightarrowAla169 pptox either in the Δkex2 null mutant BFY113 or in the Δyps1 mutant HKY20-11A, and no changes were observed after co-expression of Kex2p from YEp-KEX2 (Table 1): in each case, besides the predicted and identified γ-containing fragments (α/γ, 21 kDa; $\delta/\alpha/\gamma$, 22-6 kDa), no additional α/γ-specific signal was detectable, suggesting that Kex2p does not recognize the internal endopeptidase cleavage site Leu-Tyr-Lys-Arg169 within γ. If Kex2p cleavage after Lys-Arg192 did occur in vivo, a α/γ fragment of about 15-5 kDa would have been expected; however, no such signal was detectable (see also Fig. 3b). In addition, in vivo expression of a mutant pptox in which the Kex2p cleavage site within γ (Lys-Arg192) had been destroyed in its P1 position and changed into an Arg resulted in a non-killer phenotype independent of the α and/or δ subunits (see also legend to Fig. 3). The toxin fragments identified by Western analysis had the following sizes: 10-5 kDa (α), 10-9 kDa (β), 12-2 kDa (δ/α), 21-1 kDa (α/γ) and 22-6 kDa ($\delta/\alpha/\gamma$).

Table 1. Pptox processing in yeast Δkex2 null and Δkex2 Δyps1 double null mutants

<table>
<thead>
<tr>
<th>Yeast strain (relevant genotype)</th>
<th>Expressed pptox variant</th>
<th>Phenotype</th>
<th>Phenotype after cotransformation with YEp6-KEX2</th>
<th>Secreted toxin fragments* after cotransformation with YEp6-KEX2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEY6210 (KEX2 YPS1)</td>
<td>Wild-type</td>
<td>Killer</td>
<td>NT</td>
<td>α/β</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>NT</td>
<td>$\delta/\alpha/\beta$</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>NT</td>
<td>$\alpha/\gamma/\beta$</td>
</tr>
<tr>
<td></td>
<td>Ala169/Ala169</td>
<td>Non-killer</td>
<td>NT</td>
<td>$\delta/\alpha/\gamma/\beta$</td>
</tr>
<tr>
<td>BFY113 (kex2::TRP1)</td>
<td>Wild-type</td>
<td>Non-killer</td>
<td>Killer</td>
<td>α/β</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\delta/\alpha/\beta$</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\alpha/\gamma/\beta$</td>
</tr>
<tr>
<td></td>
<td>Ala169/Ala169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\delta/\alpha/\gamma/\beta$</td>
</tr>
<tr>
<td>ME938 (Adkex2 Adyps1)</td>
<td>Wild-type</td>
<td>Non-killer</td>
<td>Killer</td>
<td>α/β</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\delta/\alpha/\beta$</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\alpha/\gamma/\beta$</td>
</tr>
<tr>
<td></td>
<td>Ala169/Ala169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\delta/\alpha/\gamma/\beta$</td>
</tr>
<tr>
<td>HKY20-11A (Adyps1)</td>
<td>Wild-type</td>
<td>Killer</td>
<td>Killer</td>
<td>α/β</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\delta/\alpha/\beta$</td>
</tr>
<tr>
<td></td>
<td>Arg\rightarrowAla169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\alpha/\gamma/\beta$</td>
</tr>
<tr>
<td></td>
<td>Ala169/Ala169</td>
<td>Non-killer</td>
<td>Non-killer</td>
<td>$\delta/\alpha/\gamma/\beta$</td>
</tr>
</tbody>
</table>

* Cell-free culture supernatants from the indicated yeast transformants were concentrated by ethanol precipitation, separated by SDS-PAGE under reducing conditions in the presence of β-mercaptoethanol and probed with a polyclonal antibody against the toxin’s α and/or β subunit (see also legend to Fig. 3). The toxin fragments identified by Western analysis had the following sizes: 10-5 kDa (α), 10-9 kDa (β), 12-2 kDa (δ/α), 21-1 kDa (α/γ) and 22-6 kDa ($\delta/\alpha/\gamma$).
Since the endopeptidase cleavage site immediately upstream of the mature β N terminus already resembles a ‘classical’ Kex2p site (Leu-Gln-Lys-Arg\(^{245}\)), we asked if a change in the P2 position (Leu-Gln-Lys-Arg\(^{245}\), Ile-Gln-Ser-Arg\(^{149}\)) prevents or weakens Kex2p cleavage activity at this site. In vivo expression of the mutated Gln-Arg\(^{245}\) pptox construct resulted in immune non-killers that were significantly inhibited in toxin secretion. While no detectable signal for a correctly processed \(x/\beta\) toxin was seen in immunoblots of cell-free culture supernatants, Western analysis of subcellular fractions enriched for endosomal and/or secretory vesicles indicated that Gln-Arg\(^{245}\) expressing yeasts are able to produce and secrete traces of a correctly processed 10-kDa \(\beta\) subunit (Fig. 4). The low amounts of \(\beta\) seen within the secretory vesicle fraction of Gln-Arg\(^{245}\) expressing cells might be due to the residual capacity of Kex2p to partially process the mutated toxin precursor, since the same result was obtained in a yeast \(\Delta yps1\) mutant, while no such signal was detectable in the \(\Delta kex2\) mutant strain BFY113 (data not shown).

Disulfide bond formation between Cys\(^{56}\) and Cys\(^{340}\) exposes the toxin’s \(\beta\)-C-terminal ER targeting signal and ensures retrograde toxin transport in vivo

Since the M28 cDNA sequence identified a single cysteine residue at amino acid position 7 of the mature \(\alpha\) toxin (resembling Cys\(^{56}\) in the unprocessed pptox sequence), Cys\(^{56}\) must be involved in the disulfide bonding of the \(\alpha/\beta\) heterodimeric protein toxin. In contrast, \(\beta\) contains four cysteine residues (Cys\(^{292}\), Cys\(^{307}\), Cys\(^{323}\) and Cys\(^{346}\)) and it is not predictable which cysteine residue constitutes the intermolecular disulfide bond between \(\alpha\) and \(\beta\) in the mature toxin. Since we recently demonstrated that the C-terminal HDEL motif in \(\beta\) is essential for in vivo K28 toxicity by ensuring retrograde transport of the \(\alpha/\beta\) toxin (Eisfeld et al.,...
we speculated that the cysteine residue right next to the β C-terminal HDEL motif (Cys340) might have the important in vivo function of exposing the toxin’s ER targeting signal to the HDEL receptor of a sensitive yeast cell. To address this question, we used site-directed mutagenesis and destroyed the only cysteine residue in z (Cys56) as well as the C-terminal cysteine residue in β (Cys340). As shown in Fig. 5a, changing cysteine-56 into tryptophan (Cys→Trp56) and subsequent expression of the mutated pptox construct in yeast resulted in immune non-killers unable to secrete detectable amounts of toxin. In contrast to the observed lack of toxin secretion after in vivo expression of the Cys→Trp56 toxin variant, expression of toxin derivatives in which any of the three cysteine residues Cys56, Cys307 or Cys343 in β had been changed into tryptophan always resulted in toxin-secreting yeasts that showed a normal wild-type killer phenotype (data not shown). It can therefore be concluded that in the wild-type toxin cysteine residues Cys56, Cys307 and Cys343 are not involved in disulfide bond formation in vivo. Interestingly, a mutated toxin derivative in which the cysteine residue closest to the β C-terminal HDEL signal had been changed into serine (Cys→Ser340) still resulted in the secretion of an α/β heterodimeric protein, but the biological activity of such a toxin was completely lost (Fig. 5a, b). Although secretion of the mutant Cys→Ser340 toxin was slightly decreased compared to the wild-type (Fig. 5a; compare left and right lanes), the stability and electrophoretic mobility of the mutant protein exactly portrayed the behaviour of the wild-type protein toxin. Just like the wild-type toxin, the mutant Cys→Ser340 toxin dissociates into its two subunits α and β under conditions of a denaturing SDS-PAGE run under reducing conditions (data not shown), strongly indicating that in the mutant toxin an alternative disulfide bond is generated which results in the secretion of a heterodimeric protein whose β C-terminal HDEL motif is ‘masked’ and no longer

![Fig. 4. Destruction of the Kex2p cleavage site upstream of β prevents pptox processing and toxin secretion. SDS-PAGE and immunoblot analysis of cell extracts enriched for secretory vesicles derived from yeasts expressing the wild-type pptox gene (Leu-Gln-Lys-Arg245) or a mutated derivative in which the potential Kex2p site predicted to generate the mature β N terminus had been destroyed (Leu-Gln-Gln-Arg245). Protein samples were separated by SDS-PAGE under reducing conditions in the presence of β-mercaptoethanol, blotted onto a PVDF membrane and probed with a polyclonal anti-β antibody. M, markers.](image)

![Fig. 5. Disulfide bond formation between Cys56 (α) and Cys340 (β) is essential for K28 toxicity, toxin secretion and retrograde toxin transport. Mutated pptox derivatives in which the only cysteine residue in z had been destroyed (Cys→Trp56) or in which the β-C-terminal cysteine residue immediately upstream of the toxin's ER targeting signal had been changed into a serine (Cys→Ser340) were expressed in the sensitive non-killer yeast S. cerevisiae SEY6210 and tested for killer phenotype expression, toxin secretion and retrograde toxin transport. (a) Toxin secretion in yeast cells expressing the wild-type toxin or the indicated pptox derivatives was determined by SDS-PAGE under non-reducing conditions and Western blot was probed with a polyclonal anti-β antibody (see legend to Fig. 2). (b) Killer phenotype expression was determined in a standard agar diffusion assay on MBA (pH 4 7) as described in the legend to Fig. 1. (c) Spheroplasts of the sensitive strain S. cerevisiae 192.2d were treated either with the wild-type toxin (β-C340HDEL) or with a toxin derivative in which the β-C-terminal cysteine residue had been destroyed (β-C340HDEL). After osmotic cell lysis and differential centrifugation, the resulting cell fractions were separated by SDS-PAGE and the Western blot was probed with a polyclonal anti-β antibody, M, intracellular membrane fraction (cytoplasmic, ER and Golgi membranes); E, endosomal vesicle fraction; C, cytosol. Arrows indicate the positions of the heterodimeric toxin (α/β) and of its tetrameric derivative (α/β)$_2$ that forms spontaneously under conditions of a non-reducing SDS-PAGE. The β signal present within the membrane fraction of yeast cells treated with the wild-type toxin results from spontaneous dissociation of the α/β toxin into its two subunits.](image)
recognizable by the HDEL receptor Erd2p of the target cell. To address this question we treated sensitive yeast cells with the mutated toxin (Cys→Ser340) or with the wild-type toxin and subsequently analysed subcellular fractions for localization of the α/β toxin. Cell fractionation studies of three independently performed experiments always indicated that the mutated toxin is only detectable within the intracellular membrane fraction and not within the yeast cell cytosol, while the wild-type toxin is capable of entering the cytosol (Fig. 5c). These results strongly suggest that the observed loss in toxicity of the Cys→Ser340 mutant toxin is probably caused by its inability to interact with the HDEL receptor Erd2p of the target cell. As a direct consequence, retrograde transport of the mutated Cys→Ser340 toxin is blocked and the toxin can no longer reach its intracellular target. Future experiments will have to demonstrate that the accessibility of the toxin’s HDEL signal is actually controlled by disulfide bond formation.

DISCUSSION

SP cleavage and toxin immunity

Until today, three different virally encoded killer toxins have been identified in *S. cerevisiae*. Although all three toxins (K1, K2, K28) show striking similarities with respect to their intracellular processing patterns, they differ significantly in primary structure and mode of action of the mature protein toxins (Dignard *et al.*, 1991; Martinac *et al.*, 1990; Schmitt *et al.*, 1996). Based on the K28 toxin-encoding cDNA sequence we previously postulated that processing of the K28 toxin precursor initiates with SP cleavage and N-glycosylation on entry into the ER (Schmitt & Tipper, 1995). A plot of SP cleavage probability according to the rules of von Heijne (1986) further suggested that the most probable SP cleavage probability according to the rules of von Heijne (1986) further suggested that the most probable cleavage sites occur after either Leu31 or Gly36. By site-directed mutagenesis, in vivo expression of the mutated pptox constructs and N-terminal sequencing of a secreted pptox processing intermediate, we now demonstrate that SP cleavage occurs after Gly36. Changing Leu31 in the wild-type toxin into a proline had no effect on K28 toxicity, and secretion of a Leu→Pro31 toxin derivative resembled the wild-type level. In contrast, in vivo expression of a Gly→Trp36 toxin variant resulted in sensitive non-killer yeasts that were completely blocked in toxin secretion. Western analysis of cell extracts derived from yeasts expressing the mutated toxin further indicated that the Gly→Trp36 toxin is detectable as a low-molecular-mass protein smear within the yeast cell cytosol, indicating that the mutated toxin is probably recognized as misfolded protein and targeted for proteasomal degradation. Interestingly, yeast cells expressing the mutated Gly→Trp36 toxin were also defective in expressing functional immunity and were highly sensitive to exogenously applied killer toxin. The observed toxin sensitivity is consistent with earlier studies on K1 immunity in which it was shown that the toxin precursor itself is sufficient to confer immunity as soon as it enters the secretory pathway (Bostian *et al.*, 1983). Although the molecular basis for toxin immunity is still unknown, it has been speculated that it might be conferred by the precursor itself, in contrast to its components, which can act as competitive inhibitor of the mature toxin by saturating a so far unidentified plasma membrane receptor that normally mediates toxicity (Tipper & Schmitt, 1991; Bostian *et al.*, 1983; Bussey *et al.*, 1982). Within the yeast secretory pathway, the toxin precursor and its membrane receptor are both present long before pptox processing continues in a late Golgi compartment; it, therefore, can be speculated that any mature toxin would not have access to the toxin’s plasma membrane receptor, finally resulting in immunity (Sturley *et al.*, 1986; Boone *et al.*, 1986).

Kex2p-mediated pptox processing

Sequence analysis of the K28 toxin precursor did not allow precise predictions on how both termini in α are generated in vivo. The most predictable processing sites are after Leu-Glu-Glu-Arg44 (generating the α N-terminus) and after Ile-Gln-Ser-Arg41/19 producing the α C-terminus. In each case, this motif is the only basic residue in the vicinity that might mark a cleavage site for known yeast processing endoproteases. Optimal recognition sites for the Kex2p endopeptidase are Lys-Arg or Arg-Arg with preference for sites with a hydrophobic residue in the P4 position (Tao *et al.*, 1990; Park *et al.*, 1994), although it has recently been shown that the α N-terminus of the K1 toxin is generated by Kex2p cleavage after Pro-Arg14 (Zhu *et al.*, 1992); Glu-Arg45 and Ser-Arg49, however, have not yet been reported as being recognized by Kex2p.

To shed more light onto the K28 precursor processing in yeast, we specifically destroyed/alterned the predicted endopeptidase cleavage sites within the pptox wild-type sequence, expressed both wild-type and mutated pptox genes in a wild-type yeast (*Kex2' Yps1') or in a ∆kex2 null mutant and in a ∆kex2 ∆yps1 double mutant, and subsequently analysed their phenotypic effects on K28 toxicity and protein secretion. Interestingly, expression of wild-type pptox in a ∆kex2 mutant resulted in a cell-associated 42 kDa protein whose size corresponded to that predicted for an ER precursor after SP cleavage and addition of the three core N-glycosyl groups within γ. Since the unprocessed 42 kDa protoxin was not secreted and was only detectable within the intracellular membrane fraction, it can be speculated that in a ∆kex2 mutant the protoxin is probably retranslocated into the cytosol and targeted for proteasomal degradation.

After in vivo expression of mutated pptox derivatives in which either of the two α-flanking Kex2p sites had been destroyed (Ile-Glu-Glu-Ala49, Ile-Gln-Ser-Ala149 and the Ala49/Ala149 double mutant), immune non-killers were obtained that secreted incorrectly matured K28 processing intermediates. In case of the Ala49 single mutant and the Ala49/Ala149 double mutant, δ/α- or δ/α/γ-containing pptox fragments were secreted whose N...
termini (Met27-Pro-Thr-Ser-Glu-Arg-Gln-Gln-Gly-Leu) corresponded exactly to the N terminus of δ after SP cleavage within the ER lumen. Since no other γ-containing toxin fragment was detectable in the cell-free culture supernatant of the corresponding yeast transformant and the same results were obtained after \textit{in vivo} expression of a mutant Lys-Ala194 toxin derivative, it can be concluded that Kex2p endopeptidase cleavage within γ (Leu-Tyr-Lys-Arg195) does not occur \textit{in vivo}. In contrast, a more recent study on K1 toxin precursor processing indicated that the sequence Tyr-Val-Lys-Arg196 (which is also located within a γ sequence flanking α and β) is cleaved by Kex2p, even though the context does not fit the proposed consensus for Kex2p cleavage (Tao et al., 1990; Park et al., 1994). Interestingly, changing the K28 wild-type sequence Ile-Gln-Ser-Arg148 into the classical Kex2p cleavage site Ile-Gln-Lys-Arg148 did not have any effect on killer phenotype expression, and yeast cells expressing such a toxin derivative showed normal killing and were perfectly capable of secreting wild-type levels of a correctly processed αβ heterodimeric protein toxin (data not shown). The possibility that, in the mature x-toxin, both termini are generated by the action of the monobasic endopeptidase Yps1p (Engel-Mitani et al., 1990; Ledgerwood et al., 1996) is highly unlikely since killer phenotype expression in a yeast Δyps1 null mutant (strain HKY20-11A) was not negatively affected and secretion of and active α/β heterodimeric protein toxin resembled wild-type level (Table 1).

Besides being responsible for the N- and C-terminal processing of x, Kex2p is also involved in the N-terminal processing of the toxin's β subunit, since amino acid sequence analysis of the purified toxin identified that β initiates after Leu-Gln-Lys-Arg448, which represents a classical Kex2p site highly predictable for endopeptidase cleavage \textit{in vivo}. Expression of wild-type pptoxygen in a Δkex2 null mutant as well as in a Δkex2 Δyps1 double mutant always resulted in non-killer yeasts that were completely blocked in toxin secretion and which accumulated a 42 kDa protoxin within the intracellular membrane fraction. Since in both mutants, activity and secreted protein were fully restored by co-transformation with YEp6-KEX2 (a KEX2 carrying 2μ vector), we conclude that K28 pptoxygen processing indeed is Kex2p dependent.

A single disulfide bond joins the heterodimeric virus toxin and exposes the toxin's β C-terminal HDEL signal

In the mature heterodimeric protein toxin, α and β are covalently linked by a single disulfide bond. Since the α subunit possesses only one cysteine residue close to its N terminus, this cysteine residue (Cys46) must be involved in disulfide bond formation. Correspondingly, a toxin derivative in which the cysteine residue in α had been destroyed (Cys→Trp46) was biologically inactive since intermolecular disulfide bond formation was prevented. In contrast to the cytotoxic x subunit, β has four cysteine residues, each of them being possibly involved in disulfide bond formation. We have chosen Cys410 as the most promising candidate for cysteine mutagenesis because this residue is right next to the toxin’s β C-terminal HDEL signal, which has recently been shown to be absolutely required for retrograde toxin transport in a sensitive target cell (Eisfeld et al., 2000). Once the toxin has entered a cell by endocytosis, it travels the secretion pathway in reverse (via Golgi and ER) in order to reach the yeast cell cytosol where the cytotoxic signal is transmitted into the nucleus (Schmitt & Eisfeld, 1999). In this respect the virally encoded K28 yeast toxin resembles certain bacterial and plant toxins which likewise are able to enter and kill a eukaryotic target cell by modifying essential cellular components within the cytosol. For some of these heterodimeric protein toxins (like \textit{Pseudomonas} exotoxin A and yeast K28 virus toxin) it has been shown that C-terminal K/HDEL-like sequences are responsible for intracellular targeting and retrograde transport of the toxins (Eisfeld et al., 2000; Yoshida et al., 1991). Correspondingly, mutations in the C-terminal ER targeting sequence dramatically reduce cytotoxicity because interaction of the toxin’s C terminus with the K/HDEL receptor of the target cell is prevented (Chaudhary et al., 1990). In this respect it is also interesting to note that some of these toxins contain disulfide bonds at or near their C termini whose in \textit{vivo} function is predicted to ensure access of the toxin’s KDEL/HDEL signal to the K/HDEL-receptor of the corresponding target cell (Pelham et al., 1992). This situation is also true for the K28 toxin since we now show that the cysteine residue right next to the β C terminus (Cys410) is part of the disulfide bond that covalently joins x and β. Interestingly, yeast cells expressing the mutated Cys→Ser410 toxin derivative showed normal levels of toxin secretion, and Western analysis of cell-free culture supernatants further indicated that a heterodimeric protein is secreted that consists of a 10-5 kDa x and a 10-9 kDa β subunit, indistinguishable from the two subunits in the Cys410 wild-type toxin. It therefore can be concluded that heterodimer formation in the mutated toxin must be catalyzed by an alternative disulfide bond between Cys46 (in x) and one of the three remaining non-mutated cysteine residues in β. Phenotypic analysis of yeasts expressing the mutated toxin identified the Cys→Ser410 toxin as being completely inactive, incapable of killing a sensitive yeast cell. Additional cell fractionation experiments on sensitive yeasts treated with the mutant Cys→Ser410 toxin indicated that the observed loss of toxicity is likely to be caused by its inability to retrograde pass a cell and to successfully reach its intracellular target. In this respect, the phenotype of a Cys→Ser410 toxin derivative exactly portrays the phenotype of a truncated toxin in which the β C-terminal HDEL sequence had been deleted; \textit{in vivo} such a toxin (β-HDEL) is likewise no longer capable of entering the secretion pathway of a sensitive target cell (Eisfeld et al., 2000). We therefore postulate that in the wild-type toxin, formation of a disulfide bond between Cys46 (x) and Cys410 (β) has the important \textit{in vivo} function of ensuring accessibility of the β C-terminal ER
targeting signal to the HDEL-receptor of the target cell (Fig. 6). It will need further experiments to actually demonstrate that disulfide bond formation controls the accessibility of the HDEL signal, and by surface plasmon resonance (BLAcore analysis) we are currently determining the in vitro binding kinetics (association and dissociation constants) between the cellular HDEL receptor Erd2p and various mutant toxins that are defective in correct disulfide bond formation.

ACKNOWLEDGEMENTS

We thank Donald Tipper and Bob Fuller for providing yeast Δkex2 and Δypsi1 mutants and plasmid YEp6-KEX2. We also greatly appreciate the excellent technical assistance of Beate Schmitt and Sabine Prediger. This work was kindly supported by a grant from the Deutsche Forschungsgemeinschaft (Schm 32-3; B10 [SFB 399]).

REFERENCES

Received 10 September 2001; revised 14 December 2001; accepted 17 December 2001.